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ABSTRACT

Full waveform inversion (FWI) with its high resolution and its ability to receive multiparameter im-
ages belongs to the most promising technologies in seismic tomography. We developed a 3D FWI
code based on the conjugate adjoint gradient method. The wavefields are simulated using finite dif-
ferences. To minimize runtime and storage, the simulation of the wavefields is performed in the time
domain, whereas the gradients are calculated in the frequency domain. This can be done with the
single frequency method, where only few discrete frequencies are employed. We performed a FWI
of complex random medium, inverting for vp and vs in transmission geometry, using homogeneous
starting models. 33 iteration steps with increasing frequencies were computed. The results show the
ability of the code to resolve different sized features within the random medium. Hereby, the vp model
is less resolved and smoother than the vs model due to the larger P-wavelengths. Furthermore, the
innner part of the model, where wave path coverage is higher, is better resolved.

INTRODUCTION

In the 80’s Tarantola (1984) and Mora (1987) developed a new inversion strategy known as full waveform
inversion (FWI). By iteratively minimizing the misfit between observed and modeled seismograms this
technique uses the full information content given by the waveforms. However, the method is computa-
tionally highly demanding and only in recent years, with heavy developments in computer science, FWI
came back to view. Nowadays research concentrates on FWI and by now, the potential of FWI showed in
synthetic studies (e.g. Brossier and Virieux (2011) and a few applications to field data (e.g. Brenders and
Pratt (2007) and Sirgue et al. (2010)). It was shown, that detailed images can be achieved with resolution
down to half a wavelength. Additionally, multiparameter inversion is possible, including seismic velocities
and density as well as first approaches to invert for Q-factors and anelasticity (Virieux and Operto, 2009).
Today, most applications are still limited to the acoustic approximation. This can be sufficient in marine
seismics for streamer data where P- to S-wave conversion can be neglected, however, in land seismics or
ocean bottom seismics elastic effects have to be taken into account to fully recover the wavefield. A further
advantage of the elastic approach is of course its potential to invert for the S-wave velocity.
Another confinement generally used is the restriction to the 2D inversion. 3D FWIs are computation-
ally much more expensive and are thus limited to small problem sizes (Brossier and Virieux, 2011). In
exchange, detailed images of 3D structures can be achieved. Furthermore, in highly heterogenous 3D
medium, the 2D approximation is not valid anymore. With increasing comutational power, 3D FWI will
become more and more important.
In this report, we will present a 3D elastic inversion code and present a first application to synthetic data.
First, we will shortly review the underlying theory of FWI. Second, the implementation of the 3D FWI
code will be explained. Last, the inversion of random medium in transmission geometry will be shown as
an example.
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THEORY OF FWI

The method we use to solve the inverse problem is the adjoint conjugate gradient method. Here we will
only provide an overview about its theory and refer to Tarantola (1988), Mora (1987) and Köhn (2011) for
detailed discussions.

Wave propagation

We use the elastic wave equation in the velocity-stress formulation:

ρ
∂vi
∂t
− ∂σij
∂xj

= fi σij − cijklεkl = Tij ε̇ij =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
vi = u̇i (1)

Hereby ρ is the density and cijkl is the stiffness tensor. The wavefield is described by the particle velocity
v, the displacement u, the stress tensor σij and the strain tensor εij . The source terms are the body force f
and surface force Tij . Additionally, initial and boundary conditions are applied. This forward problem can
be solved very accurately with numerical methods like finite difference or finite element modeling.

The inverse problem and gradient calculation

Based on the L2 norm, the misfit is given by

M =
∑

receiver
source

∑
timesteps

|(umod − uobs)|2 (2)

where uobs and umod correspond to the real data and modeled data, respectively. Starting from some
starting model m0 = (δρ0, δc

0
ijkl) the real model m = (δρ, δcijkl) is approached by iteratively minimizing

the misfit function, which means adapting the modeled to the real data.
The gradient of M can be calculated with the adjoint method. We consider the linearized forward problem,
which calculates the effects of a perturbation in the model space δm on the data space:

δui = Lδm =
∫
dV

∂ui
∂m

δm (3)

Using the fact, that the linear operator L is self-adjoint the inverse problem can be written as

δm’ =
∑
source

∫
dt

∑
receiver

∂ui
∂m

δui (4)

For further calculations the Born approximation is used, where δui is approximated as first order perturba-
tion. In the Born approximation the perturbed wavefield can be written as

δui(xr, t) =
∫
V

dV (x)
∫
dτ [−G0

ij(xr, t− τ ; x)
∂2ui
∂t2

(x, τ)δρ− ∂G0
ij
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(xr, t− τ ; x)εlm(x, τ)δcjklm(x)]

(5)
G0
ij indicates the Green’s function of the unperturbed medium, xr the receiver position. Comparing equa-

tion (3) and equation (5) we find the expressions for ∂ui∂m which can be inserted into equation (4). This gives
us the following expression for the gradients:

δρ′ = −
∑

sources

∫
dτ
∂2ui
∂τ2

(x, τ)Ψj(x, τ) (6)

δc′jklm = −
∑
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∫
dτεlm(x, τ)

∂Ψj
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(x, τ) (7)

with
Ψj(x, τ) =

∑
receiver

∫
dtG0

ji(x, t− τ ; xr)δui(xr, t) (8)
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Thus, the gradients can be calculated as the correlation between the forward propagating wavefield and the
so called backpropagated wavefield Ψi. The latter propagates from the receiver into the medium, with the
residual δu in reverse time acting as source time function.
In the frequency domain, the correlation is replaced by a simple product between forward propagated
wavefield and complex conjugated backpropagated wavefield.

The conjugate gradient method

We use the conjugate gradient method, as described in Mora (1987). The model obtained in iteration k is
given by:

mk = mk−1 + αpk (9)

pk denotes the search direction. In gradient methods it shows in the direction of steepest descent of the
misfit function δmk, as calculated in equation 6-8. Additionally, to obtain the conjugate gradient direction
some part of pk−1 is added

pk = δmk + βkpk−1 (10)

resulting in a better convergence. The factor βk is defined as given in Mora (1987). As the gradient only
gives the direction of update, some steplength α has to be chosen to find the absolute model update.

IMPLEMEMTATION

Forward modeling with SOFI3D

The modeling of forward and backpropagated wavefield is based on the elastic version of the SOFI3D code,
which was developed by Bohlen (2002). It is a finite difference code of 2nd to 12th order in space and 2nd
order in time. Calculations take place on a staggerded grid system. Boundary reflections are efficiently
reduced by using convolutional perfectly matched layers as introduced by Kamatitsch and Martin (2007).
The code is parallelized using MPI.

Time-frequency FWI

For 3D problems time domain modeling is faster than frequency modeling. However, time domain in-
version requires the storage of the wavefields for the whole time series. By contrast, for inversions in
the frequency domain it was shown, that it is suffient to use only one or few frequencies for the gradient
calculations, known as single frequency inversion (e.g. Sirgue and Pratt (2004)). Thus, storage costs de-
crease dramatically, as only the forward wavefields for these frequencies have to be stored, This means,
that the most efficient method regarding runtime and storage needs is a combination of forward modeling
in the time domain and inversion in the frequency domain. This was first suggested by Sirgue et al. (2008).
Hereby the forward and backpropagated wavefields are calculated in the time domain and transformed into
the frequency domain via discrete Fourier transformations, that is

vi(x, w) =
tmax∑
t=0

exp(iωt)vi(x, t) (11)

This transformation can be implemented very efficiently. The gradients are then calculated in the frequency
domain.
There are two additional advantages of this strategy. First, it is possible to increase the frequency during the
inversion without further effort. To start from low freqeuncies to higher frequencies is extremly important
due to effects of nonlinearity. FWI is a local inversion method which bears the danger of ending in some
local minima of the misfit function instead of reaching the global minima. For higher frequencies the
number of local minima increases because data becomes increasingly nonlinear with respect to model
perurbations (Sirgue and Pratt, 2004). It is consequently important to start from low freqencies, especially
if the starting model is poor. Second, doing the forward modeling in the time domain enables an easy
implementation of time windowing.
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Step length calculation

After calculating the gradient, the optimal step length has to be found. This is done using a parabola
method as proposed by Köhn (2011) and Kurzmann et al. (2009). Additionally to the misfit calculated
in the current iteration step, which means for a steplength of zero, the misfit for two test step lengths is
calculated. A parabola can be fitted to these three misfit values. The location of its minimum is then used
as optimal steplength and the model is updated accordingly.

3D FWI OF RANDOM MEDIUM

Model and geometry

We performed a 3D elastic FWI of random medium. The random medium shows a Gaussian distribution
with a standard deviation of 4% in the seismic velocities vp and vs, with average velocities of vp = 3700 m

s
and vs = 2150 m

s . A fractal spatial distribution with correlation lengths of as = 35 m and ap = 25 m and
Hurst coefficients of 1.6 and 1.9 was used for the vs and vp model, respectively. vs and vp velocities are
thereby calculated independently, however, they show similar main features. The models show different
sized structures as can be seen in the model slices plotted on the left hand of figure 5, figure 6 and figure 7.
Thus they offer the possibility to investigate the resolution of different sized structures. The density model
is homogeneous with 2000 kg

m3 and was kept constant during inversion.
We use a cartesian coordinate system with x and y in horizontal and z showing in vertical direction (see
figure 1(a)). The model size is 300× 200× 300 gridpoints in x-, y- and z-direction. The grid spacing dh
is 3 m with as

dh = 11.7 and ap
dh = 8.3.

(a) coordinate system and model
size

(b) vertical model slice with indication of
source and receiver plane

Figure 1: coordinate system and model geometry, including source and receiver positions

A transmission geometry was used, which consists of 16 sources located in a horizontal plane of 810 m
depth and 512 receivers located in a horizontal plane of 90 m depth. Source and receiver planes are indi-
cated in figure 1(b). The receivers are situated at every tenth grid point in x- and y-direction to achieve a
good coverage. The random medium passes into homogeneous medium towards source and receiver plane
which are thus positioned within the homogeneous medium. We applied vertical point sources with a sin3-
function as source time function. The source wavelet and the corresponding spectra are plotted in figure 2.
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Figure 2: Source time function (left) with corresponding spectra (right) used for random medium model

Inversion procedure

We started with homogeneous starting models, using the average seismic velocities of the random medium.
The frequency selection can be seen in table 1 together with the corresponding wavelengths λs and λp for
vs and vp. In total 33 iteration steps were computed. Only one frequency per iteration was employed, with
frequencies increasing from 20 Hz to 47 Hz. This frequency range corresponds to about 4-10 wavelengths
per propagation distance for the P-wave and 7-17 for the S-wave velocity.

number of iterations frequency in Hz λp in m λs in m
8 20 185 108
6 23 161 93
5 27 137 80
5 32 116 67
5 38 97 57
4 47 79 46

Table 1: Frequency selection for inversion of random medium

Due to high amplitude artefacts around sources and receivers, it was necessary to precondition the
gradients. Thus, a Gaussian tapering was applied around source and receiver plane. Additionally, the
model boundaries were tapered, as boundary reflections cause artefacts in these areas.
The calculations were performed on the JUROPA cluster in Jülich. With the use of 800 CPUs the total
computation time for the 33 iterations amounted to about 17 hours. A total of 924 forward modelings was
computed.

Results and discussion

The evolution of the misfit function in figure 3 shows how well the modeled data was adapted to the real
data in each iteration step. The misfit is calculated in the time domain as given in equation 2, i.e. summed
up over all unfiltered seismograms.
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Figure 3: misfit versus iteration; misfit is summed up over all unfiltered seismograms

The misfit decreases very rapidly during the first 10 iterations, in which the gradient for the lowest
frequencies was calculated. Here, at small frequencies most of the misfit reduction is done. In the later part
of the inversion, there is only a slight decrease of the misfit. Additionally, in this part the misfit curve is
not always monotonically decreasing, but shows some jumps to higher values for iterations higher than 10.
Here, the steplength calculation apparently failed, which is probably due to the increasing nonlinearity of
the misfit function at higher frequencies. Hence, the adaption of the data becomes more difficult for higher
frequencies. The inversion result shown in the following is the result after 31 iterations.

In figure 4 two representative selections of seismograms for one shot are shown, with 8 traces of the
x-component in figure 4(a) and 11 traces of the vertical component in figure 4(b). The seismograms are
trace normalised and filtered with a lowpass filter of 47 Hz, because this is the maximum frequency used
during inversion. For comparison we show the waveforms of the real model (red), the starting model (blue)
and the inverted model (black).

sdunkl 23-Nov-2011 18:06 [1](a) x-component for small selection of shots
sdunkl 23-Nov-2011 18:16 [1](b) vertical component for small selection of shots

Figure 4: Trace normalized seismograms of true, starting and inverted model filtered after application of a
47 Hz low pass filter

The inverted waveforms shown here fit quite nicely to the observed data. There are some differences
to be seen, like for example in the S-wave of figure 4(a) or in some low amplitude oszillations. Of course,
these traces can only exemplary show the adaption. In the overall 551 traces of each shot, worse and better
quality of adaption can be found.

The “final” models as gained after 31 iterations can be seen in figure 5, figure 6 and figure 7. The 3D
models are exemplified here by three orthogonal 2D slices. The left pictures display the true model. the
right pictures the corresponding inverted model. For each slice the vp model is plotted below the vs model.
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Figure 5: True and inverted (after 31 itearations) model for vs and vp at z = 450 m
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(a) true vs at Y=360 m
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(d) inverted vs at Y=360 m

Figure 6: True and inverted (after 31 itearations) model for vs and vp at y = 360 m
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(d) inverted vp at X=390 m

Figure 7: True and inverted (after 31 itearations) model for vs and vp at x = 390 m

The main features are resolved quite well for vp and vs in all slices. However it can be seen, that the
inner parts are resolved best, whereas quality is less towards the boundaries, which is reasonable due to
the lower wavepath coverage there. Comparing the vs and vp model, it is visible, that vs models are more
detailed and better resolved than the inverted vp models. This is mainly due to the different wavelengths
used in the inversion. The highest frequency of 47 Hz corresponds to main wavelengths of about 79 m and
46 m for vp and vs, respectively. With a resolution of about half a wavelength, the model is much smoother
for vp. To receive more detail in vp it would be necessary to invert for higher frequencies. As these plots
show, that even though the decrease of misfit is highest in the lower frequency range, higher frequencies
are still necessary to resolve the details and small sized features of the models.

CONCLUSIONS AND OUTLOOK

The inversion of random medium in transmission geometry showed the potential of the elastic 3D FWI
code to resolve different sized features both in vp and vs in all spatial directions. The quality is especially
good in the inner part where wave coverage is high. To invert for different sized structures a higher range of
frequencies is necessary. Low frequencies build up a smooth model, which is very important to reduce the
nonlinearity of the inverse problem. Higher frequencies offer clearer images with more detailed structures.
However, upturns in our misfit curve show that these higher frequencies also complicate the inversion. Fre-
quencies needed for a detailed vp model are higher and we consequently did not reach the same resolution
as in the inverted vs model.
The inversion results showed, that the inversion succeeds with only one frequency per iteration. However,
we plan to repeat the inversion using a group of frequencies, because an improved redundancy can lead to
better robustness of FWI and thus more stable results. This might help us to include higher frequencies and
to improve the resolution of this example.
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