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ABSTRACT

Multiparameter stacking of monotypic reflections is an important tool in seismic data processing. An
according formulation for converted waves exists, but it is cumbersome because more parameters are
involved than for monotypic waves, making the optimisation process significantly more difficult and
time-consuming. In this paper, we derive a new hyperbolic traveltime operator for the stacking of
converted waves. It is formally identical with the existing formulation, but has the advantage that it
can be directly expressed using the wavefield attributes describing monotypic reflections. Therefore,
the parameter search for the converted waves can be significantly simplified because starting values
known from a PP stack can be used.

INTRODUCTION

Shear waves play an important role in seismic imaging because they lead to knowledge of subsurface prop-
erties that cannot be obtained from PP-reflection surveys alone. However, corresponding SS-reflection
experiments are rarely carried out, mainly due to the acquisition problems associated with SS-surveys.

Shear properties are key indicators for reservoir characterisation because parameters like porosity and
permeability have strong influence on shear velocities (e.g. Nelson, 2001). Thus, the determination of shear
velocities provides a direct means for the prediction of reservoir parameters. For example, it is possible
to obtain information on the density and orientation of fractures from converted waves (e.g. Gaiser and
Van Dok, 2003) since these fractures lead to seismic anisotropy.

Furthermore, the presence of gas clouds leads to high absorption for the P waves and makes imaging
under such regions inadequate for PP surveys. Shear waves, on the other hand, do not suffer from the
absorption (Stewart et al., 2003). Another example where converted waves are beneficial is imaging of
targets with weak PP and strong PS impedance contrasts, e.g., for certain types of shale-sand boundaries
(Stewart et al., 2003). Due to the smaller velocity of shear waves they can be used to enhance the seismic
resolution. This is particularly interesting for the investigation of steeply-inclined near-surface structures
(Stewart et al., 2003). Finally, shear waves are essential for the detection and quantification of seismic
anisotropy (e.g. Tsvankin, 2001).

As an alternative to SS-surveys, PS-converted waves can be investigated. Here, the issues caused by
difficulties with shear sources are avoided. The price we pay for the easier acquisition is that standard
CMP-processing cannot be applied to converted waves in the same fashion as for monotypic (PP, SS)
waves. The main reason is that the ray paths of converted waves are asymmetric with respect to inter-
changing sources and receivers. In particular in the presence of lateral inhomogeneities or anisotropy, the
move-out of a converted wave becomes asymmetric because it contains a linear term, the so-called diodic
move-out Thomsen (1999). This prevents the application of NMO correction in CMP gathers, which is
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based on the assumption of symmetric ray paths.

This problem is closely-related to that of conversion point dispersal. Although monotypic waves also
encounter reflection point dispersal, the effect has a larger magnitude for converted waves. PS data are
therefore sorted in common conversion point (CCP) gathers instead of CMP. However, the determination
of the CCP itself can be rather complicated (e.g. Tessmer et al., 1990; Thomsen, 1999). Also, it is by no
means trivial to obtain a velocity model from the subsequent processing. For example, neglecting the sign
of the offset during the CCP binning can lead to a bimodal velocity spectrum due to the diodic move-out
(Thomsen, 1999).

For monotypic waves, standard CMP stacking can be extended to multiparameter stacking. These
methods, with one fundamental example being the Common Reflection Surface stack (CRS, Mueller,
1999), have gained a significant amount of recognition over the past decade. For 2D zero-offset CRS,
the hyperbolic stacking surface is determined by three independent parameters or attributes: the inci-
dence/emergence angle of the zero-offset ray and the curvatures of two fictitious wavefronts Hubral (1983).
These can subsequently be exploited in applications like velocity model building and others (see, e.g.,
Baykulov et al., 2011, for details on a CRS-based processing workflow).

A corresponding multiparameter operator for converted waves was introduced by Bergler et al. (2002).
It contains five parameters, two more than the monotypic version, which account for the asymmetry of the
ray paths. In contrast to the attributes in the monotypic case, however, the five parameters for converted
waves do not have a physically intuitive meaning in terms of wavefront curvatures.

In this work, we derive a CRS-type hyperbolic multiparameter stacking operator for converted waves.
We use a model-based approach and obtain an expression that is formally identical to that of Bergler et al.
(2002) but uses the same three parameters as the monotypic CRS operator. Our derivation begins with a
constant vp/vs ratio, which leads to a physical interpretation of the attributes of the new operator. This as-
sumption is not necessarily a restriction, as Abakumov et al. (2011) have shown that their operator, which
was also derived for constant vp/vs, leads to good stack results even when the ratio is varied.

The assumption of constant vp/vs can even be used as an advantage, e.g. in formulating an efficient
search strategy for converted waves. These advantages are discussed in detail after the derivation of the
new operator.

DERIVATION OF THE CRS-TYPE OPERATOR FOR CONVERTED WAVES

Coordinates and ansatz

In order to derive the CRS-PS traveltime formula, we begin with defining our coordinates, parameters, and
angles. They are depicted in Figure 1.

The circular reflector is defined by its radius R, the depth of its centre, H , and the lateral coordinate
of its centre, xc (see Figure 1a). The acquisition is described by x1 and x2, the coordinates of the source
and receiver, which are assumed to lie on a flat datum at z = 0. The position at which the zero-offset ray
emerges is denoted by x0, see Figure 1b). The quantities εi = xi − x0 are assumed to be small.

It is important to distinguish between the anglesα, which describes the point on the circle (R sinα,H −R cosα)
where the zero-offset reflection takes place, and θ, which describes the point on the circle (R sin θ,H −R cos θ)
where the reflection occurs in the offset case.

Furthermore, we introduce the ray length of the one-way zero-offset ray,

D =
H

cosα
−R . (1)

The zero-offset coordinate is related to the angle α and the depth H by

x0 = H tanα+ xc . (2)
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Figure 1: Reflection from a circle with radius R and centre (xc, H). (a) The angle α describes the point
on the circle where the zero-offset reflection takes place. (b) The angle θ describes the reflection point on
the circle in the offset case.

For this geometry, the traveltime in terms of the reflection angle θ, t(θ) is given by

t(θ) = t1(θ) + t2(θ) , (3)

where the traveltimes t1(θ) and t2(θ) are those of the down- and upgoing rays, i.e.,

ti(θ) =
1
Vi

√
(xi − xc −R sin θ)2 + (H −R cos θ)2 , (4)

or, rewritten in terms of εi,

ti(θ) =
1
Vi

√
(εi +H tanα−R sin θ)2 + (H −R cos θ)2 . (5)

In the first step of the derivation of our new traveltime expression, we expand t(θ) in the vicinity of the
zero-offset angle α, up to second order:

t(θ) ≈ t(θ = α) +
∂t(θ = α)

∂θ
(θ − α) +

1
2
∂2t(θ = α)

∂θ2
(θ − α)2 . (6)

In order to describe the traveltime of a reflected wave, Snell’s law must be fulfilled. This requires that
∂t(θ)/∂θ = 0:

∂t(θ)
∂θ

≈ ∂t(θ = α)
∂θ

+
∂2t(θ = α)

∂θ2
(θ − α) = 0 , (7)

or:

θ − α = −∂t(θ = α)
∂θ

/
∂2t(θ = α)

∂θ2
. (8)

Substituting (8) into (6), we find that

t(θ) ≈ t(θ = α)−
[
∂t(θ = α)

∂θ

]2/
2
∂2t(θ = α)

∂θ2
. (9)

To evaluate (9), we need to find expressions for ti(θ = α), ∂ti(θ = α)/∂θ, and ∂2ti(θ = α)/∂θ2. These
will be derived in the following sections.
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Derivation of the zero-order term

In this section, we derive an expression of second order in εi for the traveltime ti(α) ≡ ti(θ = α). We
begin by setting θ = α in (5) and rewriting it with the help of the expression for D, equation (1):

ti(α) =
1
Vi

√
(εi +H tanα−R sinα)2 + (H −R cosα)2

=
1
Vi

√(
εi +

[
H

cosα
−R

]
sinα

)2

+ (H −R cosα)2

=
1
Vi

√
(εi +D sinα)2 +D2 cos2 α

=
1
Vi

√
ε2i + 2Dεi sinα+D2 (10)

In the next step, we expand equation (10) until second order in εi:

ti(α; εi) ≈ ti(α; εi = 0) +
∂ti(α; εi = 0)

∂εi
εi +

1
2
∂2ti(α; εi = 0)

∂ε2i
ε2i (11)

For the zero-order term we find
ti(α; εi = 0) =

D

Vi
. (12)

Now we determine the first-order term:
∂ti(α; εi)
∂εi

=
εi +D sinα

V 2
i ti

, (13)

which for εi = 0 becomes
∂ti(α; εi = 0)

∂εi
=

sinα
Vi

, (14)

where (12) was substituted.
For the second-order term, we obtain

∂2ti(α; εi)
∂ε2i

=
1
V 2
i

∂2

∂ε2i

(
εi +D sinα

ti

)

=
1

V 2
i t

2
i

(
ti − (εi +D sinα)2

V 2
i ti

)
. (15)

Setting εi = 0 leads to

∂2ti(α; εi = 0)
∂ε2i

=
1
D2

(
D2 −D2 sin2 α

ViD

)
=

cos2 α

ViD
. (16)

Substituting these derivatives into equation (11) we arrive at a second-order expression in εi for the
traveltime ti(α):

ti(α) ≈ D

Vi

(
1 +

sinα
D

εi +
cos2 α

2D2
ε2i

)
. (17)

Derivation of the first-order term

In this section, we derive an expression for the first derivative of the traveltime, ∂ti(θ = α)/∂θ. Using (5),
we find that

∂ti(θ)/∂θ =
1

2V 2
i ti

2
[
R sin θ(H −R cos θ)−R cos θ(εi +H tanα−R sin θ)

]

=
R

V 2
i ti

[
H sin θ − (εi +H tanα) cos θ

]
, (18)



Annual WIT report 2011 183

which, for θ = α reduces to

∂ti(θ = α)/∂θ =
R

V 2
i ti

[
H sinα− εi cosα−H sinα

]

= − R cosα
V 2
i ti

εi

≈ − R cosα
ViD

εi . (19)

The substitution of the last step in (19) is motivated by our search for a second-order expression and the
fact that the first derivative appears in squared form in (9).

Derivation of the second-order term

In this section, we derive an expression for the second-order derivative of the traveltime, ∂2ti(θ = α)/∂θ2:

∂2ti(θ)
∂θ2

=
R

V 2
i

∂

∂θ

H sin θ − (εi +H tanα) cos θ
ti

=
R

V 2
i ti

[
H cos θ + (εi +H tanα) sin θ − R

V 2
i t

2
i

(
H sin θ − (εi +H tanα) cos θ

)2]
.(20)

Since we are interested in an expansion of t(θ) up to second order in εi, we need to consider only constant
terms in ∂2ti(θ = α)/∂θ2, as the first-order derivative is linear in εi and it enters the final traveltime
equation in squared form (see (9)). Therefore, (20) can be reduced to

∂2ti(θ = α)
∂θ2

≈ R(R+D)
ViD

. (21)

Final result in CMP coordinates

Substituting the results from the previous sections, equations (17), (19), and (21) into (9), we find that the
traveltime expansion up to second order is

t(θ) ≈ D

(
1
v1

+
1
v2

)
+ sinα

(
ε1
v1

+
ε2
v2

)

+
cos2 α

2D

(
ε21
v1

+
ε22
v2

)
− R cos2 α

2D(R+D)

(
ε1
v1

+ ε2
v2

)2

1
v1

+ 1
v2

. (22)

We will now rewrite this result in midpoint and half-offset coordinates, and then reformulate it in CRS
parameters. With

ε1 = xm − h− x0

ε2 = xm + h− x0
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we compute

ε1
v1

+
ε2
v2

=
xm − x0 − h

v1
+
xm − x0 + h

v2

= (xm − x0)
(

1
v1

+
1
v2

)
− h

(
1
v1
− 1
v2

)
;

ε21
v1

+
ε22
v2

=
(xm − x0)2 + h2 − 2h (xm − x0)

v1
+

(xm − x0)2 + h2 + 2h (xm − x0)
v2

= (xm − x0)2

(
1
v1

+
1
v2

)
+ h2

(
1
v1

+
1
v2

)
− 2h (xm − x0)

(
1
v1
− 1
v2

)
;

(
ε1
v1

+
ε2
v2

)2

= (xm − x0)2

(
1
v1

+
1
v2

)2

+ h2

(
1
v1
− 1
v2

)2

− 2h (xm − x0)
(

1
v1

+
1
v2

)(
1
v1
− 1
v2

)
.

Now we introduce the abbreviations
2
v±

=
1
v1
± 1
v2

and evaluate (22) in terms of the powers of (xm − x0) and h:

const. :
2D
v+

(xm − x0) :
2 sinα
v+

h :
−2 sinα
v−

(xm − x0)2 :
cos2 α

v+(R+D)

h2 :
cos2 α

v+D
− v+R cos2 α

(v−)2D (R+D)

(xm − x0)h :
−2 cos2 α

v−(R+D)

In order to express these coefficients by the CRS parameters β0,RNIP , andRN , we consider the mono-
typic case, where v1 = v2 = v0, leading to v+ = v0, and 1/v− = 0. By comparison with the (parabolic)
CRS formula we see immediately that

β0 = α , (23a)

RNIP = D , (23b)

RN = D +R . (23c)

Note that this result also follows from geometrical considerations (see Figure 1).
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With (23), the coefficients for the (parabolic) CRS equation for converted waves become

t0 :
2RNIP
v+

(xm − x0) :
2 sinβ0

v+

h :
−2 sinβ0

v−

(xm − x0)2 :
cos2 α

v+RN

h2 :
cos2 β0

v+RNIP
− cos2 β0

v−

(
RN −RNIP
RN RNIP

)
v+

v−

(xm − x0)h :
−2 cos2 β0

v−RN

In order to obtain a hyperbolic traveltime expression, we square the parabolic formula and neglect terms
of higher order than two. This leads us to the final equation,

t2 ≈
(
t0 +

2 sinβ0

v+
(xm − x0)− 2 sinβ0

v−
h

)2

+2 t0 cos2 β0

(
(xm − x0)2

v+RN
+

h2

v+RNIP

)

−2 t0 cos2 β0

(
(RN −RNIP )
RNRNIP

v+ h2

(v−)2
+

2 (xm − x0)h
v−RN

)
(24)

This equation includes the monotypic case as a subset with v+ = v0 and 1/v− = 0. Note that in
addition to the velocities, only three parameters are required. The reason is that in our derivation, we have
assumed a constant ratio of vp/vs. In this case, the zero-offset reflections stems from the same subsur-
face point for monotypic as the converted waves. Bergler et al.’s equation (2002) has five independent
parameters because it is not restricted by such an assumption.

Result in γ-CMP coordinates: comparison with Abakumov et al.’s CRS-formula

The choice of an alternate coordinate system can lead to a considerable simplification of (24). Abakumov
et al. (2011) have introduced γ-CMP coordinates, i.e.,

x̃m =
x1 + γx2

1 + γ
h̃ =

x2 − x1

1 + γ
, (25)

where γ = v1/v2. With these coordinates, we can express ε1 and ε2 as

ε1 = x̃m − x0 − γh̃
ε2 = x̃m − x0 + h̃ . (26)

As for the ’standard’ CMP coordinates, we formulate

ε1
v1

+
ε2
v2

,
ε21
v1

+
ε22
v2

,

(
ε1
v1

+
ε2
v2

)2
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in terms of γ-CMP coordinates:

ε1
v1

+
ε2
v2

= (x̃m − x0)
(

1
v1

+
1
v2

)
;

ε21
v1

+
ε22
v2

=
(

(x̃m − x0)2 + γh̃2
)( 1

v1
+

1
v2

)
;

(
ε1
v1

+
ε2
v2

)2

= (x̃m − x0)2

(
1
v1

+
1
v2

)2

.

Substituting these expressions and the representation of the CRS parameters, (23), into (22), we find
after some algebra that the linear term in h̃ vanishes, as well as the mixed quadratic term (x̃m − x0)h̃. The
final (hyperbolic) result is

t2 ≈
(
t0 +

2 sinβ0

v+
(x̃m − x0)

)2

+ 2 t0 cos2 β0

(
(x̃m − x0)2

v+RN
+

γh̃2

v+RNIP

)
. (27)

This equation is identical to the one derived by Abakumov et al. (2011). It is also formally identical to
the monotypic CRS expression in standard CMP coordinates: for v1 = v2 the γ-CMP and standard CMP
coordinates coincide, and (27) reduces to the original, i.e., monotypic, CRS expression.

DISCUSSION

If γ-CMP coordinates are used, the pragmatic search strategy suggested by Abakumov et al. (2011) can be
applied. Although this section focusses on the CRS-type operator for converted waves in standard CMP-
coordinates as given by (24), some of our conclusions apply to Abakumov et al.’s operator in a similar
fashion.

If the ratio of vp/vs (or v1/v2, accordingly) is constant even in heterogeneous media, both PP and PS
reflections stem from the same subsurface point. In that case, the paths of the corresponding zero-offset
rays coincide. If we knew that vp/vs is constant, we could therefore use the CRS parameters β0, RN ,
and RNIP obtained from the PP stack directly to create the PS stack with (24) without carrying out an
additional search.

If vp/vs varies, we could still use the PP parameters as starting values for the required five-parameter
search using Bergler et al.’s 2002 equation with the starting parameters expressed by (24). This would con-
siderably speed up the optimisation. Furthermore, the difference between the starting coefficients in (24)
and the final ones resulting from Bergler et al.’s formula would depend on the variation of the vp/vs ra-
tio. Although further investigations are required here, this difference could be evaluated for shear velocity
determination, in particular in conjunction with the proposed strategy for NIP-Wave tomography for con-
verted waves (Vanelle and Gajewski, 2009).
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