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ABSTRACT

Multiparameter stacking has become a standard tool for seismic reflection data processing. Although
different traveltime operators exist, whose accuracy depends on the offset and reflector curvature,
neither of these can account for anisotropy. We introduce a new stacking operator, the so-called
’recursive stacking operator’ (RSO), which is derived from evaluating Snell’s law at a locally spherical
interface in an anisotropic medium. Examples show that the new method performs well for the whole
range of reflector curvatures from nearly planar reflectors to the diffraction limit.

INTRODUCTION

Over the past years, a number of multiparameter stacking operators have been introduced as an extension
of the CMP stacking technique. Examples of such operators are the common reflection surface stack (CRS,
Müller, 1999), multifocusing (MF, e.g., Landa et al., 2010), and the shifted hyperbola (de Bazelaire, 1988).
These operators describe the traveltime surface for a reflected event in the short offset limit. The accuracy
of the individual methods differs and depends not only on the considered offset but also on the reflector
curvature. Neither of these existing operators considers seismic anisotropy.

Recently, a new stacking operator for monotypic waves in isotropic media was introduced by Vanelle
et al. (2010). It was derived from Snell’s law for a spherical interface and leads to an implicit expression for
the traveltime surface. It can be applied recursively and we therefore refer to it as the ’recursive stacking
operator’ (RSO). In this work, we suggest an extension of this operator to account for anisotropy.

After deriving the new operator, we demonstrate that it leads to reliable results for a wide range of
reflector curvatures from nearly planar reflectors to the diffraction limit.

METHOD

We consider a spherical reflector in a homogeneous medium. The radius of the reflector is R, with its
centre at the location (xc, 0, H), as shown in Figure 1a. The coordinates x1 and x2 are those of a source
and a receiver, respectively, both at the depth z=0 and y=0. The angle θ defines the reflection point at
~r = (R sin θ, 0, H −R cos θ). The ray/group velocities of the down- and upgoing ray segments are vi(ϑi)
with the group angles ϑi (see Figure 1b).

The traveltimes ti of the down and upgoing ray segments are given by

t2i =
(xi − xc −R sin θ)2 + (H −R cos θ)2

v2
i (ϑi)

, (1)
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Figure 1: Reflector geometry (a) and acquisition (b) for the spherical reflector. The reflection point ~r is
defined by the angle θ. The angles ϑi are the ray/group angles.

or, in midpoint and half-offset coordinates (xm, h):

t21 =
(xm − h− xc −R sin θ)2 + (H −R cos θ)2

v2
1(ϑ1)

,

t22 =
(xm + h− xc −R sin θ)2 + (H −R cos θ)2

v2
2(ϑ2)

.

The sum of t1 and t2 must fulfil Snell’s law, i.e., ∂(t1 + t2)/∂θ = 0. The derivatives of t1 and t2 with
respect to θ are

∂ti
∂θ

=
1

2 ti
∂t2i
∂θ

=
R

v2
i ti

[
H sin θ − (xi − xc) cos θ

]− ti
vi

∂vi
∂θ

, (2)

where
∂vi
∂θ

=
∂vi
∂ϑi

∂ϑi
∂θ

. (3)

From the geometry of the ray paths shown in Figure 1b, we have that

tanϑi =
xi − xc −R sin θ
H −R cos θ

, (4)

which leads us to
∂ϑi
∂θ

=
R

v2
i t

2
i

(
R−H cos θ − (xi − xc) sin θ

)
, (5)

and finally to

∂t

∂θ
=

[
H

v2
1t1

+
H

v2
2t2

+
x1 − xc
v3

1t1

∂v1

∂ϑ1
+
x2 − xc
v3

2t2

∂v2

∂ϑ2

]
︸ ︷︷ ︸

A

R sin θ

+
[
H

v3
1t1

∂v1

∂ϑ1
+

H

v3
2t2

∂v2

∂ϑ2
− x1 − xc

v2
1t1

− x2 − xc
v2

2t2

]
︸ ︷︷ ︸

B

R cos θ

+
[
− R

v3
1t1

∂v1

∂ϑ1
− R

v3
2t2

∂v2

∂ϑ2

]
︸ ︷︷ ︸

C

R . (6)
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Introducing the abbreviations A, B, and C as shown above this equation can be shortened to

A sin θ +B cos θ + C = 0 . (7)

Its solution is

sin θ = − AC

A2 +B2
± B

A2 +B2

√
A2 +B2 − C2 , (8)

where the negative sign must be chosen, as will be shown below.

If the velocities do not depend on direction, equation (7) simplifies considerably. Since the quantity C
vanishes we find that

tan θ = −B
A

⇒ sin θ = − B√
A2 +B2

. (9)

The sign of sin θ is negative because the cosine is positive for a reflection from the sphere. Equation (8)
collapses to

sin θ = ± B√
A2 +B2

. (10)

Comparing the coefficients of these expressions lets us recognise that the negative sign must be chosen
in (8).

Note that until here, all expressions are exact. Since the angles ϑi and thus the velocities vi and travel-
times ti implicitly depend on θ, equation (8) cannot be directly solved for θ. We can, however, apply (8) in
a recursive fashion using θ0 as initial angle to obtain an update for θ from (8), which can then be used to
compute the traveltimes ti with (1). Further iterations can be applied to enhance the accuracy.

Special case: converted waves in an isotropic medium

Expressing the xi by midpoint and half-offset coordinates (xm, h) and substituting A and B into (7), we
obtain for converted waves that

tanφ =
(xm − xc)

(
v2

2 t2 + v2
1 t1
)− h (v2

2 t2 − v2
1 t1
)

H (v2
2 t2 + v2

1 t1)
, (11)

where v1 and v2 are the P- and S-wave velocities. For zero offset, the angle is

tanφ0 =
xm − xc

H
. (12)

With the help of φ0, we can also write tanφ as

tanφ = tanφ0 −
h
(
v2

2 t2 − v2
1 t1
)

H (v2
2 t2 + v2

1 t1)
. (13)

Special case: monotypic waves in an isotropic medium

In this case, the velocities v1 and v2 coincide and equation (11) reduces to

tanφ =
(xm − xc) (t2 + t1)− h (t2 − t1)

H (t2 + t1)
= tanφ0 − h (t2 − t1)

H (t2 + t1)
, (14)

where the zero-offset angle is again

tanφ0 =
xm − xc

H
. (15)
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Special case: polar anisotropy

In order to solve equation (8) in the anisotropic case, the group velocities and their derivatives with respect
to the group angle must be known. These quantities are not generally available. A closed-form expression
exists only in the case of elliptical anisotropy, i.e. ε = δ. Therefore, we use the weak anisotropy descrip-
tions introduced by Thomsen (1986) to express the group velocity and its derivative. For polar media with
a vertical symmetry axis, we have

vi = vi0
(
1 + a sin2 ϑi + b sin4 ϑi

)
, (16)

where

• for qP-waves: vi0 = α, a = δ, and b = (ε− δ),

• for qSV-waves: vi0 = β, a = σ, and b = −σ,

• for SH-waves: vi0 = β, a = γ, and b = 0,

and α and β are the vertical velocities of P- and S-waves, respectively. For the velocity derivatives, we find

∂vi
∂ϑi

= 2 vi0 sinϑi cosϑi
(
a+ 2 b sin2 ϑi

)
. (17)

For polar media with a tilted symmetry axis and tilt angle φ, the angle θ is replaced by θ − φ.

EXAMPLES

As we can deduce from the previous section, there are two possible sources of contributions to traveltime
errors. The first is the new operator itself, and the second is the introduction of the weak anisotropy ap-
proximation.

In order to investigate the influence of these contributions separately, we have chosen media with ellip-
tical symmetry, where ε = δ. For these media, a closed form solution exists for the group velocity and its
derivative (see, e.g., Vanelle, 2002). Reference traveltimes were generated using the NORSAR ray tracing
package for values of ε = δ ranging from 0.0 (i.e. isotropic) to 0.4. Reflector radii were 100 m, 1 km,
and 10 km. The top of the reflector was located at xc =0 and H−R =1 km in each case. The simulated
acquisition scheme covered midpoints from 0 to 1 km from xc and half-offsets up to 1 km.

We have applied the new recursive stacking operator twice, first using the exact velocity and derivative,
and then using their weak anisotropy approximation. In both cases, we have chosen the isotropic zero-
offset reflection angle θ0 as starting angle. In the anisotropic case, the zero-offset ray is not perpendicular
to the reflector. Therefore, the zero-offset ray angle ϑ0 and the angle θ0, which is the phase angle in this
case with the phase normal perpendicular to the reflector do not coincide. There is no closed form solution
for the determination of ϑ0. Since the recursive application of the operator converges after two or at most
three iterations, we nevertheless used θ0 as starting angle.

The results after the third iteration are shown in Figure 2. If exact velocities and velocity derivatives
are used, the new operator is highly accurate for all reflector curvatures under consideration. If the weak
anisotropy approximation is applied, the accuracy decreases with the strength of anisotropy. This result is
not surprising. As for the exact case, the accuracy remains independent of the reflector curvature.

CONCLUSIONS AND OUTLOOK

We have introduced a new recursive stacking operator (RSO) for curved subsurface structures in the pres-
ence of anisotropy. Simple numerical examples confirm that the operator leads to high accuracy that is
independent of the reflector curvature, i.e., it maintains the high accuracy over a wide range of curvatures,
from near-plane reflectors to the diffraction limit.
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Figure 2: Accuracy of the new recursive stacking operator after three iterations in the presence of elliptical
anisotropy. Solid lines indicate that the new operator performs with high accuracy for all reflector radii if
exact velocities and derivatives are chosen. If these are expressed by their weakly anisotropic counterpart,
the accuracy degrades with increasing strength of anisotropy.

Future work includes the application to more complex models. Schwarz et al. (2011a) have shown that
the corresponding isotropic RSO performs well in the presence of heterogeneity, leading not only to highly
accurate traveltimes, but also to better stack results and higher resolution than with, e.g., the CRS method,
in particular in regions with diffractions.

Another important aspect of our future work is to establish relationships between the model parameters
describing the reflector in the homogeneous medium to the CRS parameters in the heterogeneous case. For
isotropic media, this has been achieved by Schwarz et al. (2011b). For anisotropic media, we have to deal
with the additional difficulty that an anisotropic CRS formulation does not exist. Therefore, this task will
include the derivation of an anisotropic CRS equivalent operator.
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