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ABSTRACT

Full waveform tomography (FWT) is a powerful imaging method to exploit the richness of full seismic
waveforms. In general, complex seismic data arises from heterogeneous geology of the subsurface.
In this study we investigate the applicability of acoustic FWT to marine reflection data. We focus
on analyzing the impact of attenuation on the reconstruction of a P-wave velocity model by acoustic
FWT.

Based on relaxation mechanisms of the generalized standard linear solid (GSLS) we involved at-
tenuation into finite-difference modeling of 2D time-domain acoustic FWT. Using a homogeneous
full-space the comparison of finite-difference-based waveforms and a semi-analytical solution shows
a good conformity.

We applied acoustic FWT with and without consideration of initial attenuation information to both a
1D structured model and the 2D Marmousi model. We found that in case of marine reflection experi-
ments with occurrence of lossy sedimentary rocks the neglection of attenuation causes an insufficient
recovery of the velocity model as well as an improper fit of the observed viscoacoustic data. The max-
imum absolute model error between the inverted Marmousi model and the reference velocity model
(optimal reference result obtained by acoustic FWT of acoustic data) is approximately 30 percent with
an average absolute error of 5.7 percent. The choice of an appropriate viscoacoustic starting model,
which includes a smooth quality factor model, is thus important, improves the reconstructed Mar-
mousi P-wave velocity model and decreases the maximum absolute model error to 24 percent (with
an average absolute error of 2.5 percent).

A successful FWT application should account for attenuation — either as a passive parameter or as
subject to inversion.

INTRODUCTION

In the majority of FWT applications we face a multi-parameter problem, i. e., it is desirable to obtain in-
formation about seismic velocities, density and attenuation from seismic data. The aim of full waveform
tomography — an iterative inversion method — is to find an optimal parameter model, e.g. a subsurface
model of seismic velocities, which explains the observed seismic data, i.e., the difference of observed and
synthetic data has to be minimized. Especially real data application might require the consideration of
all available parameters which comprise bulk modulus and attenuation in the acoustic approximation. At-
tenuation affects both amplitude and phase of seismic signals, i.e., it causes amplitude modifications and
dispersion resulting in strongly frequency-dependent velocity models.

Fundamental work of developing time-domain FWT (Tarantola, 1984) and including attenuation into elas-
tic FWT was done by Tarantola (1986). His basic idea is to use causal attenuation in forward-propagation
and anti-causal attenuation in back-propagation of the seismic wavefield. In frequency-domain FWT (cp.
Pratt, 1999) the intrinsic attenuation is included quite easily by introducing complex velocities (Johnston,
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1981). On the one hand it is used as a passive model parameter to improve the inversion for desired param-
eters like P-wave velocity (e. g., Brenders and Pratt, 2007). Furthermore, multi-parameter FWT involves
attenuation as an additional paramater of interest. Many applications focus on synthetic investigations of
velocity model improvement by recovering attenuation, explicit reconstruction of an attenuation model or
mitigation of nonlinearity and ill-posedness of FWT (e. g., Hak and Mulder, 2008, 2011; Kamei and Pratt,
2008). Additionally, there are already several field data applications of FWT that account for attenuation in
the frequency-domain, e.g. Hicks and Pratt (2001), Takam Takougang and Calvert (2011) and Malinowski
etal. (2011). A brief overview about recent publications in this area is given by Virieux and Operto (2009).
Furthermore, several authors apply additional methods to recover attenuation like asymptotic waveform
inversion. This method realizes wave equation modeling by Born approximation and ray tracing (Ribodetti
and Virieux, 1998; Ribodetti et al., 2004).

In conjunction with application to wide-aperture seismic field data, Malinowski et al. (2011) investigated
both the influence of different initial quality factor models on acoustic frequency-domain FWT and appli-
cability of a viscoacoustic joint inversion for P-wave velocity as well as quality factor. They conclude that
viscoacoustic FWT is able to recover both parameters sufficiently. Apart from that, Mulder and Hak (2009)
discuss problems of such a joint inversion.

We investigate the role of attenuation for time-domain acoustic FWT in marine reflection seismics. Espe-
cially in marine sediments the quality factor may vary from low values around 20 Nip to high three-digit
values. Resulting dispersion and amplitude modifications might be a serious problem in recovering a suf-
ficient velocity model by acoustic FWT. Although this study concentrates on 2D acoustic FWT in the
time-domain, it is also targeted to 3D applications. In contrast to high efficiency of 2D frequency-domain
FWT by easy implementation of attenuation, computation of 3D frequency-domain modelings is highly
demanding. Hence, in 3D FWT applications time-domain modeling is commonly used. Furthermore,
advantageous time-domain features like straightforward time-windowing of data and the consideration of
broad frequency bands (instead of single frequencies) are available. Based on a time-domain implemen-
tation of acoustic FWT with viscoacoustic modeling we analyze the impact of attenuation on its ability to
reconstruct a proper velocity model from viscoacoustic data (whereas the influence of density is neglected).
Furthermore, with respect to a reference result we quantify errors obtained from this model reconstruction
including or excluding viscoacoustic modeling. For the purpose of this study we utilize synthetic but real-
istic marine reflection seismics experiments.

In detail this work comprises implementation of finite-difference viscoacoustic modeling in the time-
domain acoustic FWT, its verification using a semi-analytical solution based on the Born approximation
(Carcione et al., 1988b; Carcione, 2001; Emmerich and Korn, 1987) within a homogeneous model and
application of acoustic full waveform tomography to viscoacoustic data in case of a simple 1D medium
and the 2D Marmousi model. In comparison with dispersion effects predicted by theory, we estimate the
error obtained by acoustic FWT.

TIME-DOMAIN VISCOACOUSTIC MODELING

Attenuation in acoustic media

The involvement of attenuation into acoustic or elastic modeling has been described by numerous authors
(e. g., Carcione et al., 1988a,b; Emmerich and Korn, 1987; Blanch et al., 1995; Liu et al., 1976; Robertsson
et al., 1994; Bohlen, 2002). Within the scope of this work we have developed an acoustic FWT in the
time-domain. In contrast to modeling in the frequency-domain, a direct implementation of attenuation
using complex velocities is not possible. Hence, the attenuative properties of the medium have to be
approximated by a suitable rheology which is represented by the GSLS (Liu et al., 1976). It consists of a
parallel connection of a HOOKE and L MAXWELL bodies. Thus, attenuation is described by L relaxation
mechanisms. While an acoustic model is characterized by the parameters density p and bulk modulus «, the
viscoacoustic medium is defined by p, the relaxed bulk modulus .- and additional 2L relaxation parameters
Ty and 7; (I = {1,...,L}). The relaxation times 7,; and retardation times 7. ; are required for an
appropriate approximation of the quality factor () p, which is proportional to the reciprocal of attenuation
ap. We only consider constant-QQ p models, i.e., Qp(f) = const. = Qp, within the desired frequency
range fmin < f < fmax Of the seismic waveforms. The general frequency-dependent relation of @ p(w)
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(with w = 27 f) and relaxation parameters is given by
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To achieve an approximation of @ p(w) = const. = Qp o the nonlinear equation (1) has to be minimized
by application of a least squares optimization algorithm (Blanch et al., 1995; Bohlen, 1998). Hence, the
constant-Q) p model is defined by L relaxation times and @ p,p. Instead of defining relaxation times, the
choice of relaxation frequencies f,; = 27r7' for each mechanism of the GSLS is more common. Fur-
thermore, the relaxation parameters are used to compute relaxed frequency-depended bulk modulus &, and
relaxed P-wave phase velocity vp, respectively:
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with the angular reference frequency wy = 27 fy. At reference frequency wy reference velocity vpg
is defined, i.e., vp corresponds to the acoustic phase velocity. A useful choice of f; can be the peak
frequency of the source wavelet.

Time-domain wave equation

In addition to relaxation of the model parameter, attenuation has to be implemented into the wave equation.
The basic homogeneous second order acoustic wave equation is given by
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with the pressure field p (%, t) at time ¢ and position &. Due to the requirement of first order partial differ-

ential equations for implementation of attenuation, equation (4) has to be rewritten:
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Vector w (&, t) denotes the particle velocity field. The introduction of attenuation yields following wave
equation (Emmerich and Korn, 1987; Carcione et al., 1988a; Robertsson et al., 1994):
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With substitutions based on relation (2) we get
L
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Viscoacoustic modeling in the time-domain needs additional L wavefield variables r; (Z,t) and L equa-
tions. The so-called “memory variables” r; (Z,t) characterize the memory of the viscoacoustic medium.
The full waveform tomography requires the solution of the acoustic wave equation which is realized by
a time-domain finite-difference time-stepping method (Alford et al., 1974) with perfectly matched layer
boundary condition (cp. Berenger, 1994; Chew and Weedon, 1994) and heavy parallelization (Bohlen,
2002; Kurzmann et al., 2009). Due to time-domain modeling, attenuation is implemented by the relaxation
mechanisms of the generalized standard linear solid (cp. Liu et al., 1976; Bohlen, 1998) for finite-difference
implementation).

Verification of viscoacoustic finite-difference modeling results

In this section we employ 2D time-domain acoustic as well as viscoacoustic modeling to a homogeneous
full-space example. The results are compared with an analytical solution. The model and its parameters
are shown in Figure 1. For finite-difference modeling we use a grid size of 1000 x 1600 grid points with a
spacing of DH = 0.5 m, a time step of DT = 10~* s and a Ricker wavelet with a peak source frequency
of fs = 80 Hz. To suppress artificial reflections from model boundaries, the acquisition geometry is sur-
rounded by a broad perfectly matched layer (PML).

In the following time-domain viscoacoustic approach the attenuation of a medium is approximated by
L = 3 relaxation mechanisms within the desired frequency range of f = [0, 200] Hz, which cor-
responds to the relevant frequency content of the source wavelet. L relaxation frequencies f,; (I =
{1,...,L}) are estimated from Qp and the reference frequency fo; = f,. This is realized by the Q p-
approximation method mentioned above. The result of this optimization is a logarithmically spaced set
fra = (1.470,21.40,199.6) Hz. The approximation of the quality factor Qp(f) and the resulting dis-
persion v(f) is illustrated by Figures 2 (a) and (b). At frequency f, we assume the acoustic reference
phase velocity v(fo) = vpo = 2400 %. Thus, v(f) ranges from vy, = v(f = 0) =~ 2163 2
Umax = V(f — 00) &~ 2499 2 whereas in finite-difference modeling v(f — o0) is computed at the max-
imum NYQUIST frequency f Ny = 1/(2DT) = 5000 Hz (with respect to time step DT'). Both vy, and
Umax have to be considered to avoid grid dispersion or instability. Hence, in forward modeling minimum
and maximum velocities are computed as follows:

1 1 + L TP
Umin = UP,0 2,2 and Umax = VUP,0 . (8)
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In case of the homogeneous model experiment equations (8) yield velocities vyin ~ 2184 = and
Umax ~ 2491 %, which slightly differ from the theoretical values.

The effect of attenuation on seismic data is demonstrated by a comparison of acoustic and viscoacoustic
modeling based on the given acquisition geometry. Figure 3 shows the resulting seismograms. As expected
with increasing offset a significant amplitude decay and a modification of phases can be observed. Espe-
cially the amplitudes of high frequency contents are subject to strong attenuation (cp. amplitude spectrum
in Figure 4(a)). Furthermore, Figure 4(b) visualizes a comparison of acoustic and viscoacoustic phase
spectra. The frequency-dependent phase distortions mainly occurr at frequencies f > fy and disappear
around the peak frequency.

Hereafter we verify the results of viscoacoustic finite-difference modeling using the program AnalyticAnelastic
(implemented by JOSEP DE LA PUENTE, LMU Geophysics, Munich; based on (Carcione et al., 1988b; Car-
cione, 2001; Emmerich and Korn, 1987). It provides the same rheology as mentioned above and is utilized
for computation of a semi-analytical solution of the wave equation in a viscoelastic and consequently vis-
coacoustic or acoustic medium. Figure 5(a) shows the acoustic reference comparison for an exemplary
trace at farest offset (z = 340 m). Both semi-analytical and finite-difference solution fit very well. The
viscoacoustic data at near offset (z = 20 m) and far offset (z = 340 m) are depicted in Figures 5(b) and
5(c). Apart from minor deviations, the finite-difference solution resembles the analytical solution.
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Figure 1: Viscoacoustic homogeneous full-space model used for time-domain finite-difference modeling.
The acquisition geometry consists of one directed force source in vertical direction (red star) and five

receivers (green triangles).
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Figure 2: Figure a): Approximation of the quality factor Qp(f, L = 3) for the model shown in Figure
1 and the desired frequency range of the underlying source signal. Figure b): Corresponding dispersion
curve based on an acoustic reference velocity model v(fo) = vpo = 2400 .
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Figure 3: Seismogram corresponding to the acquisition geometry in Figure 1. The data represent the
vertical component of particle velocities. Due to plotting issues, all traces are normalized to maximum

amplitude of the acoustic signals.
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Figure 4: Amplitude (Figure (a)) and phase spectra (Figure (b)) of the seismic data shown in Figure 3. All
traces in Figure (a) are normalized to maximum values of the acoustic spectra.
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Figure 5: Comparison of semi-analytical and finite-difference solutions. Exemplary data is shown for
the acoustic case at far offset (Figure (a)), for viscoacoustic data at near offset (Figure (b)) and far offset
(Figure (c)). Traces (A) are represented by the analytical solution, traces (B) by finite-difference solution
and traces (C) by the corresponding acoustic solution in Figure (a).

SYNTHETIC FULL WAVEFORM TOMOGRAPHY EXPERIMENTS

In the following we investigate the impact of attenuation on acoustic FWT. Depending on the aim of this
work some restrictions are applied:

e the FWT only inverts for P-wave velocity model vp,
o to focus on attenuation effects the density model is neglected,
e initial source signal sg = Strye,

e progress and result of FWT are tested for both the absence of attenuation and an initial quality factor
model @ p which will be used as passive model parameter,

e in the following 1D and 2D examples FWT is not allowed to apply model updates within the water
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layer due to the assumption of known parameters vp = 1500 % and Qp = 60000 Ni (minimum
value for salt water at frequency which is much higher than seismic frequencies, cp. Johnston, 1981),

e the algorithm comprises gradient computation based on the L? misfit function and the conjugate
gradient method (Mora, 1987),

e to avoid unwanted side effects, only a minimum repertoire of preconditioning features is applied:
time-wondowing of the data is omitted, low-pass filtering of observed data over multiple stages
[Bunks et al. (1995) and analogous to frequency selection in frequency-domain FWT (Sirgue and
Pratt, 2004)] is applied in case of Marmousi model, wavefield-based preconditioning (Fichtner et al.,
2009; Igel et al., 1996) of the gradient is performed for both 1D and 2D model.

Synthetic experiment 1: 1D model

The first example consists of a layered 1D model with a water layer on top, followed by low and high atten-
uative sedimentary rocks (Figure 6). It represents an extreme case of subsurface properties within a marine
environment, i.e., the placement of a highly attenuative layer at top of sedimentary rocks. The acquisition
geometry is located at the free surface and consists of 24 explosive sources as well as 278 hydrophones (for
each source all receivers are used). The source signal consists of a Ricker wavelet with a peak frequency
fs = 80 Hz. The model size is 130 x 308 m which results — using a grid spacing DH = 0.5 m —in a
grid size of 260 x 616 grid points. Due to the application of a perfectly matched layer (width = 15 m) for
avoiding artificial boundary reflections in finite-difference modeling, all model related figures are limited
to the illustration of the relevant area. Furthermore, the synthetic seismic data is obtained by application of
arecord time of 0.21 s with a time discretization of DT = 8 - 107° s.

The approximation of relaxation parameters are based on reference frequency fyo = f, and an average
Qp = T4 Nip within the area from layer two to layer five. Using three relaxation mechanisms we get
the relaxation frequencies f,; = (1.196,17.58,179.1) Hz. Both the acoustic and viscoacoustic data are
shown for a central shot (Figure 7). Due to missing attenuation in water, phases and amplitudes of direct
wave and even the seafloor reflection match very well. However all later reflection events of the acoustic
data are characterized by phase distortions and a significant amplitude decay. The phase misfit is explained
by the high dispersive properties of layer two. The dispersion contributions of all layers are computed
by equations (8). The resulting minimum and maximum frequency-dependent velocities are visualized by
vertical sections across the 1D medium (Figure 8 (a)).

Regarding the 1D model several full waveform inversions have been employed to investigate the sensitivity
of acoustic FWT to viscoacoustic data as well as the efficiency of FWT with viscoacoustic modeling and
different initial models (cp. Table 1).

data used offsets modeling initial model(s)
Reference FWT acoustic all acoustic smooth vp model
Test 1 viscoacoustic all acoustic smooth vp model
Test 2 viscoacoustic all viscoacoustic | smooth vp and @) p models
Test 3 viscoacoustic all acoustic true vp model
Test 4 viscoacoustic near acoustic true vp model

Table 1: 1D model: Compilation of all acoustic FWT tests.

The initial models are generated by application of a 2D Gaussian filter (size 100 x 100 m, o = 33) to the
sub-seafloor area of the true model (cp. Figure 8 (b) and (c)). A reliable interpretation of the effects caused
by attenuation can be done by adding an acoustic reference result. The nearly optimal conformity of true
and final model (Figure 8 (d)) ensures the applicability of FWT to the given model which comprises acous-
tic observed data and pure acoustic inversion. The vertical section of this and following inversion results
is computed by lateral averaging of a representative model area which is located at = [80, 228] m. This
avoids artificial velocity recovery due to poor ray coverage close to the lateral model boundaries.

Figure 9 opposes several FWTs applied to viscoacoustic observed data which will be discussed subse-
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quently. Corresponding exemplary data plots can be found in Figure 10. All subfigures of Figure 9 contain
auxiliary dispersion plots with estimated minimum and maximum velocity boundaries. Based on vy, vpin
and vy from Figure 8 (a) depth-dependent one-way traveltimes of a zero-offset ray can be computed by

B max z dz
tO,min,max (Z) = / - - (9)

=0 V0, min,max (Z)
The “cumulative” dispersion effect is expressed by

Omin (2) = vg (2) ~t0 (2) and  Omax (2) = vo (2)

~£0 (Z)
tmin Z)

fmax (2)

However, as mentioned above equations (9) and (10) apply to zero-offset ray paths only. Due to the exis-
tence of near and far offsets, they can be treated as a rough estimation for velocity dispersion.

(10)

Test 1 deals with the application of acoustic FWT to viscoacoustic data (Figure 9 (a)). The velocity model
is recovered insufficiently which is explained by a bad fit of observed and sythetic data (Figure 10 (a)).
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Figure 6: 1D model: The synthetic P-wave velocity model is shown in Figure (a) and the corresponding
quality factor in Figure (b), with Q p(water) = 60000 Nip. The acquisition geometry is symbolized by red
(sources) and green markers (receivers).
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Figure 7: 1D model: Observed acoustic and viscoacoustic data for the central shot 13 at x = 160 m
and with traces at representative offsets. For better visualization a gain factor of ¢2 is applied, traces are
normalized to maximum amplitude of the acoustic signals and high amplitudes are clipped.
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Figure 8: 1D model: Vertical cross sections of vp and (Qp models. The abbreviations “T”, “S” and
“REF” refer to true model, starting model and reference result. Figure (a) shows the true vp model and its
contribution to dispersion based on the true quality factor in Figure (c). The vp starting model is shown in
Figure (b). Its dispersion limits (shaded areas) correspond to the initial quality factor in Figure (c). Figure
(d) illustrates the reference result of a pure acoustic FWT.
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Figure 9: 1D model: Compilation of several FWT results for the 1D medium. Additionally to Figure 8, the
abbreviations “R1”...“R4” represent the resulting velocity models. The subfigures (a), (c¢) and (d) show
the application of acoustic FWT to viscoacoustic data for different starting models. Subfigure (b) illustrates
the result of acoustic FWT with viscoacoustic modeling to viscoacoustic data. In subfigures (a), (b) and (c)
data at all offsets and in subfigure (d) only near-offset data are involved. The shaded areas symbolize the
“cumulative” dispersion effect.

The comparison of true and final velocity model shows an improvement, but in particular the incomplete
reconstruction of layers three and four are due to wrong attenuation provided by the starting model (cp.
Figures 8 (a) and (b)). The result is a smooth velocity model with an indication of interfaces.

Test 2 includes attenuation and applies acoustic FWT to the viscoacoustic dataset (Figure 9 (b)). The initial
@ p-model (Figure 8 (c)) remains unchanged throughout the entire inversion. In contrast to the previous
result, we can observe a siginificant improvement of the velocity model. The fit between synthetic and



Annual WIT report 2011 239

observed data is much better (Figure 10 (b)).

Test 3 investigates acoustic FWT applied to viscoacoustic data, where the true velocity model is used as
starting model. In spite of using the correct vp-model, the FWT tries to reduce the data misfit (cp. Figure
10 (c)) by modifying the magnitude of the velocities. The location of the interfaces seems to be unchanged.
However, we can observe an exceeding of the dispersion limit assumption. The involvement of all offsets
violates the applicability of equations (10). Consequently, in particular the central layer three is “smeared”
heavily.

Test 4 is a modification of the previous test. Due to the restriction of utilizing zero-offset ray paths for
computation of dispersion limits, the available offsets are reduced. The FWT takes into account offsets
from -20 m to 20 m at every shot position. Again the FWT tries to update the initial (= true) model, but at
prevailing portion of depth locations it does not exceed the predicted dispersion limits (Figure 9 (d)).

Based on a medium containing highly attenuative structures, acoustic FWT is not able to recover the veloc-
ity model successfully from viscoacoustic data. Even if we use the true velocity model as starting model,
the misfit between viscoacoustic observed data and acoustic synthetic data is mapped to the velocity model
by modifying its magnitudes. However, the usage of an passive (Qp model improves the velocity recon-
struction tremendously.
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Figure 10: 1D model: Compilation of exemplary traces at representative offsets which refer to the results
of tests 1 to 3 in Figures 9 (a), (b) and (c). The abbreviations “O”, “S” and “R” stand for observed data,
synthetic data of initial model and data of resulting model. In analogy to Figure 7 the same gain factor
and clipping are applied to the traces. All traces are normalized to maximum amplitude of the observed
waveforms.

Synthetic experiment 2: 2D Marmousi model

In analogy to the previous section similar investigations are applied to a section of the Marmousi-2 model
(Figure 11 (a)) based on Versteeg (1994) and Martin (2002). Hereby the velocities are clipped to the range
vp = [1500,4000] 2 to reduce computational efforts. The acquisition geometry is located at the free
surface and consists of 32 explosive sources as well as 485 hydrophones. For each source data are recorded
at all receivers. The source signal consists of a Ricker wavelet with a dominant frequency fs = 9 Hz.
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The model size is 3000 x 10000 m which results — using a grid spacing DH = 5 m — in a grid size of
600 x 2000 grid points. Due to the application of a perfectly matched layer (width = 150 m) for avoiding
artificial boundary reflections in finite-difference modeling, all model related figures are limited to the
relevant area. Furthermore, the synthetic seismic data is obtained by application of a record time of 5.145 s
with a time discretization of DT = 7-107*s.

The @ p model is derived from the velocity model by the relationship for dissipation 1/Qp (Hamilton,
1972)

1 vp
Qr " (4o
P ﬂ-f_ Ar f

with intrinsic attenuation ap for the frequency range of the given example in marine sedimentary rocks
(Figure 12 (a)). The quality factor ranges from 21 Nip in the upper sedimentary rocks to approximately

707 Nip in deeper high velocity zones. The approximation of relaxation parameters are based on reference

frequency fo = fs and an average Qp = 62 N%; within the area beneath the seafloor. In case of the true
model we can compute the relative minimum and maximum dispersion by

Umin — VP,0 Umax — UP,0
dmin = ———> and dpax = ——— > (12)

)
vp,o vpo

which is depicted in (Figure 13). Both the acoustic and viscoacoustic data are shown for the central shot 17
(Figure 14). Using three relaxation mechanisms we get the relaxation frequencies f,; = (0.1513,1.925, 18.94) Hz.
Regarding the Marmousi model three full waveform inversions have been applied to investigate the sensi-
tivity of acoustic FWT to viscoacoustic data as well as the efficiency of FWT with viscoacoustic modeling.
The initial models are generated by application of a 2D Gaussian filter (size 1250 x 1250 m, o = 51) to the
sub-seafloor area of the true model (cp. Figure 11 (b) and Figure 12 (b)). Again a pure acoustic inversion
of acoustic data is used as reference result (Figure 11 (c)). All FWTs are divided into multiple stages to
reduce nonlinearity of the inverse problem. By application of low-pass filters the inversion is performed for
different frequency ranges, moving fom low to high frequencies (Sirgue and Pratt, 2004). In the following,
the results are presented in conjunction with the deviation from this optimal acoustic result (tests 1 and 2)
as well as with the deviation from the true model (test 3).

Test 1 applies acoustic FWT to the viscoacoustic data. The final result shows a poor reconstruction of
the velocity model (Figure 15 (a)). The model deviation in Figure 15 (b) exemplifies the FWT’s inability
to recover structures with high velocity contrasts. In analogy to the 1D example the model resolution de-
creases dramatically with increasing depth.

Test 2 demonstrates the application of acoustic FWT with viscoacoustic modeling, whereas the initial ) p
model (Figure 12 (b)) remains unchanged. In contrast to Figure 15, the entire final model shows significant
improvements. However, due to the smoothness of the initial () p model, it is impossible to recover high
contrasts.

Test 3 resembles its counterpart in the previous section. The true velocity model is used as initial model.
The acoustic FWT tries to find a model which explains the misfit between acoustic and viscoacoustic data.
Hence, we can observe a smoothing effect and artificial structures (Figure 17). Any further progress will
“damage” the model continuously.

Obviously, in all tests the theoretical dispersion (Figure 13) is exceeded significantly by the relative model
deviations. In analogy to the 1D example, the theoretical values can be treated as contributions to dispersion
at each location of the subsurface. Hence, the overall “dispersive” effect is much higher.
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Figure 11: 2D model: Synthetic Marmousi velocity model. The real P-wave velocity model is shown in
Figure (a), the corresponding initial model for FWT in Figure (b) and the reference result of pure acoustic
FWT in Figure (c). The acquisition geometry is symbolized by red (sources) and green markers (receivers).
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Figure 12: 2D model: Synthetic Marmousi () p model. The real quality factor is shown in Figure (a) and
the corresponding initial model for FWT in Figure (b).
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Figure 13: 2D model: Theoretical minimum (Figure (a)) and maximum (Figure (b)) velocity dispersion
with respect to the acoustic reference velocity vg (fo) at reference frequency f; (cp. equations (8) and (12).
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Figure 14: 2D model: Composition of exemplary acoustic and viscoacoustic traces of the dataset obtained
at the central shot position 17 (x = 5150 m) related to the real Marmousi model in Figures 11 (a) and 12
(a). Due to visualization reasons, traces are normalized, partly clipped and modified by a gain factor of 2.
All traces are normalized to maximum amplitude of the acoustic waveforms.
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Figure 15: 2D model: Resulting vp model for an application of acoustic FWT to viscoacoustic data (Figure
(a)) and its relative deviation (Figure (b)) from the optimal acoustic result in Figure 11 (c). The range of
deviation is [—30, 29] percent with an average absolute error of 5.7 percent within the sub-seafloor area.
The image data is clipped at £ 25 percent.
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Figure 16: 2D model: Resulting v p model for an application of acoustic FWT with viscoacoustic modeling
(using the initial ) p model in Figure 12 (b)) to viscoacoustic data (Figure (a)) and its relative deviation
(Figure (b)) from the optimal acoustic result in Figure 11 (c). The range of deviation is [—21, 24] percent
with an average absolute error of 2.5 percent within the sub-seafloor area.
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Figure 17: 2D model: Resulting vp model for an application of acoustic FWT (using the true vp model
as starting model) to viscoacoustic data (Figure (a)) and its relative deviation (Figure (b)) from the true vp
model. The range of deviation is [—24, 23] percent with an average absolute error of 3.9 percent within
the sub-seafloor area.

CONCLUSIONS

In this work we have implemented attenuation into time-domain modeling of 2D acoustic full waveform
tomography by utilizing relaxation mechanisms of the generalized standard linear solid. Using a homoge-
neous full-space our viscoacoustic finite-difference solution coincides with a semi-analytical solution.
Acoustic FWT has been applied to viscoacoustic data for both a model with a 1D structure and the 2D
Marmousi model. Despite of using good starting models, the FWT is unable to recover the real velocity
model as well as to fit the observed data properly. Hence, the misfit between acoustic and viscoacoustic
data cannot be explained by acoustic FWT. In comparison with the pure acoustic reference result the acous-
tic reconstruction of the Marmousi model yields an inacceptable absolute model error up to 30 percent. An
improvement can be obtained by involving attenuation as a passive parameter in modeling. The quality
factor is estimated from vp by using a common relationship for marine sediments. On the condition of the
validity of this relationship within the entire subsurface, we get a proper @ p model. Otherwise imprecise
rock properties will affect the inverted vp model negatively. Compared to the neglection of attenuation, the
inversion results are enhanced significantly by using a smooth initial () » model, which was derived from
the true model. However, because of its difficult estimation in field data application, an inappropriate () p
model might cause an insufficient inversion result.

Additionally, acoustic FWT with true velocity as starting model gives an impressive illustration of the at-
tenuation’s impact on the inverted velocity model. For example, in case of the Marmousi model the FWT
tries to explain the misfit between acoustic and viscoacoustic data by a model “correction” up to 24 percent.
Due to shorter ray paths across the 1D medium, another test with restriction to inversion of near-offset data
only yields an improved resulting velocity model and reproduces the predicted dispersive effects quite well.
However, the latter limitation contradicts the common assumption of using both near- and far-offset data to
recover the velocity model successfully.

We conclude that at least a passive involvement of attenuation into acoustic FWT is recommended to im-
prove the reconstruction of velocity models. However, in this case the FWT is not able to explain the
remaining data misfit introduced by the fixed attenuation model assumption. Preconditioning methods
have to be investigated to mitigate that problem.
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