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ABSTRACT

The recursive stacking operator (RSO) is a double-square-root expression of the traveltime that de-
pends on three unknown parameters and the overburden velocity. In the case of homogeneity above
the reflector these quantities are intuitive and depth-related, however, they become effective param-
eters when velocity changes occur. We introduce two conceptually different transformations of the
RSO parameters to the well-known and physically sound CRS attributes. While one attempt relies on
the application of a time shift, the other one makes use of a Taylor series expansion of the squared
RSO traveltime. For some special but very important acquisition and subsurface configurations both
parameterizations reduce to familiar formulae. Numerical studies reveal that the approach based on
a Taylor series expansion leads to higher accuracy than CRS and planar multifocusing over the full
range of reflector curvatures for simple subsurface models.

INTRODUCTION

The common reflection surface (CRS) stack method (Müller, 1999) approximates the reflection response
of an interface by a traveltime surface of second order, extending in offset and also midpoint direction. In
the CMP gather, traveltime moveout is described by the classical NMO hyperbola, whose description is
exact for the case of a planar dipping reflector beneath an overburden of constant velocity. Any deviation
from this simple model causes the moveout to be nonhyperbolic (see, e.g. Fomel and Grechka, 2001).

One straight-forward attempt to better account for reflector curvature in the CMP gather is to assume
the reflecting interface to be locally spherical. For this more general model, Vanelle et al. (2010) derived
an implicit expression for the reflection traveltime by evaluating Snell’s law. Since the expressions become
explicit for the zero-offset case, this new operator is applicable in a recursive fashion. It is hence called
’recursive stacking operator’ (RSO). RSO is parameterized in terms of three attributes and the overburden
velocity, which represent real subsurface properties for the homogeneous case. Since, however, RSO was
derived under the assumption of a homogeneous overburden, the parameters lose their physical meaning if
heterogeneity is present. In this case, they can be considered effective parameters.

The well-known CRS parameters (Hubral, 1983) have a clear physical meaning and allow for very
powerful applications (see, e.g. Duveneck, 2004). Therefore, it is important to relate these to the RSO pa-
rameters. In this work, we introduce two conceptually different parameterizations of the RSO expressions
in terms of the CRS attributes. Due to the fact that only the functional form of the traveltime operator
needs to be changed, the RSO can easily be integrated in any of the already existing CRS environments.
Furthermore, we show that the two representations not only reduce to familiar formulae for some special
subsurface and acquisition configurations, but that one of them provides noticeably higher accuracy than
CRS as well as the double-square-root-based planar multifocusing (MF) expression (Gelchinsky et al.,
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Figure 1: Illustration of the meaning of the CRS parameters: The quantities RNIP and RN are the radii
of curvature of two so-called eigenwaves, the first stemming from a fictitious point source located at the
normal incidence point (center), the latter resulting from an exploding reflector experiment around NIP
(right). Both wavefronts emerge with the angle α (left) at the registration surface.

1999). This applies for the whole range of reflector curvatures and the gradient models considered in this
work.

THEORY

Three kinematic wavefield attributes, i.e. α, RNIP and RN , were introduced by Hubral (1983) and can
be appealingly interpreted in the framework of geometrical optics (see Figure 1). RNIP and RN are the
radii of curvature of two so-called eigenwaves (Tygel et al., 1997). The NIP-wave stems from a fictitious
point source placed at the point of normal incidence (NIP ) on the reflector; the normal wave is the result
of a fictitious exploding-reflector experiment in the vicinity of NIP . Both waves emerge with the angle
α at the horizontal zero-offset position x0 and contain distinct properties of the reflector, i.e. its distance,
curvature and orientation, propagated to the registration surface.

Common reflection surface

A commonly used description of the traveltime is the CRS formula (Müller, 1999). In midpoint (∆xm =
xm − x0) and half-offset (h) coordinates, it reads:

t2CRS(∆xm, h) =
(
t0 +

2 sinα
v0

∆xm

)2

+
2t0 cos2 α

v0

(
∆x2

m

RN
+

h2

RNIP

)
, (1)

where t0 is the zero-offset traveltime and v0 is the velocity at the surface.
Höcht et al. (1999) derived an implicit representation of the traveltime, which they refer to as parametric

CRS. For the case of constant velocity over a spherical reflector, it represents the exact reflection response.
Due to its implicit character, the parametric CRS is not implementable in an efficient way, since it requires
trace interpolation. The CRS formula (1) is equivalent to a second-order Taylor series expansion of the
parametric CRS, and hence an explicit expression.

Planar multifocusing

Gelchinsky et al. (1999) introduced a double-square-root expression for the traveltime, depending on the
same set of parameters as the CRS method, namely the kinematic wavefield attributes α, RNIP and RN .
Their operator describes the traveltime of a reflection event in terms of the traveltime of a central ray and
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Figure 2: RSO evaluates the traveltime by finding the reflection point on a locally spherical interface,
which is parameterized by the angle θ. For zero-offset, this quantity is an explicit expression. For nonvan-
ishing offsets it is obtained recursively and the zero-offset angle θ0 serves as a starting guess.

corrections applied at the source and receiver for a paraxial ray. It reads:

tMF (∆xs,∆xg) = t0 + ∆ts + ∆tg , (2a)

∆ts =

√
R2
s + 2Rs∆xs sinα+ ∆x2

s −Rs
v0

, (2b)

∆tg =

√
R2
g + 2Rg∆xg sinα+ ∆x2

g −Rg
v0

, (2c)

where

Rs =
1 + σ

1
RN

+ σ
RNIP

, (3a)

Rg =
1− σ

1
RN
− σ

RNIP

(3b)

are the radii of two hypothetical waves focusing at the intersection of the central and paraxial ray. The
quantities ∆xs = xs − x0 and ∆xg = xg − x0 are the horizontal displacements of source and receiver,
respectively. The so-called focusing parameter σ can be designed to optimally fit the prestack data. Al-
though spherical multifocusing expressions exist (see, e.g., Landa et al., 2010), in this work, we consider
planar multifocusing only, where

σ(∆xs,∆xg) =
∆xs −∆xg

∆xs + ∆xg + 2∆xs∆xg
RNIP

sinα
. (4)

Recursive stacking operator

The recursive stacking operator evaluates the reflection traveltime from a locally spherical interface by
recursively updating the angle θ, which follows from an implicit expression (see Figure 2). For the homo-
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geneous isotropic case it reads (Vanelle et al., 2010):

tRSO(V, δxc, H,R) = ts + tg , (5a)

ts =
1
V

√
(∆xm − h−∆xc −R sin θ)2 + (H −R cos θ)2

, (5b)

tg =
1
V

√
(∆xm + h−∆xc −R sin θ)2 + (H −R cos θ)2

, (5c)

tan θ = tan θ0 +
h

H

ts − tg
ts + tg

, (5d)

tan θ0 =
∆xm −∆xc

H
, (5e)

where ∆xc = xc − x0. The quantity R represents the radius and (xc, 0, H) denotes the position of the
middle point of the sphere approximating the reflector segment. Please note that ∆xm −∆xc = xm − xc.
For a homogeneous overburden these parameters are uniquely related to the subsurface geometry.

PARAMETERIZATION

The RSO parameters introduced in the previous section, namely ∆xc, H and R, only represent physical
properties of the reflector segment if the velocity is constant. In the inhomogeneous case, they become
effective (denoted by the tilde) parameters ∆x̃c, H̃, R̃ and cannot be related to the subsurface geometry
anymore. In addition, the meaning of the quantity V is not clear, since it is assumed to be constant. As a
consequence, V has to be treated as an effective parameter as well.

The CRS attributes can be interpreted as upwards propagated properties of the reflecting segment and
therefore are surface-related. In consequence they have a clear physical meaning, regardless of velocity
changes in the overburden.

In most existing stacking environments, the procedure is to sum all events along the best fitting operator
and to place the result at (x0, t0). This means that a transformation not only has to incorporate α, RNIP
and RN , but should also explicitly introduce t0:

t(Ṽ ,∆x̃c, H̃, R̃) −→ t(t0, α,RNIP , RN ) . (6)

Time shift

Even for inhomogeneous media, the wavefronts of the two eigenwaves can be approximated by circular
arcs in the vicinity of the central midpoint location x0 at the surface. In this case, the traveltime moveout
can entirely be described in an auxiliary medium with the properties of the uppermost layer. Following
Höcht et al. (1999) and de Bazelaire (1988), we can write:

∆t = ∆tI . (7)

Equation (7) simply states that the moveout ∆t in the real subsurface model is equal to the moveout ∆tI

in image space, i.e. the auxiliary medium with constant velocity v0.
Since in a homogeneous medium the ray paths are straight, the RSO and CRS parameters are linked by

geometry (see Figure 3):

Ṽ s = v0 , (8a)
∆x̃cs = −RN sinα , (8b)

H̃s = RN cosα , (8c)

R̃s = RN −RNIP . (8d)

The superscripts s in (8) indicate the time shift approach. Hence, (7) can be rewritten as:

t− t0 = tRSO(Ṽ s,∆x̃cs, H̃s, R̃s)− 2RNIP
v0

⇔ t = tRSO(Ṽ s,∆x̃cs, H̃s, R̃s)− tr , (9)
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Figure 3: Illustration of the relationship between model and image space (left). Observed from x0 at the
registration surface, a ray originally initiated by a point source at SNIP or an exploding reflector experiment
around SNIP with the center of local curvature at SN seems to stem from a point source at S∗NIP or an
exploding reflector element with its center of curvature at S∗N (after Höcht et al., 1999). Transformation of
the RSO parameters (∆x̃c, H̃, R̃) for the case of a constant velocity medium (Ṽ = v0) is straight-forward,
since the ray paths are straight (right).

with
tr =

2RNIP
v0

− t0 (10)

and the RSO traveltime tRSO defined according to (5).
For constant velocity overburden, (10) vanishes and the traveltimes in model and image space coincide.

If the overburden is inhomogeneous, the RSO traveltime, with parameters transformed according to (8), is
shifted by tr.

A major advantage of this approach is that it not only follows physical intuition, but that it also explicitly
introduces t0. Since this parameterization of the recursive stacking operator incorporates the application
of a time shift, it is from now on referred to as ’shifted RSO’. In mathematical context, the corresponding
traveltime (9) is in consequence denoted tshift.

Taylor series expansion

When expanding the square of the RSO traveltime (5), the coefficients up to second order have to be equal
to the respective counterparts in the CRS formula.

To carry out the Taylor series expansion of the squared RSO traveltime (up to second order)

T (t2RSO) ≈ c0 + a1∆xm + b1h+ a2∆x2
m + b2h

2 (11)

is rather tedious. To keep the focus on the new transformation formulae for the RSO parameters, only the
resulting coefficients are presented here. Details can be found in Schwarz (2011).

With the abbreviations

sin α̃ =
∆x̃c√

∆x̃c2 + H̃2
, (12a)

R̃NIP =
√

∆x̃c2 + H̃2 − R̃ , (12b)

R̃N =
√

∆x̃c2 + H̃2 (12c)
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the combined zero-order term of the expansion c0, reads:

c0 = t20 =

(
2R̃NIP
Ṽ

)2

. (13)

Please note again at this point, that for the general case of inhomogeneity the straight-forward transforma-
tion

Ṽ = v0 ,

R̃NIP = RNIP

is not valid, since, as shown above, the zero-offset traveltime in image space generally differs from the
actual one in model space. Only for homogeneous overburden these quantities are equal to each other and
the time shift between image and model vanishes.

Coefficient b1 describes the linear growth of the squared traveltime with offset. It vanishes:

b1 = 0 . (14)

This result accords with our intuition and can be seen as a manifestation of the principle of reciprocity,
which states that the traveltime of a ray originating at the source and arriving at the receiver position is the
same as if the ray started at the receiver and traveled to the source.

The first-order coefficient describing the linear dependence of t2RSO on the midpoint displacement ∆xm
reads:

a1 =
4t0 sin α̃

Ṽ
, (15)

where t0 is the square root of (13). The two remaining second-order coefficients a2 and b2 are:

a2 = 2
Ṽ t0 cos2 α̃+ 2R̃N sin2 α̃

Ṽ 2R̃N
, (16)

b2 =
2t0 cos2 α̃

Ṽ R̃NIP
. (17)

As stated before, in order to fit into the CRS concept, c0, a1, a2, b1 and b2 must be equal to their respective
counterparts in the CRS traveltime formula (1). This leads to the following set of relations:

4t0 sin α̃
Ṽ

=
4t0 sinα
v0

, (18a)

2t0 cos2 α̃

Ṽ R̃NIP
=

2t0 cos2 α

v0RNIP
, (18b)

2t0 cos2 α̃

Ṽ R̃N
=

2t0 cos2 α

v0RN
, (18c)

2R̃NIP
Ṽ

= t0 . (18d)

Since this system consists of four equations for four unknown parameters, namely Ṽ , ∆x̃c, H̃ and R̃, the
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problem is well-determined and its solution provides the transformation of parameters:

Ṽ t =
vNMO√

1 + v2NMO
v20

sin2 α
, (19a)

∆x̃tc =
−RN sinα

cos2 α
(

1 + v2NMO
v20

sin2 α
) , (19b)

H̃t =
v0RN

vNMO cos2 α
(

1 + v2NMO
v20

sin2 α
) , (19c)

R̃t =
v0RN

vNMO cos2 α − vNMOt0
2√

1 + v2NMO
v20

sin2 α
, (19d)

where the superscript t stands for Taylor series expansion and the normal moveout velocity is given by

vNMO =
√

2v0RNIP
t0 cos2 α

. (20)

Since the equations (19) result from a Taylor series expansion of t2RSO, this parameterization will be re-
ferred to by the abbreviation ’Taylor RSO’. The corresponding traveltime expression reads:

tTaylor = tRSO(Ṽ t,∆x̃ct, H̃t, R̃t) , (21)

where tRSO is defined according to (5).

SPECIAL CASES

While in one parameterization a time shift is applied, the other one is based on a Taylor series expansion,
which results in a pure double-square-root expression of the traveltime. Both not only provide the trans-
formation from effective RSO parameters to the CRS attributes: they also incorporate the desired explicit
introduction of the zero-offset traveltime t0:

tshift = t0 + tRSO(α,RNIP , RN )− 2RNIP
v0

, (22)

tTaylor = tRSO(t0, α,RNIP , RN ) . (23)

Hence they allow for a straight-forward implementation as a stacking operator.
To get more insight into the character of these two representations of the RSO traveltime, it is reasonable

to investigate common acquisition and subsurface configurations. Details on the derivations can be found
in Schwarz (2011).

Diffraction case

A diffractor, per definition, is an object of infinite curvature relative to the dominant seismic wavelength.
In consequence, the number of wavefield attributes needed to properly approximate the corresponding
response reduces to two since RN = RNIP . For shifted RSO as a result, R̃s according to (8) becomes
equal to zero and the corresponding traveltime is entirely explicit:

tshift − t0 +
2RNIP
v0

=
1
v0

√
(∆xm − h)2 + 2(∆xm − h)RNIP sinα+R2

NIP

+
1
v0

√
(∆xm + h)2 + 2(∆xm + h)RNIP sinα+R2

NIP . (24)

This expression also results from setting RN = RNIP in the planar multifocusing operator (see (2)). For
α = 0, we obtain a time-shifted version of the double-square-root equation:

tshift − t0 + tp =

√
t2p
4

+
(∆xm − h)2

v2
0

+

√
t2p
4

+
(∆xm + h)2

v2
0

, (25)
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with tp = 2RNIP
v0

.
For the case of varying velocity in the overburden and RN = RNIP the Taylor RSO operator reduces

to

tTaylor =

√
t20
4

+
(∆xm − h)2

v2
NMO

+

√
t20
4

+
(∆xm + h)2

v2
NMO

. (26)

For horizontal layering, vNMO can be substituted by the root-mean-square velocity vRMS . In this case,
(26) is equivalent to the Kirchhoff time migration operator. We observe that tTaylor as well as tshift
becomes the exact diffraction response for the homogeneous case (tp = t0, vNMO = v0).

CMP gather, horizontal layering

While both parameterizations reduce to explicit expressions in the diffraction case, traveltime moveout
in the CMP-gather, where ∆xm = 0, is in general described implicitly by the RSO approach (see (5)).
However, when we assume horizontal layering in the subsurface (α = 0, RN →∞), the angle θ vanishes
for both representations (see, e.g., Schwarz, 2011). For shifted RSO we get

⇔ (tshift − t0 + tp)2 = t2p +
4h2

v2
0

, (27)

with tp = 2RNIP
v0

, which is equivalent to the shifted hyperbola (de Bazelaire, 1988). Again, shifted RSO
provides the same description as the planar multifocusing operator (Landa, 2007). For the considered
case of horizontal layering and restriction to the CMP-gather, Taylor RSO reduces to the classical NMO
hyperbola:

t2Taylor = t20 +
4h2

v2
NMO

. (28)

Zero-offset section

In the zero-offset section the shifted RSO traveltime reads:(
tshift − t0 +

2RN
v0

)2

=
4
v2

0

[
∆x2

m + 2∆xmRN sinα+R2
N

]
, (29)

coinciding with the parametric CRS traveltime (Höcht et al., 1999), which is an explicit expression for the
zero-offset case. In addition, it also coincides with the planar multifocusing traveltime expression, which
Keydar et al. (1990) found to be equivalent to a hyperbola shifted in midpoint and time:

(tshift − tapex + tp)2 = t2p +
(xm − xapex)2

v2
0

, (30)

with

xapex = x0 −RN sinα , (31a)

tapex = t0 +
2RN
v0

(cosα− 1) , (31b)

and

tp =
2H̃s

v0
=

2RN
v0

cosα .

Taylor RSO describes the zero-offset diffraction response by a midpoint-wise shifted hyperbola:

t2Taylor = t2apex +
4(xm − xapex)2

(Ṽ t)2
, (32)
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with

xapex = x0 − v0t0RNIP sinα
v0t0 cos2 α+ 2RNIP sin2 α

, (33a)

t2apex =
t30v0 cos2 α

v0t0 cos2 α+ 2RNIP sin2 α
, (33b)

and Ṽ t according to (19a). Expressions (33) perfectly coincide with the apex location Mann (2002) derived
for the CRS traveltime formula for the diffraction case in the zero-offset section. We find that tTaylor(h =
0, RN = RNIP ) coincides with the Kirchhoff-type poststack time migration operator (Mann, 2002).

ACCURACY STUDIES

For constant velocity, the new recursive approach was already demonstrated to be more accurate than CRS
and planar multifocusing over the full range of reflector curvatures (Vanelle et al., 2010). We now compute
RMS traveltime errors of shifted RSO and Taylor RSO for different constant vertical velocity gradients in
the overburden and compare them to the ones gained for the CRS formula (1) and the double-square-root-
based planar multifocusing expression (2).

The basic geometry underlying all studies is a spherical reflector. The accuracy is evaluated for four
different curvatures ranging from R =10 m, representing the limiting diffraction case to R =10000 m, i.e.
a nearly planar interface. The vertical depth of the reflector, i.e. H −R, is kept constant at 1000 m. For all
investigations we have a maximum offset of 2000 m, i.e. a maximum offset-over-depth-ratio of two. The
horizontal midpoint displacements from the middle point of the circle range from -2000 m to 2000 m, i.e.
are symmetric to xm = xc. To evaluate how inhomogeneity affects the accuracy for different curvatures
four constant vertical velocity gradients are chosen:

v(z) = v0 + γz, γ = (0, 0.5, 1, 1.5)
1
s

, (34)

with v0 =2 km
s . Although values of 1 1

s and 1.5 1
s for γ can be considered unrealistically strong, they help

to judge the performance of each operator under extreme conditions.
Since we entirely deal with constant vertical velocity gradient media, analytical ray tracing is applicable

and serves for the calculation of the reference traveltimes.

Influence of the number of iterations

The RSO traveltime description (5) is an inherently implicit expression since the angle θ, which needs to
be known for the computation of t, itself depends on ts and tg . A possible way to overcome this problem
is to compute the explicit zero-offset angle θ0 to serve as a starting value and apply (5d) iteratively (see
Vanelle et al., 2010). The recursive formula for n iterations reads:

tan θn = tan θ0 +
h

H̃

ts(θn−1)− tg(θn−1)
ts(θn−1) + tg(θn−1)

, (35)

where θn and θn−1 are the values of θ gained after the application of n and n− 1 iterations, respectively.
Figure 4 shows the RMS traveltime error distribution of shifted RSO and Taylor RSO for the four

considered gradients after 0, 1, 10 and 100 iterations. We show only the R =10000 m case since here the
effect of iterations becomes most noticeable. Please note that the general behavior is equivalent for smaller
radii.

We observe that already a single iteration significantly increases the accuracy compared to the zero-
iteration case, i.e. tan θ = tan θ0, for weak gradients. For constant velocity, the accuracy of RSO can be
increased by several orders of magnitude for 10 iterations and up to machine precision for 100 iterations,
where double precision was used. Since, however, RSO already happens to be very accurate for one update
of θ, even in this case one iteration occurs to be sufficient. For varying gradients, neither parameterization
of the RSO approach shows increased accuracy for more than one iteration. In conclusion, all further
results are gained by applying (35) only once.
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Figure 4: RMS traveltime error distributions for shifted RSO and Taylor RSO for R =10000 m as a func-
tion of γ and the number of iterations. One iteration provides a sufficient increase in accuracy, especially
for the case of constant velocity in the overburden. For γ > 0 this effect becomes smaller and is overall
barely noticeable. Please note the logarithmic scale on the right.

Figure 5: RMS traveltime error of the four considered operators as a function of curvature and gradient.
The CRS description is only mildly affected by inhomogeneity in the overburden. Although the impact of
velocity variation shows more noticeably for Taylor RSO, it still provides a significantly better fit than all
other descriptions for all considered values of R. Shifted RSO and planar multifocusing perform equiva-
lently over the full range of curvatures and all nonvanishing values of γ. Please note the different scales.

Comparison of RSO, CRS, and planar multifocusing

In Figure 5, the RMS traveltime errors of the four operators as a function of gradient and curvature are
displayed. Although CRS overall presents itself as a little more stable in terms of velocity variation than
the three double-square-root-based expressions, it still happens to be considerably less accurate for small
radii. We observe that the new descriptions shifted RSO and Taylor RSO, as well as planar multifocusing
are more accurate for values of R up to 1000 m for all tested gradients. Only for R =10000 m CRS is a
little more accurate than planar MF and shifted RSO. The Taylor RSO operator shows higher accuracy than
the others over the whole range of R and γ. Even for the case of R =10000 m, δtRMS is slightly lower
for Taylor RSO than for CRS (for all values of γ). A comparison of both RSO expressions reveals that the
parameterization approach based on a Taylor series expansion handles inhomogeneity significantly better
than the shifted approach. Moreover, shifted RSO and planar multifocusing show a resemblance in their
RMS error distributions, thus confirming the preceding findings for the special acquisition and subsurface
configurations. Only for the homogeneous case (γ = 0 1

s ) the error distributions differ noticeably. For all
considered values of γ, CRS provides a considerably poorer fit than the double-square-root-based operators,
if events stem from highly curved interfaces.
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CONCLUSIONS AND OUTLOOK

We have introduced two different transformations from RSO to CRS parameters. While one of them is
based on concepts of geometrical optics and incorporates the application of a time shift, the other is the
result of a Taylor series expansion.

Both representations reduce to well-known formulae for specific acquisition and subsurface configura-
tions. While the parameterization based on a Taylor series expansion and the hyperbolic CRS formula pro-
vide an equivalent description for horizontally layered media in the CMP configuration and of diffraction
events in the zero-offset section, the time-shift-based representation coincides with planar multifocusing
for all considered scenarios. Both versions of the RSO formula are exact for diffractions in a constant
velocity medium.

Although based on the same underlying expressions, these two parameterizations of the RSO travel-
time behave slightly differently in the presence of inhomogeneity. For the very simple case of a spherical
reflector beneath a constant vertical velocity gradient overburden, the parameterization based on a Taylor
series expansion provides higher accuracy for all considered curvatures and gradients. Besides the case of
a homogeneous overburden, the time-shift-based version of RSO and planar multifocusing perform equally
well. Furthermore, the numerical studies revealed that iterative application does not lead to an increase in
accuracy if inhomogeneity is present. Already the first angle update provides high accuracy. Because of
the nonhyperbolicity of diffraction events in offset direction, CRS is considerably less accurate for very
high curvatures than the double-square-root-based descriptions.

In a subsequent study, Schwarz et al. (2011) show that the presented expressions not only provide more
accurate traveltimes, but that they also lead to an improved stacked section and more reliable attribute esti-
mates than CRS when applied to complex heterogeneous models. Since down- and upgoing ray segments
are treated independently, the RSO traveltime formula allows for an extension to PS-converted waves and
even anisotropy. Vanelle et al. (2011) have introduced a more general recursive formulation of the trav-
eltime, which accounts for anisotropy in the overburden and provides the same high accuracy over the
full range of reflector curvatures as shown in this work for the isotropic case. Future work includes the
straight-forward extension of the presented concepts to 3D and application to field data.
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