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ABSTRACT

Multi-parameter stacking for converted waves is important for seismic imaging because shear waves
can carry additional information about the subsurface. In order to avoid acquisition problems asso-
ciated with SS-surveys, PS-converted waves can be investigated instead. Recently, a non-hyperbolic
traveltime expression, the implicit Common Reflection Surface (i-CRS) has been introduced. Since
it treats the down- and up-going rays separately, i-CRS highly favors an extension to asymmetric set-
tings. In this paper, we introduce two parameterizations of i-CRS for converted waves and examine
their accuracy with synthetic data for different reflector curvatures and varying degrees of inhomo-
geneity. In addition, we present the results of a sensitivity study of the new operator. The results
show that the two i-CRS expressions are superior to a hyperbolic operator. Moreover, we found that a
five parameter expression leads to better results than an according three parameter expression for all
examples investigated in this work.

INTRODUCTION

Shear waves play an important role in seismic imaging, because they can carry information about the
subsurface that might not be provided by P-waves. For monotypic waves, i.e., PP or SS, multi-parameter
stacking has become very important in applied seismics during the past decade, because stacking in both
midpoint and half-offset direction allows for better results than classical stacking methods like the CMP
stack. In order to avoid acquisition problems associated with SS-surveys, PS-converted waves can be
investigated instead. Accordingly, multi-parameter stacking of PS-converted waves with a hyperbolic
Common Reflection Surface (CRS, Müller, 1999) type operator has been suggested by Bergler et al. (2002).

In order to exploit the full potential of multi-parameter stacking, a highly accurate description of
traveltime moveout is required. Common traveltime formulations like the CRS operator (Müller, 1999;
Bergler et al., 2002) describe the traveltime moveout in a hyperbolic form, which has been shown by
several authors (see, e.g., Vanelle et al., 2010) to be less accurate for highly-curved reflectors, and, in
particular, diffractions. Therefore, it is reasonable to describe the traveltime in a non-hyperbolic form.
Vanelle et al. (2011a) recently introduced a new stacking operator called implicit Common Reflection
Surface (i-CRS). It was derived by searching the reflection point on a circle by Fermat’s principle of least
time. This leads to an implicit traveltime description depending on the reflection angle on the circle, which
can be applied in a recursive fashion.

In this paper, we investigate the i-CRS operator for the case of converted waves as suggested by Vanelle
et al. (2011a) and introduce two new parameterizations in terms of the widely-used CRS attributes (Hubral,
1983) adapted from Schwarz (2011). One formulation is based on the three CRS attributes, while the sec-
ond one uses five instead of three optimization parameters, additionally incorporating the velocities of the
down- and up-going rays, respectively. With these new operators, we perform several numerical studies
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on simple generic models in order to examine their accuracy and their ability to estimate the optimiza-
tion parameters. The results are compared to those obtained by a simplified hyperbolic CRS operator for
converted waves that implies a constant ratio of the P- and S-wave velocities (Vanelle et al., 2011b).

THEORY

Simplified CRS for converted waves

The CRS traveltime expression introduced by Bergler et al. (2002) has five parameters. Vanelle et al.
(2011b) derived a simplified CRS operator with three parameters for converted waves under the assumption
of a constant velocity ratio γ = v1/v2. In this special case, the paths of the down- and up-going zero-offset
rays coincide. It has the advantage that the original CRS parameters, α,RN , RNIP , which describe a
one-way process, can be used. In midpoint and half-offset coordinates, the simplified CRS operator reads:
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Indices 1 and 2 denote the down-going and up-going velocities, respectively. The velocity v+ is the har-
monic mean of the velocities v1 and v2. In the case of PS conversion we have v1 = vP and v2 = vS . For
monotypic waves, i.e., v1 = v2 = v+ = v0 and 1/v− = 0, the formula reduces to the monotypic CRS
traveltime.

Derivation of the new operator

In areas with complex geology, the description of moveout by a hyperbola is not valid anymore. Therefore,
the implicit CRS stacking operator (i-CRS) was introduced by Vanelle et al. (2010) for monotypic
waves in isotropic media. It was extended by Vanelle et al. (2011a) to account for anisotropy and con-
verted waves. In this section, we summarize their derivation before introducing two new parameterizations.

The operator is based on the idea of finding the reflection point on a circular reflector by applying
Fermat’s principle of least time. Using the Pythagorean theorem, it is possible to derive a formula for the
reflection traveltime in a homogeneous medium consisting of two ray paths for the down- and up-going
ray, respectively. Parameterizing the reflection point on the circle by its angle θ leads to the following
traveltime description,

t =
1

v1

√
(x1 − xc −R sin θ)2 + (H −R cos θ)2 +

1

v2

√
(x2 − xc −R sin θ)2 + (H −R cos θ)2, (3)

where x1 and x2 denote the source and receiver coordinates, respectively. The parameters xc, H,R
describe the center and the radius of the circle.

In order to find the ray that needs the least time to travel from source to receiver, the traveltime function
has to be minimized. This implies that ∂t/∂θ = 0 must hold. Calculating the derivative of t with respect
to θ for the case of an isotropic medium yields (Vanelle et al., 2011a):
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Setting ∂t/∂θ to zero leads to the following expression for the tangent of the reflection point angle:

tan θ = −B
A

=
x1v

2
2t2 + x2v

2
1t1

H(v2
2t2 + v2

1t1)
− xc
H
. (5)

Switching from source and receiver to midpoint and half-offset coordinates (5) changes to:

tan θ =
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H
− h(v2

2t2 − v2
1t1)

H(v2
2t2 + v2

1t1)
. (6)

The equation for tan θ has to be solved in order to compute the traveltime. Indeed, it depends on the
traveltime itself and thus is an implicit formula. However, one can make use of the fact that equations (5)
and (6) become explicit for the case of zero offset:

tan θ0 =
xm − xc

H
. (7)

The computed θ0 can thus be used as a starting guess of θ for a recursive application, as suggested by
Vanelle et al. (2010).

In order to fit into multi-parameter stacking implementations like the CRS stack, the i-CRS operator
has to be capable of considering neighboring CMP gathers. Therefore, the absolute source and receiver
coordinates as well as the horizontal position of the reflector have to be transformed into relative coordinates
with respect to a central location x0 in the used aperture. This can be achieved by:

x1,2 − xc = x1,2 − x0 − xc + x0 = ∆x1,2 −∆xc (8)

resulting in the final set of equations, which form the new i-CRS multi-parameter stacking operator for
converted waves:
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The operator is formulated in source and receiver coordinates here, because this does not imply assump-
tions about the midpoint location, which is not straightforward in asymmetric settings like converted waves.

PARAMETERIZATIONS

There are several reasons for parameterizing the i-CRS operator in terms of the kinematic wavefield at-
tributes α, RNIP and RN instead of ∆xc, H and R. First, ∆xc, H and R lose their physical meaning in
inhomogeneous media, where they become effective parameters. This applies to vP,S similarly. Second,
the i-CRS operator has to be expressed in terms of t0 and the kinematic wavefield attributes in order to be
embedded into current CRS stacking environments. It is also possible to use the operator with its original
parameters, but this requires finding a way to incorporate t0 and designing a new stacking environment.
Schwarz (2011) introduced two fundamentally different parameterizations of the i-CRS operator in terms
of the CRS attributes, which are presented in the following.

i-CRS3: three-parameter expression

The shifted i-CRS uses an auxiliary medium with constant velocities to describe the traveltime moveout.
This is possible because the CRS parameters (α,RNIP , RN ) are characteristics of the reflector recorded at
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Figure 1: Geometric relations between i-CRS (left) and CRS parameters (right) in a homogeneous medium
(Schwarz, 2011).

the surface. Therefore, the description of traveltime moveout can be carried out in a so-called image space
(e.g., Höcht et al., 1999) using the constant near-surface velocities. This auxiliary medium leads to simple,
geometric relations between i-CRS and CRS parameters (Schwarz, 2011, see also Figure 1):

∆x̃c = −RN sinα, (10a)

H̃ = RN cosα, (10b)

R̃ = RN −RNIP , (10c)

ṽP,S = v0
P,S . (10d)

The tilde in the i-CRS parameters indicates that these relations hold for heterogeneous media, i.e., the
parameters become effective parameters, whereas the original i-CRS derivation was carried out for the
homogeneous case. See also Figure 1 for the geometric relations.

Since traveltime moveouts in image space and model space are supposed to be equal (de Bazelaire,
1988; Höcht et al., 1999), the traveltime can be calculated entirely in the image space before subtracting a
constant time shift tr. This time shift also introduces t0 and reads:

tr =
2RNIP
v+

− t0, (11)

where 2RNIP /v
+ describes the zero-offset traveltime in the image space, which follows from the geo-

metric relations in Figure 1. The velocity v+ is the harmonic average of the near-surface P- and S-wave
velocities. The traveltime description for the shifted i-CRS finally reads as follows:

tshift = t1(α,RNIP , RN ) + t2(α,RNIP , RN ) + t0 −
2RNIP
v+

. (12)

As this traveltime expression uses three parameters, we refer to it as ’i-CRS3’ from here on.

i-CRS5: five-parameter expression

Schwarz (2011) expanded the squared monotypic i-CRS traveltime into its Taylor series and compared the
resulting coefficients with the ones of the parabolic CRS formula. Introducing the normal moveout velocity
defined as follows,

v2
NMO =

2RNIP v
+

t0 cos2 α
, (13)
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this resulted in the following new parameter transformation formulae:
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) , (14a)
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2√
1 + vNMO

(v+)2 sin2 α
. (14c)

For the case of converted waves, a transformation formula for the velocity Ṽ of the same form as the
monotypic case,

Ṽ =
vNMO√

1 + vNMO
(v+)2 sin2 α

, (15)

can be derived. However, the down- and up-going rays depend on different velocities. Introducing v1 and
v2, Taylor i-CRS becomes a five parameter (i.e., α,RNIP , RN , v1, v2) traveltime description. Because of
this, we refer to it as ’i-CRS-5’.The transformation formula for Ṽ , (15), is therefore not required and the
two optimized velocities are directly used for the computation of the traveltime.

In the presence of heterogeneities, the two velocities become effective parameters, just like the original
CRS parameters α,RNIP , RN . In order to distinguish them from the homogeneous case, they will be
denoted as ṼP and ṼS from now on. Additionally, instead of v+ in (14) we introduce Ṽeff as the harmonic
mean of the optimized effective velocities ṼP and ṼS in the heterogeneous case.

Since the transformation relations (14) already contain the zero-offset traveltime t0, the traveltime de-
scription for this parameterization is a pure double-square root expression, which reads:

tTaylor = t1(t0, α,RNIP , RN , ṼP ) + t2(t0, α,RNIP , RN , ṼS). (16)

In the following sections, we investigate these two parameterizations with respect to sensitivity and
accuracy. For comparison, the accuracy of the simplified CRS expression (1) was also studied.

SENSITIVITY STUDY

In this section, we perform a sensitivity study of the three- and five-parametric operators i-CRS3 and
i-CRS5 according to Tygel et al. (2011). The purpose is to establish whether the optimization parameters
can be estimated accurately by the operators or, in other words, how strong inaccurate parameters affect the
calculated traveltime. The sensitivity study is carried out for the following homogeneous model parameter
values:

α = 10 ◦ v0
P = 2000 ms−1

RNIP = 1000 m v0
S =

vP√
3

RN = 2000 m t0 =
2RNIP
v+

With these values, reference traveltimes are calculated by the two operators. Then, every single one of
the optimization parameters is varied from −10 % to 10 % of its model value in steps of 1 % while the
others are kept at their model values. For this set of perturbed values, the traveltime is calculated by the
respective operator and compared to the corresponding reference traveltime. This procedure is repeated
for all optimization parameters, i.e. the CRS parameters for i-CRS3 and the CRS parameters plus the two
velocities for i-CRS5. Figures 2(a) and 2(b) show the operators’ sensitivities to the CRS parameters and
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(a) i-CRS3
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(b) i-CRS5

Figure 2: Sensitivity of the i-CRS operators to CRS attributes
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Figure 3: Sensitivity of i-CRS5 to velocities.

Figure 3 shows the i-CRS5 sensitivity to the two velocities.

Whereas both i-CRS3 and i-CRS5 basically have the same sensitivity to α and RN , they reveal major
differences concerning RNIP : over the full (∆xm, h)-plane, i-CRS5 is more sensitive to the value of
RNIP . In particular, it is also sensitive to RNIP for zero-offset, in contrast to i-CRS3. Both operators
are not sensitive to α and RN for (∆xm, h) = (0, 0). The i-CRS5 operator reveals to be more sensitive
to VS than to VP , which was to be expected since VP > VS . We conclude that VS and RNIP are the
two parameters causing the highest traveltime error for i-CRS5 when they are perturbed. The i-CRS3
expression requires large half-offsets for an accurate estimation of RNIP . Furthermore, both operators
require large midpoint displacements for an accurate estimation of α and RN .

ACCURACY STUDIES

In this section, we examine the accuracy of the new traveltime descriptions for simple homogeneous and
vertically inhomogeneous models. These models contain circular reflectors with radii of curvature 100 m,
1000 m and 10000 m, whose top point lies in a depth of 1000 m each. The respective position of the
reflectors’ centers is ∆xc = 0 (see Figure 4 for a schematic overview of all models in use). Furthermore,
we consider three different overburdens for each radius:

1. a homogeneous overburden with constant velocities v0
P = 2000 m/s and a constant vP /vS ratio of

γ =
√

3,

2. an inhomogeneous overburden with a vertical P-wave velocity gradient of ∂vP /∂z= 0.3s−1 starting
with v0

P = 2000 m/s at the surface, and a constant velocity ratio γ =
√

3,

3. a vertically inhomogeneous overburden with a vertical P-wave velocity gradient of ∂vP /∂z= 0.3s−1
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Figure 4: Schematic overview of the different models underlying the accuracy studies. For each reflector
radius three different versions of overburden are used (Schwarz (2011), modified).

with v0
P = 2000 m/s and a vertical S-wave velocity gradient of ∂vS/∂z= 0.4s−1 with

v0
S = 2000/

√
3 m/s.

For this accuracy study we investigate not only the new i-CRS3 and i-CRS5 operators, but also the sim-
plified CRS operator for converted waves (see Equation (1)), which is a hyperbolic three parameter formula.

In the i-CRS implementations, we chose to apply three iterations. The traveltime fits obtained for
each operator and model are then compared to the particular exact traveltime, which was computed using
the NORSAR 3D software. The following aperture in terms of midpoint and half-offset coordinates was
defined in the synthetic data:

∆xm ∈ {0, 1000 m}, (17a)
h ∈ {0, 1000 m}. (17b)

Please note that the sharp edges that are visible in some of the error plots given below are caused by
the synthetic data and related to limitations of the ray tracing implementation. Although they appear to
be most prominent for the i-CRS5, they are not caused by the operator itself. The reason that they are so
pronounced for the i-CRS5 is that the overall accuracy of that operator is higher than for i-CRS3 and CRS.
Furthermore, in some of the examples given below, the aperture range (see (17)) is smaller. This is also
due to ray tracing issues, which occur here especially for higher reflector curvature.

The operator traveltimes are computed in MATLAB and the parameter optimization is carried out by the
intrinsic MATLAB function fminsearch, which uses a Nelder-Mead simplex search method (Lagarias
et al., 1998). For the traveltime computation, it minimizes the square of the traveltime error.

Example: homogeneous overburden

The results for the homogeneous overburden (see Figure 5 and Table 1) show that the two i-CRS operators
lead to consistently higher accuracy than CRS throughout the whole range of reflector curvature. A
comparison between the different curvatures reveals that the accuracy of CRS decreases for small reflector
radii, i.e., high curvatures. This is not surprising, since the hyperbolic CRS operator is exact for a
planar reflector, whereas the non-hyperbolic i-CRS formulas are exact for diffractions. For the homo-
geneous models, both i-CRS operators reach an accuracy that is basically of the order of machine precision.

The results show the superior performance of the two i-CRS operators over CRS for converted waves
concerning not only accuracy, but also parameter estimation (Table 1). All parameter values gained by the
optimization procedure are very accurate for both i-CRS3 and i-CRS5, whereas the CRS values show much
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Figure 5: Traveltime errors of the three operators for a circular reflector and a homogeneous overburden.
Note the different scales.
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Figure 5: (continued): Traveltime errors of the three operators for a circular reflector and a homogeneous
overburden. Note the different scales.

Table 1: Accuracy and estimated parameters for a circular reflector and a homogeneous overburden
(a) R = 100m.

δtRMS [s] α [◦] RNIP [m] RN [m] VP [ms−1] VS [ms−1]
CRS 6.602 · 10−3 1.299 1124.346 1188.187 – –
i-CRS3 3.614 · 10−6 −0.001 999.950 1099.905 – –
i-CRS5 2.872 · 10−6 −0.000 999.999 1099.991 2000.006 1154.660
exact – 0 1000 1100 2000 1154.668

(b) R = 1000m.

δtRMS [s] α [◦] RNIP [m] RN [m] VP [ms−1] VS [ms−1]
CRS 3.207 · 10−3 0.419 1016.395 2036.167 – –
i-CRS3 3.520 · 10−6 −0.001 999.963 1999.786 – –
i-CRS5 3.088 · 10−6 −0.001 1000.002 1999.944 2000.000 1154.660
exact – 0 1000 2000 2000 1154.668

(c) R = 10000m

δtRMS [s] α [◦] RNIP [m] RN [m] VP [ms−1] VS [ms−1]
CRS 1.895 · 10−3 −0.060 1027.518 9958.403 – –
i-CRS3 1.407 · 10−5 0.000 1000.015 10997.359 – –
i-CRS5 1.394 · 10−5 −0.001 1000.050 10993.653 1999.913 1154.751
exact – 0 1000 11000 2000 1154.668
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larger deviations and depend on the reflector curvature. For the homogeneous models, the velocity values
estimated by both i-CRS operators are very accurate throughout the full range of reflector curvature.

Example: vertically inhomogeneous overburden with constant γ

In this example, we carry out our investigations with the same reflector geometry as before, but with a
constant vertical P-velocity gradient of 0.3 s−1 and a constant ratio of P- and S-velocities (γ) instead of
a homogeneous overburden. Under these conditions, the operators’ behavior reveals larger differences,
especially between the two i-CRS implementations.

In terms of traveltime errors, i-CRS5 leads to higher accuracy than the other two operators. As before,
the differences decrease for increasing reflector curvature. Whereas the differences in traveltime error
between i-CRS3 and i-CRS5 are of the same order in the homogeneous case, in this case they differ by
one order of magnitude. CRS provides slightly worse, but comparable results to i-CRS3 with smaller
differences for larger radii. Table 2 lists an overview of errors as well as the estimated parameter values.
Since the values of the wavefield attributes are not known in the presence of heterogeneity, they are not
given as reference. Figure 6 shows the corresponding traveltime error surfaces.

Table 2: Accuracy and estimated parameters for a circular reflector and a vertically inhomogeneous over-
burden with constant γ.

(a) R = 100m.

δtRMS [s] α [◦] RNIP [m] RN [m] VP [ms−1] VS [ms−1]
CRS 4.385 · 10−3 0.754 1221.058 1249.098 – –
i-CRS3 1.290 · 10−3 0.646 1124.318 1269.811 – –
i-CRS5 1.506 · 10−4 0.148 1000.850 1117.896 2144.592 1243.126

(b) R = 1000m.

δtRMS [s] α [◦] RNIP [m] RN [m] VP [ms−1] VS [ms−1]
CRS 2.746 · 10−3 0.494 1101.528 2305.182 – –
i-CRS3 1.921 · 10−3 0.771 1121.849 2457.380 – –
i-CRS5 3.580 · 10−4 0.302 1003.068 2119.688 2127.294 1254.017

(c) R = 10000m

δtRMS [s] α [◦] RNIP [m] RN [m] VP [ms−1] VS [ms−1]
CRS 1.667 · 10−3 0.061 1112.305 12061.622 – –
i-CRS3 1.224 · 10−3 0.298 1113.582 14427.774 – –
i-CRS5 3.004 · 10−4 0.143 1004.686 12411.427 2144.806 1250.385

Example: vertically inhomogeneous overburden with varying γ

For this last example, we used a model with varying γ, i.e., a P-velocity gradient of 0.3 s−1 and an
S-velocity gradient of 0.4 s−1. Note that all operators were derived under the assumption of a constant
velocity ratio. Nevertheless, the observed performance is comparable to the constant γ case, however,
there are some differences.

The results show that for varying γ i-CRS5 provides the most accurate traveltimes of all three operators:
its traveltime error still is by one order of magnitude smaller than the others. i-CRS3 however, performs
worse than CRS for R = 1000 m and R = 10000 m. Table 3 shows the estimated parameters and Figure
7 visualizes the corresponding traveltime error surfaces. Since the CRS parameters α,RN , RNIP imply a
one-way process, i.e., constant γ, reference values are not given in Table 3.
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Figure 6: Traveltime errors of the three operators for a circular reflector and a vertically inhomogeneous
overburden with constant γ. Note the different scales.
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Figure 6: (continued): Traveltime errors of the three operators for a circular reflector and a vertically
inhomogeneous overburden with constant γ. Note the different scales.

Table 3: Accuracy and estimated parameters for a circular reflector and a vertically inhomogeneous over-
burden with variable γ.

(a) R = 100m.

δtRMS [s] α [◦] RNIP [m] RN [m] VP [ms−1] VS [ms−1]
CRS 6.078 · 10−3 1.021 1398.458 1377.464 – –
i-CRS3 4.186 · 10−3 1.296 1325.878 1465.831 – –
i-CRS5 3.468 · 10−4 0.430 1001.765 1142.681 2120.255 1363.198

(b) R = 1000m.

δtRMS [s] α [◦] RNIP [m] RN [m] VP [ms−1] VS [ms−1]
CRS 4.721 · 10−3 1.006 1180.741 2751.752 – –
i-CRS3 5.018 · 10−3 1.620 1235.915 3119.733 – –
i-CRS5 7.370 · 10−4 0.601 1006.706 2223.712 2090.654 1387.245

(c) R = 10000m

δtRMS [s] α [◦] RNIP [m] RN [m] VP [ms−1] VS [ms−1]
CRS 1.072 · 10−3 0.141 1148.219 14512.191 – –
i-CRS3 1.457 · 10−3 0.439 1163.972 18381.997 – –
i-CRS5 4.455 · 10−4 0.204 1008.893 13387.325 2134.598 1370.907
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Figure 7: Traveltime errors of the three operators for a circular reflector and a vertically inhomogeneous
overburden with variable γ. Note the different scales.
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Figure 7: (continued): Traveltime errors of the three operators for a circular reflector and a vertically
inhomogeneous overburden with variable γ. Note the different scales.

CONCLUSIONS AND OUTLOOK

In this work, we have investigated the implicit non-hyperbolic traveltime expression, i-CRS, for converted
waves based on the work by Vanelle et al. (2011a). Due to its double-square root form, i-CRS has the
property of treating the down- and up-going rays separately, which is particularly useful for the case of
converted waves, since it allows for the explicit separation of the two velocities.

Two different parameterizations of i-CRS in terms of the CRS attributes, leading to two new traveltime
formulations, were examined. In the first, a three-parametric expression denoted i-CRS3, the traveltime is
calculated in an auxiliary medium with constant near-surface velocities with a subsequent constant time
shift. The second expression, i-CRS5, transforms the CRS attributes following relations obtained by a
Taylor series expansion and introduces two additional parameters, namely the velocities of the down- and
up-going rays.

We analyzed the sensitivity of both descriptions with respect to parameter determination according to
Tygel et al. (2011). Each parameter value was perturbed under controlled conditions. The behavior of
the traveltime deviations revealed that i-CRS5 is more sensitive to the estimation of RNIP than i-CRS3,
whereas the sensitivities to α and RN are comparable.

Furthermore, we have examined the accuracy of i-CRS3 and i-CRS5 in comparison to a simplified
CRS, i.e., hyperbolic, expression. We have studied circular reflectors with radii varying from the diffraction
to near-planar limit with constant velocity and vertical gradient overburden. Again, the i-CRS5 operator
performed better than i-CRS3 and CRS, in particular for high reflector curvatures. In an additional test
with constant vertical gradients but varying VP /VS ratio, i-CRS5 also led to superior results than i-CRS3
and CRS. This last example is very promising because the derivation of the i-CRS as well as the simplified
CRS operator investigated here are based on the assumption of constant γ.



32 Annual WIT report 2012

First tests with i-CRS3 implemented into a CRS stacking framework for converted waves provided very
promising results compared to other operators (see Bauer, 2012). However, similar tests with the i-CRS5
showed that apparently this operator requires a more faster, more stable and more rapidly converging
optimization method than Nelder-Mead. One possibility of such an optimization method could be based
on a hybrid method using conjugate direction schemes, as suggested by Minarto and Gajewski (2011).
According to our studies, we would then expect that i-CRS5 should lead to even better stacking results
than i-CRS3.

Another issue that needs to be addressed for the application as a stacking operator is that stacking of
converted-wave data cannot take place in the CMP domain. Instead, the data need to be sorted into common
conversion point (CCP) gathers (for conventional stacking, see, e.g., Tessmer et al., 1990). An extension
of CCP-stacking for multi-parameter operators has recently been introduced by Abakumov et al. (2011).
The authors of that work suggest sorting into γ-CMP coordinates. Just like CCP sorting, however, this
process requires a priori knowledge of the vP /vS ratio. One possible solution to this problem would be
to carry out the entire stacking process for converted waves in source and receiver coordinates. Although
Dümmong (2005) has shown that for monotypic waves, this approach is less convincing than the ’classical’
CRS stack in midpoint and half-offset coordinates, it might lead to a better performance if converted waves
are considered.
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