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ABSTRACT

The simultaneous estimation of Common Reflection Surface stack attributes considers a solution of
a global non-linear minimization problem. We propose a hybrid method to solve this unconstrained
optimization method. The approach comprises a conjugate direction method with its well known
convergence properties and an iterative line search considering the strong Wolfe-Powell rule for the
control of the step length. The use of the conjugate direction method leads to a highly efficient
iterative search method to speed up the convergence rate while using Hessian is avoided. The iterative
line search considering the strong Wolfe-Powell rule for the control of the step length prevents the
premature convergence into local minima, without the need of computing the gradient. In the current
version of the CRS code the Nelder-Mead optimization method is applied to estimate CRS stack
attributes. This technique requires more iterations and is more time consuming than the hybrid method
introduced here. Applications show that the method provides very good solutions particularly in the
presence of several local minima. For the Sigsbee2A synthetic data the new optimization approach is
5 times faster in computational time compared to the Nelder-Mead optimization method.

INTRODUCTION

The common reflection surface (CRS) stack is a zero-offset simulation method in seismic processing (see,
e.g., Müller, 1999). The 2-D CRS description of the reflection response is specified by three kinematic
wavefield attributes, namely the emergence angle α of the normal ray, the radius of curvature RNIP and
RN of the NIP and the normal wave, respectively. The CRS hyperbolic approximation is given by
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where v0 is the near-surface velocity. For each point (x0, t0) of the zero-offset volume, the CRS formula
(1) allows to identify, collect and stack all events within the given aperture in the midpoint-offset domain.
We can obtain a time image based on the specular reflection of normal incident rays by repeating this
process (Mann et al., 2001; Cristini et al., 2002). In this paper, we propose a computational strategy to
efficiently and accurately estimate the CRS attributes {α,RNIP , RN}. Our strategy for the simultaneous
estimation of the attributes is based on the coherence analysis and solving a global non-linear minimiza-
tion problem for each point (x0, t0). The resulting conjugate direction algorithm, based on the Powell line
search method, provides very good solutions even in the presence of several local minima without the need
of computing gradients (Bonomi et al., 2009).
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OPTIMIZATION PROBLEM

The CRS stack is implemented as a fully automatic procedure. This implies the computation of the kine-
matic attributes {α,RNIP , RN}, which is also done in an automatic manner. The attributes are determined
by means of the coherence analysis which essentially consists of maximizing the semblane criterion, given
by:
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where fi,t(i) is the amplitude on the i-th trace at traveltime t(i) and N is the number of traces. The maxi-
mum coherence is achieved if there is a optimal fit between the CRS traveltime and the data.
Since for each new value of {α,RNIP , RN} the estimation of the semblance has a high computational
cost in term of floating-point operations and data movement, the search process, if not correctly designed,
might be very time consuming. This lead to the introduction of the pragmatic approach which subdivides
the 3-D global search in the full pre-stack data volume into three 1-D searches in data sub-volumes. The
number of traces in these sub-volumes is considerably lower and therefore the coherence does not have the
S/N ratio it would displays in the full data volume for the global search. Furthermore, there is no guarantee
that the resulting attributes may be wrong or linked to a local minimum.
Global optimization methods may overcome some of these deficiencies and problems. Since the deriva-
tives of the semblance are not explicitly available, a gradient-based minimization scheme cannot be im-
plemented. In the current implementation of the CRS method the Nelder-Mead approach is used for the
optimization. This method does not need gradients and is therefore particularly suited to determine CRS
attributes. An alternative and efficient way to keep good convergence properties without computing the
gradients is to adopt a conjugate-direction method (Stewart, 1973), together with a reliable line search
algorithm. We propose a strategy to simultaneously estimate common reflection surface (CRS) attributes
using the conjugate direction approach based on Powell is search method. It allows to prevent the premature
convergence being trapped into local minima. The idea is to steer the search using a strong Wolfe-Powell
(SWP) rule.

Conjugate direction method

While solving linear systems with direct methods it is very difficult to adapt distributed memory systems
for sparse matrix coefficients. Most of the sparse linear system solvers for distributed memory system use
iterative methods. The conjugate direction method is a highly efficient iterative search technique because
it allows to speed up the convergence rate of steepest descent while using Hessian matrix evaluation is
avoided (Stewart, 1973). The iterations converge quadratically, starting from any initial guess and then
trying to repeatedly improve the values. The old value is replaced by the new one with a special choice
of direction determined by a line search. In every iteration a direction vector, di, and step length in the
direction, αi, are calculated to determine the next approximation of a new value in a line search method.

xi+1 = xi + αidi. (3)

Please note that in the second term of the equation no summation is considered, i.e., it is not a scalar product
and i is a free index. This means the products need to be considered component wise. This applies to the
following equations in this paper in a similar way.
Unfortunately, the search of a good solution minimizing a multimodal cost function has to deal with the
possibility of a premature convergence to a local minimum. No optimization method based on a descent
algorithm will prevent the trapping into local minima without allowing to escape movements along the
opposite direction to the descent lines (Press et al., 2007). To determine a new point (xi + αi.di), an
effective adaptive selection rule for the step length must be carefully implemented. The introduction of
an uphill movement along each conjugate line towards regions of lower elevation greatly increases the
capability of the line search algorithm to seek for solutions at lower cost. A good choice is the adoption
of the strong Wolfe-Powell rule (Minoux, 1983). The idea is to steer the search using strong Wolfe-Powell
rule to frame admissible solutions also along the counter-descent direction, i. e., to determine whether a
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step length for a new point is significantly better than the current one.
Under these conditions, the fundamental property of these methods (Powell, 1964) is, that the result of the
n-th iteration is exactly the minimum of f(x) over the set di of conjugate directions in the attribute space.
More precisely, if n nontrivial vectors di, i = 1, 2, 3.....n, are mutually conjugate, the exact minimum of
f(x) can be obtained by a sequence of n one-dimensional searches: starting at point x0, the final result
xmin = xn is extracted from:

f(xi+1) = min {f(xi + αidi)} , i = 1, 2, 3...n. (4)

The goal of the line search is to minimize h(α) = f(x+ αd) along the direction d varying the step length
αLB ≤ α ≤ αUB . For each coordinate (x0, t0) of the zero-offset volume, the minimization algorithm can
be sketched as follows:
Powell Conjugate-direction algorithm

1. Initialiaties: set x0 = p0 and choose d1, d2, ....., dn linearly independent
2. FOR 1 ≤ i ≤ n DO

Line search: find αLB ≤ αi ≤ αUB minimizing f(pi + αi.di)
Define the new point: pi+1 = pi + αi.di

3. Find an integer 1 ≤ k ≤ n , so that δ = f(pk+1)− f(pk) is maximum
4. Compute: f3 = f(2pn − p0) and f1 = f(p0), f2 = f(pn)
5. IF f3 < f1 AND (f1 − 2f2 + f3)(f1 − f2 − δ)2 < 1

2δ(f1 − f3)2 THEN
Define the new direction : dk = pn − p0

Line search: find αLB ≤ αk ≤ αUB minimizing f(pn + αk.dk)
Define the new point: xi+1 = xi + αk.dk
ELSE
Keep all directions d1, d2, ....., dn for the next iteration and set p0 = pn

6. Repeat step 2 through 5 until convergence is achieved

NUMERICAL EXAMPLE

First we will test the method on an analytical example and compare it to the Nelder-Mead optimization
procedure currently used as the optimization technique in the determination of CRS attributes. We are
particularly interested in its behavior in the presence of a local minimum. For this purpose we consider the
function f(x1, x2) = 1

4x1 + 5x2
1 + x4

1 − 9x2
1x2 + 3x2

2 + 2x4
2. Figure 1 shows two different optimization

methods with two different initial values. The first initial condition (Fig. 1a) was chosen close to the first
local minimum (2.1482, 1.5875) and the second initial condition (Fig. 1b) was chosen close to the second
local minimum (-0.0250, 0.0009). The Nelder-Mead method (Fig. 1c) and (Fig. 1e) gets trapped into local
minima for both initial values and also needs considerably more iterations. The Powell conjugate-direction
method (Fig. 1d) and (Fig. 1f) avoids the premature convergence to be trapped into local minima and gets
fairly close to the global minimum at (-2.1817, 1.6069). In the conjugate-direction approach the number
of iterations corresponds to the number of variables of the function to optimize, i.e., 2 for the analytical
example above, 3 for the 2-D ZO CRS operator and accordingly for the 3-D and offset operators.

In the next section we apply the Powell conjugate-direction optimization procedure to a complex syn-
thetic example and compare the results to our current implementation of the CRS attributes determination
utilizing the Nelder-Mead procedure. We test the optimization procedures on the Sigsbee 2A synthetic
data. Sigsbee 2A is a constant density acoustic synthetic dataset released in 2001 by the Subsalt Multiples
Attenuation and Reduction Technologies (SMAART JV) consortium. It models the geologic setting found
in the Sigbee escarpment in the deep water Gulf of Mexico. Figure 2 shows the resulting ZO stacked sec-
tions. The ZO CMP stack section (Fig. 2a) displays well known features when comparing CRS (Fig. 2b)
and CMP stacked sections. The CRS stack in Fig. 2b was obtained using the pragmatic approach without
global optimization. Here the 3-D search is subdivided into three subsequent 1-D searches. Compared to
the CMP stack in Fig. 2a it shows a better S/N ratio, improved continuity of reflections and also a better
image for conflicting dips. Figure 3 shows CRS stacks with two different global optimization procedures
where the initial conditions of the search were chosen from the results of the pragmatic approach. The
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Nelder-Mead optimized CRS stack (Fig. 2a), and the Powell conjugate-direction optimized CRS stack
(Fig. 2b). Both images are very similar and display less noise and scatter compared to the CRS image
obtained with the pragmatic approach and no global optimization in Fig. 2b. The conjugate-direction ap-
proach, however, is 5 times faster in computational time since it requires less iterations.

Figure 4 to 6 display results of CRS attributes and coherence for the optimization methods using the
Nelder-Mead (NM) approach and the Powell conjugate-direction (CD) approach. Figure 4 and 5 shows
resulting sections of CRS stacking parameters α and RNIP . The angle of emergence and curvature of NIP
wave section for Nelder-Mead optimization method is displayed in Fig. 4a and 5a. The angle of emergence
and curvature of NIP wave section for the Powell conjugate-direction optimization method is shown in Fig
4b and 5b. The sections are similar and no specific differences can be observed. The coherence section of
CD in Fig. 6b displays a bit more scatter than the coherence of the NM section (Fig. 6a). As already men-
tioned the stacks of both methods look similar and it does not appear that the difference in coherence has a
major effect on the attributes. This will be further investigated by evaluating the results of other procedures
in the CRS workflow like, e.g., tomography, diffraction processing, or multiple suppression. Currently we
would favor CD against NM because of the substantial computational advantage. This advantage of the
conjugate-direction approach will be even more exposed when going to multi-parameter stacking formulas
with more than 3 attributes, like offset CRS, converted waves or 3-D applications.

CONCLUSIONS AND OUTLOOK

We have proposed an alternative strategy for the optimization of CRS attributes. The method is based on a
hybrid optimization, which comprises the conjugate direction approach based on a Powell search method.
A specific feature of the conjugate-direction approach is its ability to avoid being trapped in local minima.
Moreover, the Powell conjugate-direction method has a substantial computational advantage against the
Nelder-Mead method currently used in the CRS attribute search. A factor of 5 in computing time was
observed for the global search of the parameters in the 2-D CRS stack using the conjugate direction ap-
proach. For multi-parameter stacking approaches with more than 3 attributes (offset formulas, converted
waves, 3-D) this advantage will be even more obvious since considerably less evaluations of the semblance
coefficient are required where most of the CPU time is used in the CRS method. The quality of the at-
tributes are the key for a successful application of the CRS workflow. Whereas we do not see specific
differences in the stack or attribute sections for the conjugate-direction or Nelder-Mead approach, we will
investigate the performance of the attributes in other processing steps, like, e.g., tomography, diffraction
processing, or multiple suppression. In the numerical examples of this paper initial values in the global
search were taken from the results of the pragmatic approach. In the future we want to completely avoid
the pragmatic approach and move to global optimization right from the start. We expect that this strategy
will further improve the quality of the attributes which should positively influence the results of the CRS
workflow.
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Figure 1: Two different optimization method with two different initial values: the first initial condition was
chosen close to the first local minimum (2.1482, 1.5875) (a) and the second initial condition were chosen
close to the second local minimum (-0.0250, 0.0009) (b). The Nelder-Mead method (c) and (e) get trapped
in local minima. The Powell conjugate-direction method (d) and (f) avoids the premature convergence into
local minima and gets close to the global minimum at (-2.1817, 1.6069).
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(a) (b)

Figure 2: Zero-offset stacked sections: comparison between the conventional CMP stack and pragmatic
approach CRS stack. The conventional CMP stack (a) has lower quality in conflicting dip areas. In the
pragmatic approach CRS stack (b), reflections are more continuous and appear clearer, diffractions are
attenuated.

(a) (b)

Figure 3: CRS stacked sections: comparison between the Nelder-Mead optimization method and Powell
conjugate-direction optimization method with the same initial values. The Powell conjugate-direction op-
timization method (b) is 5 times faster in computational time compared to the Nelder-Mead optimization
method (a).
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(a) (b)

Figure 4: Results of the automatic CRS parameter searches: α. Angle of emergence section for Nelder-
Mead optimization method (a) and angle of emergence section for Powell conjugate-direction optimization
method (b).

(a) (b)

Figure 5: Results of the automatic CRS parameter searches: RNIP . Curvature of NIP wave section for
Nelder-Mead optimization method (a) and curvature of NIP wave section for Powell conjugate-direction
optimization method (b).
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(a) (b)

Figure 6: Coherence section: comparison between the Nelder-Mead optimization method (a) and Powell
conjugate-direction optimization method (b).
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