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ABSTRACT

Full waveform inversion (FWI) is a data-fitting method that exploits the full information from the seis-
mic data to provide high-resolution models of the subsurface. To reconstruct realistic models from the
field measurements the forward modeling should correctly account for wave propagation phenomena
present in the recorded data. This mainly concerns the correct modeling of seismic amplitudes that
are sensitive not only to the velocity variations, but also to the density, attenuation, anisotropy, source
directivity effects, and to the seismic noise.

The objective of this study is to investigate the role of density in the reconstruction of reliable P-wave
velocity models in the marine environment. We generated a realistic, synthetic data set for the acoustic
Marmousi model with the conventional streamer geometry, and the frequency range from 3 to 20 Hz.
To investigate the footprint of density on FWI we performed series of numerical experiments, testing
various initial density models and different strategies for the density update. Our results suggest that
it is important to include a realistic density information into the inversion scheme and that the more
accurate density models bring improvement in the P-wave velocity estimation.

Moreover, we investigated the potential benefits of multi-parameter inversion (for P-wave velocity and
density) of the noisy data, by considering random and spatially coherent noise. Since density is diffi-
cult to recover, a more efficient multi-parameter inversion strategy would be required to successfully
compensate for the amplitude errors in the data.

INTRODUCTION

Full waveform inversion is based on minimizing the data residuals between the observed and modeled
data. Choice of the objective function for inversion allows to exploit both the amplitude and phase of
the observed wavefields, or to construct the phase-only (purely kinematic) or amplitude-only (dynamic)
approach. Each minimization criterion shows different behavior in the inversion framework and different
sensitivity to noise (Brossier et al., 2010). The least-squares norm (L2-norm), which is the most commonly
used objective function (Virieux and Operto, 2009), exploits both travel-time and amplitude information
to invert for the subsurface parameters. Since the amplitude of reflected seismic waves is affected by the
local impedance - product of velocity and density - assuming the P-wave velocity as the only variable pa-
rameter results in incorrect modeling of seismic amplitudes. Therefore, it would be favourable to introduce
additional parameters not only in the inversion of land data but also to FWI of data recorded in the marine
environment.

In this study we investigate the effect of density on the reconstruction of P-wave velocity models from
marine seismic data. Since the density is a difficult parameter to reconstruct (Forgues and Lambaré, 1997),
in most of the case studies of real marine reflection data the authors only invert for the P-wave velocity.
Density is usually estimated using an empirical formula (Hicks and Pratt, 2001; Boonyasiriwat et al., 2010;
Shipp and Singh, 2002; Kelly et al., 2010; Delescluse et al., 2011) or is fixed to a constant value (Bae et al.,
2010; Operto et al., 2004). Here, we consider 2D acoustic time-domain inversion of a synthetic streamer
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data generated from heterogeneous P-velocity Vp and density p models. We run series of inversion tests
assuming different initial density information and diverse stategies for density update within the inversion
scheme. We use a good initial Vp model in order to highlight the density footprint on the waveform
inversion. To provide a quantitative estimate of inversion results we compare the final data residuals and
we measure the RMS misfit of the final velocity models.

To include both, amplitude and phase information to FWI we need to account for these wave prop-
agation effects that are not simulated in our models. Seismic data from marine explorations are usually
inverted using the 2D acoustic inversion approach (Tarantola, 1984). However, the 2D acoustic approxi-
mation does not predict elastic effects, attenuation, anisotropy, 3D effects, and seismic noise, which leads
to incorrect modeling of seismic wave amplitudes. If the acoustic inversion has the P-velocity as the only
unknown, then all amplitude discrepancies resulting from nonacoustic factors will be projected into the Vp
model. To mitigate this problem FWI could account for additional inversion parameters, such as density
or attenuation. To study the performance of the multi-parameter inversion in the presence of noise in the
data we apply the Vp only and combined Vp and p inversion to synthetic noisy data. This test will allow
to investigate whether the density inversion can partly compensate for the inversion artefacts due to the
coherent or incoherent noise present in the observed data.

DENSITY MODELING AND INVERSION

The forward problem for an acoustic medium is often based on the constant density acoustic wave equation.
However, the acoustic wave equation with variable density (Equation 1) would provide a better description
of wave propagation in marine environments. The amplitude of acoustic waves is affected not only by the
P-wave velocity but primarily by the local acoustic impedance, which is the product of density and velocity.
A density contrast contributes to an acoustic impedance contrast, which affects the reflection coefficient.
Variation in seismic reflection amplitudes depends also on the angle of incidence of seismic arrival on the
reflector. This offset dependent amplitude change (AVO) contains information on both the compressional
properties of rock as well as density. Thus, if we want to match both amplitude and phases in the real data
inversion, we should take into account the density effect. Otherwise, the amplitude variations in observed
data will be mapped into velocity models only.
The 2D variable density acoustic wave equation is defined as:
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where p(z,z,t) is the pressure field, p(z,z) is the density, Vp(x,z) is the P-wave velocity, and
f(z, z,t) is the source term.

Besides the reconstruction of Vp models, acoustic FWI can account for the density as well. In the
waveform inversion scheme based on the general approach of Tarantola (1984) and Mora (1987) the model
parameters m are updated iteratively along the conjugate gradient direction dc with the step length yi,,:

My = Mp—-1 — Pﬂn(scn (2)

where m,, is the model update at iteration n, and P the preconditioning operator. The density gradient at
iteration n can be expressed by

T
0pn(z,2) = Z /o dt grad p/n(x,z,t) grad p,(z, 2,t) , 3)

sources

where p,, is the forward propagated field in the current model, and p;L is generated by propagating the
residual data from all receiver positions backward in time.

Estimating density values from seismic data is an ill-posed inverse problem (Debski and Tarantola,
1995). The density is poorly resolved especially from the short-offset P-wave velocity, because the Vp and
density radiation patterns are the same for small angles of incidence (Tarantola, 1986). The influence of
the density contrast on the Vp reflection amplitude becomes visible at larger angles. Therefore, in order
to resolve density information from seismic data the wide-angle recordings might be required (Roberts,
2000). But if the data are recorded over a limited range of angles of incidence and the density contrasts
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are moderate it would be difficult to reconstruct accurate density models. In such a case the density inver-
sion could be additionally constrained to control the relation between density and Vp, so that the density
character follow that of P-wave velocity, or acoustic impedance Ip, depending on the choice of inversion
parameters (Tarantola, 1986).

NUMERICAL EXPERIMENT SETTINGS
Modeling parameters

The numerical tests are based on the acoustic Marmousi model (Versteeg, 1994), the P-wave velocity and
density models are shown in Figure 1. The model consists of layered sediments with two hydrocarbon
reservoirs: a gas lense at the depth of 900 m and a thin oil sand layer at 1520 m, with an average vertical
thickness of 38 and 40 m respectively. The seafloor depth is at 300 m, which means that the surface-related
multiples can be clearly observed in the data.

The design of the numerical experiment aimed to reflect the real measurement conditions of marine
reflection seismic (Figure 1). The source is a pressure source, located 7.5 m below the air-water inter-
face, with the Ricker wavelet time function. Since the lack of low frequencies in seismic recordings is a
general problem, we have limited the frequency content of a signal to a bandwidth from 3 to 20 Hz. The
acquisition setup mimics the conventional single-component streamer survey. The streamer consists of 160
hydrophones with a spacing of 25 m located at 7.5 m depth.

Observed data

The synthetic noise-free data were calculated using the finite-difference solution of 2D acoustic wave
equation. The total of 50 shot gathers were generated at a 50 m interval with 3 seconds of data. This
data set is used in the first part of inversion tests.

To investigate the potential benefits of joint P-velocity and density inversion in the presence of noise we
generated two sets of data affected by the incoherent and coherent noise pattern. In the first case the original
noise-free data were contaminated with a random 20 percent band-limited Gaussian noise (Figure 2). The
second data set was created by superimposing spatially coherent noise generated from a model constisting
of a diffractor in P-wave velocity embedded in a homogeneous fullspace, with a background velocity of
1500 m/s (Figure 3). Such a coherent noise that cannot be predicted by the 2D acoustic model may represent
elastic effects (converted waves) or 3D reflection phenomena.

Inversion process

To find an optimum model we search for the global minimum of the misfit function defined as the L2-norm
of the data residuals. However, one of the major problems in the waveform tomography is related to the
nonlinearity of the objective function. In some cases the high complexity of the seismic data or high noise
level might cause a very complex error function and, in consequence, the algorithm can get stuck easily in
a local minimum. To mitigate this problem we follow the multi-scale approach proposed by Bunks et al.
(1995). The nonlinearity of the objective function is frequency dependent, i.e. the misfit function is more
linear at low frequencies, whereas a lot of local minima are present at higher frequencies. Therefore, the
inversion starts at low frequencies and the higher frequency content is gradually added. Furthermore, to
correct for the amplitude loss with depth due to geometrical spreading and to enhance deeper parts of the
model, the linear gradient scaling with depth is implemented.

The starting Vp model is a 1D smooth representation of the true velocity distribution. The water bottom
parameters are not explained correctly by the starting P-wave model. To allow for a direct comparison of
the results, the same inversion scheme and the initial Vp model were used in all experiments. The update
of water bottom parameters (Vp, density, depth) is allowed.

Results analysis

In order to quantitatively assess the inversion results we measure initial and final errors, both in the data
and in the model. Since the waveform inversion is an ill-posed and non-unique problem this will help to
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Figure 1: (a) The acquisition geometry of the numerical experiment, with the receiver fold. Synthetic true
models for (b) P-wave velocity and (c) density.
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Figure 2: Synthetic pressure data, shot 50. (a) Noise-free, (b) random Gaussian noise, (c) noisy data.
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Figure 3: Synthetic pressure data, shot 30. (a) Noise-free, (b) spatially coherent noise, (c) noisy data.
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determine whether the reduction of residuals is followed by a better estimation of model parameters.
The difference between modeled, p, and observed data, pObs, is measured by the least-squares error and
is expressed in terms of the percentage of the observed data energy Fops:

L2residuals %(p - pobs)Q
L2relative = Eobs - %(pobs)Q . 100% 3 (4)

To assess the quality of the final velocity models we measure the normalized RMS error between the
real and reconstructed P-velocities within the area of the model update:

" (Vo — Ve, )2
VPer'ror = \/21_12:( P Pl) ) (5)

n 2
i=1 VPi

where Vp; is the estimated P-wave velocity for the ith grid point, and Vp; is the true velocity value.

INVERSION RESULTS
Noise-free data

In this section we apply acoustic waveform inversion to noise-free data to investigate the effect of density
on P-wave models reconstruction. Moreover, we want to find the most efficient strategy for including
density information into the inversion scheme.

Figure 5c¢ shows the part of the waveform that corresponds to the reflection of seismic energy at density
contrasts. The amplitude of the primary and multiple water bottom reflections is mainly related to the
strong density contrast between the water and marine sediments. The reflection coefficient of the reflectors
inside the medium is influenced both by the P-wave and density contrasts.

In order to characterize the sensitivity of the waveform to density changes, we used a range of starting
density models and then calculated values of the objective function (Figure 4). The reference starting
density is a 1D smoothed true density model, which was varied by adding + 25 % density perturbations
along the entire profile, disregarding the water layer. The initial L2-norms computed for these starting
density models vary from 53 % to 64 % of the observed data energy. The lowest misfit value corresponds
to the density model, which together with the initial Vp model, gives the closest match to the real amplitude
of the primary and secondary seafloor reflections, which are the most energetic events in the initial data.

For the acoustic inversion four different starting rho models were considered:

o true density model;

e in sediments: density model linked with the starting Vp model using Gardner’s relationship, in water:
density equals 1000 kg/m3;

e in sediments: density model linked with the starting Vp model using Brocher’s relationship, in water:
density equals 1000 kg/m3;

e homogeneous density model.

Gardner’s Vp — p relationship (Gardner et al., 1974) is an approximate average of the relations for a
number of sedimentary rock types, weighted toward shales. The relation takes the following form:

p (kg/m®) = 0.31- 1000 - V> (6)

This relationship gives relatively good density estimates for sediment layers in our true model.
Additionally, we selected Brocher’s density-velocity relationship (Brocher, 2005):

p (g/em®) = 1.6612V,, — 0.4721V;2 + 0.0671V;? — 0.0043V,! + 0.000106V,> (7)

This relation systematically underestimates density with respect to the true values and provides a poor
initial density model.
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Inversion test starting density model density model update

A homogeneous rho none

B from Vp-p Brocher’s relation none

C from Vp-p Brocher’s relation update with Brocher’s relation
D from Vp-p Brocher’s relation inversion

E from Vp-p Gardner’s relation none

F from Vp-p Gardner’s relation update with Gardner’s relation
G from Vp-p Gardner’s relation inversion

H true rho none

Table 1: Summary of inversion tests.

The choice of the relationship between Vp and density controls the amplitudes of reflections. It should
be noted that these relationships are not valid in the presence of hydrocarbons.
We tested three different strategies for incorporating density information during the inversion process:

e starting density model is fixed during the inversion;
e density is updated after each iteration using one of the V,, — p relationships;
e multi-parameter inversion for Vp and p.

Inversion results of noise-free data are summarized in Table 2 and Table 3.

To examine the resolution and accuracy of the inversion algorithm we performed an inversion test with
the true density model (Figure 6). The reconstructed velocity model is nearly identical to the true model,
the final RMS error equals 3.44 %. After 400 iterations the data misfit reached 0.01 % of the observed data
energy. For comparison the maximum number of iterations for all other tests was set to 400.

The highest misfit values both in the data space (6.92 %) and in the model space (5.75 %) result from
the constant density assumption. The final velocity model (Figure 7) shows strong artefacts around the
seafloor and poor quality in deeper regions. Without the density information amplitude errors in modeling
of the water bottom reflector are produced, which are then reflected in high amplitudes of the residual
waveform and artefacts in Vp models.

If we include more realistic density models using empirical velocity-density formula, we can observe a
general improvement in the recovery of the P-wave model (Figure 8), even if the density model is kept fixed
during inversion. A combination of the good initial density model with the density update at each iteration
step using a quite correct empirical relation, in this case the Gardner relationship, produced the best final
result (apart from the experiment with the true density model). P-wave velocity model was very well
recovered, with the RMS error reduced from 6.37 % to 3.8 %. Overall, the choice of the density-velocity
relationship and the density update strategy (kept fixed or updated from Vp model) had no significant
effects on the reconstruction of Vp parameter.

Finally, we tested a multi-parameter inversion. Figure 9 shows results obtained by inverting for Vp and
density. The data misfit was reduced from initial 53.83 % to 0.86 %, whereas the final Vp model error is
high — 5.11 %. This poor result is caused by the inaccurate inversion of the density. The density values are
wrong and many interfaces are not correctly located. This misplacement of interfaces combined with the
relatively strong density contrast produced reflections, that are not correlated with the reflections from the
recovered velocity discontinuities. In the consequence, the velocity model had partly compensated for the
amplitude errors due to incorrect density estimation.

Noisy data

To investigate the potential benefits of multi-parameter inversion in the presence of noise, we inverted two
data sets contamined by different noise types: a random, Gaussian noise with the signal-to-noise ratio set
to 5 (Figure 2c¢), and a spatially correlated noise with the moderate amplitude (Figure 3c).

Inversion results of noisy data are summarized in Table 4 and Table 5.
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initial L2-norm density update strategy
starting rho model fixed updated from Vp | inverted
constant rho 82.06 % 6.92 % A) | - -
Brocher’s relation 53.31 % 0.40 % B) | 049 % © | 072 % (D)
Gardner’s relation 53.83 % 0.09 % (E) | 0.05% (F) | 0.86 % (G)
true rtho model 48.62 % 0.01 % H) | - -

Table 2: Summary of noise-free data inversion results. Capital letters refer to inversion tests listed in
Table 1. L2-norm of the initial and final residuals.

initial Vp error density update strategy
starting rho model fixed updated from Vp | inverted
constant rho 6.37 % 5.75 % A) | - -
Brocher’s relation 6.37 % 4.28 % B) | 413 % ©) | 499 % D)
Gardner’s relation 6.37 % 4.02 % (E) | 3.80 % F | 511% (G)
true rtho model 6.37 % 3.44 % H) | - -

Table 3: Summary of noise-free data inversion results. RMS error of the initial and reconstructed velocity
models.

Starting rho models initial L2-norm

true
starting rho

500

g
E
E 1000 2 60
= 3
-4 -+25 % >
s Sss
s
1500 E
]
€ 56
\
2000 54
52 . . .
1000 1500 2000 2500 3000 20 -10 0 10 20
rho [kg/m3] rho starting model, shift in %
(a) (b)

Figure 4: (a) Set of starting density models generated by adding + 25 % density perturbations with a
1 percent shift to the smoothed 1D true rho model. (b) Initial, normalized L2-norm that corresponds to
selected starting density models.
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Figure 6: Inversion results for Test H. Starting rho model: true rho model; no rho model update. (a) True
Vp model [m/s], (b) true rho model [kg/m3], (c) observed data for shot 50 located at x = 5325 m, (d) initial
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Figure 7: Inversion results for Test A. Homogeneous density model is used. For details see caption of
Figure 6.
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Figure 8: Inversion results for Test B. Starting rho model: computed from the starting Vp model using
Brocher’s relationship; rho model is updated after each iteration from the inverted Vp using Brocher’s
relationship. For details see caption of Figure 6.
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Figure 9: Inversion results for Test F. Starting rho model: computed from the starting Vp model using

Gardner’s relationship; multi-parameter inversion for Vp and rho. For details see caption of Figure 6.
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Figure 10: Inversion results of noisy data (random, Gaussian noise). Inversion for Vp only. (a) inverted
Vp, (b) final rho, (c) final modeled data (shot 50), (d) Vp profiles, (e) rho profiles, (f) final residuals.
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Figure 11: Inversion results of noisy data (random, Gaussian noise). Multi-parameter inversion for Vp and

rho. For details see caption of Figure 10.
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Figure 12: Inversion results of noisy data with spatially coherent noise added. Inversion for Vp only. Final

models show only the shallow structures up to depth of 1200 m. For details see caption of Figure 10.
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Figure 13: Inversion results of noisy data with spatially coherent noise added. Multi-parameter inversion
for Vp and rho. Final models show only the shallow structures up to depth of 1200 m. For details see
caption of Figure 10.
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Data Inversion parameters || Initial L2-norm || Final L2-norm
random noise Vp 91.07 % 2.67 %

Vp and rho 91.07 % 2.81 %
coherent noise Vp 48.77 % 0.25 %

Vp and rho 48.77 % 1.27 %

Table 4: Summary of noisy data inversion results.

L2-norm of the initial and final residuals.

Data Inversion parameters || Initial Vp error || Final Vp error
random noise Vp 6.37 % 5.27 %

Vp and rho 6.37 % 5.30 %
coherent noise Vp 6.37 % 3.56 %

Vp and rho 6.37 % 5.26 %

Table 5: Summary of noisy data inversion results. RMS error of the initial and reconstructed velocity
models.

In the first experiment we inverted data with the random noise. Figure 10 shows the Vp only inversion
results. In this case the true density model was used. Adding noise to the data produced a lot of small-scale
artefacts in the final velocity image. This is a general behavior of the L2-norm, that is known to be sensitive
to amplitude errors in the data and tries to explain it by introducing false structures into the models (Crase
et al., 1990). The multi-parameter inversion (Figure 11) shows a much smoother reconstructed V» model.
The density “absorbed” some artefacts, nevertheless the accuracy of the recovered velocity model is low.
The RMS error in the Vp model was reduced from the initial 6.37% to 5.30% after 400 iterations.

In the next experiment we inverted data affected by the spatially correlated noise. Figure 12 shows
results for the Vp only inversion and Figure 13 for the multi-parameter Vp and p inversion. Even though
the data residuals are not dominated by noise, there is a problem with focusing the energy of this event
what can be seen as a smile-like effect in the reconstructed models.

The multi-parameter inversion brought no improvement in the Vp model reconstruction from the noisy
data, but this is due to the problem that the density was not correctly estimated through waveform inversion
even from the noise-free data.

CONCLUSIONS

In this study we applied 2D acoustic time-domain FWI to a realistic synthetic data set, which mimics
the conventional marine-streamer acquisition. The very low frequencies (< 3 Hz) were removed from
the data. The model used to generate synthetic data is an acoustic medium with the heterogeneous density
distribution. The primary goal of this work was to investigate the role of density on the recovery of velocity
models.

Our results show that the realistic density information should be directly included in the inversion
process to improve the accuracy of the velocity reconstruction. This is particularly important if the least-
squares objective function is used in the FWI, because this norm takes into account both amplitude and
phase information of the data. Using a constant density assumption produces artefacts in the recovered
velocity models, because then all reflections are interpreted in terms of velocity contrasts only.

The more accurate density models bring improvement in the Vp estimation. Therefore, it would be
preferable to allow for the density inversion, rather than use a fixed relationship between velocity and
density. Especially, when we take into account the fact that all empirical relations are valid only for certain
types of rocks. However, the reliable estimation of density is difficult, also in our synthetic noise-free
experiment. Incorrect density values combined with the misplacement of reflectors result in incorrect
velocity images. Apparently, velocity compensates the amplitude errors in the modeled data produced by
strong density contrasts.

To enable a successful multi-parameter inversion for P-wave velocity and density it would be necessary
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to constrain the density model update. As it was mentioned by Amundsen and Ursin (1991) velocity
shows faster convergence than density, mainly because the information on velocity structure is enclosed
in the arrival times of seismic reflections, whereas the density is contained in the amplitude information.
Therefore, the overall velocity trend should be correct before fitting the amplitudes to recover the density
model.

Further work is required to investigate the best strategies for the multi-parameter inversion with the
emphasis on the constrained density inversion.
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