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ABSTRACT

Imaging of diffractions is inherently a 3-D problem. In real geological environments one can not
expect diffractors to be located below 2-D profiles. The 3-D effects of diffractors located transverse
to the profile line lead to a smeared and less reliable diffraction images. We present a method for 3-D
imaging of diffracted events both in the time and depth domain. Our method comprises two steps.
At the first step we isolate diffracted events using the kinematic wavefield attributes extracted by
the Common-Reflection-Surface method. At the second step we perform migration velocity analysis
by evaluating the semblance norm along diffraction traveltimes both in the depth and time domain.
Then, we perform Kirchhoff type of poststack migration with estimated velocities to obtain the final
diffraction image. The application of the method to synthetic data shows that the proposed method
successfully separates diffractions from reflections. The diffraction-only sections allow to determine
time and depth migration velocities in the poststack domain which favourably focus diffraction in time
and depth.

INTRODUCTION

The importance of diffractions in the seismic processing and imaging is more and more recognised. Diffrac-
tions are carrier of detailed information about the subsurface in regions of high importance for the reser-
voir characterisation and exploitation. They provide a naturally and physically justified way to the high-
resolution image beyond the classical Rayleigh limit (Khaidukov et al., 2004; Moser and Howard, 2008).
Moreover, the diffracted wavefield is determined solely by properties of the medium in a small neighbour-
hood of the scatterer. Therefore, diffractions can be used to extract detailed velocity information in the
nearest vicinity of the potential scatterer providing an illumination usually superior to reflections (Reshef
and Landa, 2009).

Imaging of diffractions is still a challenge in the seismic processing because they are inherently of 3-D
nature. We need to consider three dimensions if we are interested to correctly image diffractions. Several
methods have been developed for this purpose. They are based on the different kinematic behaviour of
diffractions in comparison to reflections. Fomel et al. (2006) proposed to isolate diffracted events in the
time domain where the smoothness and continuity of local event slopes can be used to separate diffracted
and reflected events. Klokov et al. (2011) proposed to isolate diffracted events in the depth domain based
on the particular behaviour of the diffractions in the migrated dip-angle domain. For correct velocity mod-
els, the diffractions in dip-angle common-image-gathers are flat while reflections exhibit typical ’smiles’.
Separation in the depth domain is most suitable for complex media. However, a very well determined ve-
locity model is required. For models with moderate velocity variations, the separation in the time domain
is more robust with respect to the quality of the velocity model.

In this paper, we propose an approach for 3-D diffraction imaging in time and depth domain, respec-
tively. Our method is partly based on the Common-Reflection-Surface (CRS) technique. We use the CRS
technique to extract the kinematic wavefield attributes. We employ these attributes to identify and isolate
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diffracted events in the time domain. The events separation is based on a simultaneous application of the
CRS-based diffraction operator and a reflection attenuation algorithm. The attenuation algorithm is an
extension of the 2-D diffraction filter (Dell and Gajewski, 2011).

In the next section, we present our concept to isolate seismic events based on their kinematic behaviour
in the time domain.

ISOLATION OF DIFFRACTED EVENTS

We use the CRS approach to identify the diffracted events (see about CRS method, e.g., in Jäger et al.,
2001). According to the CRS theory, a diffractor is associated with a reflector segment with an infinite cur-
vature and an indefinite orientation (Mann, 2002). Also for diffractions any direction describes a possible
zero-offset ray along which the Normal-Incident-Point (NIP) wave (Hubral, 1983) and normal wave can
be considered. This implies component-wise equality of matrices containing both wavefront curvatures,
KN = KNIP . Here KNIP is the matrix of curvatures of the NIP-wave and KN is the matrix of curvatures
of the normal wave. Both matrices represent kinematic wavefield attributes since they contain kinematic
information of the propagation of the normal ray (Höcht, 2002). The CRS operator for a diffracted event is
given as

t(m,h)2 =
(
t0 + 2 ∆mTpm

)2
+

2t0
v0

(
hTHKNIPHTh + ∆mTHKNIPHT∆m

)
, (1)

where h is half-offset vector, ∆m is the midpoint displacement vector, t0 corresponds to the vertical zero-
offset two-way traveltime, and v0 is the surface velocity. The vector pm is the horizontal component
of the slowness vector of the central ray and contains of an emergence angle and a dip angle. H is the
transformation matrix from ray centred to the general coordinate system.

The equality KN = KNIP can be used to identify diffracted events. Moreover, in the principle system
the matrix KNIP has two non-zero diagonal elements. These diagonal elements are the principal curvatures
of the wavefront and coincide for a diffracted event. Therefore, the 2-D diffraction filter proposed in Dell
and Gajewski (2011) can be extended to three dimensions without significant modifications. For the 3-D
case, we suggest to use following function as a threshold function:

TF = e
− |Kn00−Knip00|
|Kn00+Knip00| , (2)

where Kn00 is the upper-right diagonal element of the curvature matrix of the normal wave, KN , and
Knip00 is the upper-right diagonal element of the curvature matrix of the NIP-wave, KNIP , respectively.
This function is about one for Knip00 close to Kn00 and rather small if Knip00 and Kn00 differ.

To isolate the diffracted events, we apply the CRS-based diffraction operator given by equation (1) to
the prestack data if the threshold function, TF , is above a determined value and do not stack in the oppo-
site case. The application of the separation technique will exclude reflected events in the stacked section
because they have a lower value of TF . In the contrast, diffracted events will be coherently stacked be-
cause they have a higher value of TF . The final stacked section will then contain predominantly diffraction
energy.

In the next section, we describe how to build velocity models fast and effectively by exploiting diffrac-
tions in the poststack domain.

IMAGING DIFFRACTED EVENTS

The isolated diffracted events allow to identify the presence of small heterogeneities, truncations, faults.
However, to reliable interpret such subsurface features caused by diffractions, the letter ones should be
properly imaged. An inherent part of the imaging is therefore a migration velocity analysis which should
be tuned to diffractions. The velocity analysis presented in this paper is based on a coherence analysis for
diffraction traveltimes. We use the semblance norm as a measure of the coherence (Taner and Koehler,
1969).
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Time domain

In the time domain, the diffraction traveltimes are computed by the double-square-root (DSR) equation
which for h = 0 simplifies to

tD =

√
t20 +

m2

v2
migr

, (3)

where m is midpoint vector and vmigr is time-migration velocity. To estimate time-migration velocity, we
perform a velocity scan from low to high velocities evaluating the semblance value for each sample in the
stacked section. The output is a coherence map which is suitable for picking time migration velocities.

We assume for the time-migration velocity analysis presented here an isotropic medium. However, we
can straightforward expand the velocity analysis to anisotropic media by replacing the conventional DSR
equation with the DSR equation as formulated in Alkhalifah and Tsvankin (1995). In this case, one-term
velocity analysis will became a bispectral analysis whereby semblance values will be computed for each
sample as a function of the time-migration velocity vmigr and an effective anelliptical parameter ηeff .

Depth domain

To find traveltimes of a diffractor in the depth domain, we suggest to calculate them analytically instead
of using more involved ray-tracing. We will consider two cases: a subsurface with a constant velocity
and a subsurface with a constant gradient of velocities. In both cases there is an analytical solution for
traveltimes. For more general velocity models however one would have to use ray-tracing approach to
calculate diffraction traveltimes.

Medium with constant velocity

The velocity analysis here will provide an effective velocity for each depth position which can be used for
depth migration. In these media, the ray paths are straight line so that traveltimes can be directly computed
using the Pythagoras theorem as reads

tD =
1
v

√
x2 + y2 + z2 (4)

where v is the migration velocity to be determined. To find the velocity v we discretise the subsurface. For
each grid point we calculate the diffraction traveltimes using equation (4) for different values of velocities
and evaluate the corresponding semblance norm. The output is a coherence map as in the time domain.

Medium with constant velocity gradient

The velocity analysis in media with constant vertical velocity gradient will provide a smoothed velocity
model which can be used for depth migration of both reflected and diffracted events. To calculate diffracted
traveltimes, we use an analytical solution of the Kirchhoff integral for a vertical inhomogeneous medium
(Martins et al., 1997) which we adapt to the poststack domain. We consider the velocity distribution is
controlled by following law

v(z) = v0 + γz , (5)

where γ is a constant velocity gradient, and v0 is the surface velocity. Once the subsurface is discretized,
the diffracted traveltimes for a depth point can be obtained as

t(x, y, z) =
2
γ

ln
(

1 +
1 +
√

1 + 2B
B

)
, (6)

where
B =

2vv0

γ2(x2 + y2 + z2)
.

Similarly to the time-domain, we perform a scan from low to high gradient. This means, for every depth
point we compute diffraction traveltimes using equation (6) evaluating the semblance value for different
gradient values. The output is a gradient panel suitable for picking. The gradient, that corresponds to the
maximum semblance, is then used to calculate the velocity distribution according equation (5).
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SYNTHETIC EXAMPLE

In this section, we show an application of the presented method for diffraction imaging to synthetic data.
Figure 1 shows the model which consists of three homogeneous layers and a sphere placed at 2 km depth
in the third layer. The radius of the sphere is 100 meter. The velocity in the first layer is 1500 m/s. The
velocity in the second layer is 1700 m/s. The velocity in the third layer is 2000 m/s. The seismograms
were generated using the NORSAR 3D ray-tracing. The dominant frequency is 20 Hz. Also some band-
limited noise of the Gauss type is added. The CRS stacked section containing 13 crosslines is shown in
Figure 2. We determine the CRS attributes using offsets up to 200 m in both X and Y direction since the
CRS operator is a single-square root operator thus an approximation valid for short offsets. We determined
the value for the threshold function as 0.7. We chose the quite low value of the threshold function in
order to properly separate seismic events far away from the diffraction apex. This type of seismic events
suffers from a fact that a proper determination of the KN attribute is not possible near data boundaries. The
lower value of threshold function TF used for filtering causes that reflections pass the attenuation process.
The CRS stacked section after application of our method is presented in Figure 3 and confirms the above
conclusion. The reflections are well attenuated. The present residual reflections are, as predicted, close to
the data boundaries and due to aperture effects.

X

Z

Y

1500               2000               2500               3000              3500              4000

Figure 1: 3-D model. The model consists of two layers, a flat one and inclined one, and a sphere placed at
the 2 km depth. The radius of the sphere is 100 meter.

We use the diffraction-only data for migration velocity analysis. At first, time migration velocity anal-
ysis is applied to the diffraction section. Figure 4a shows the time-migration velocity panel for a CMP
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Figure 2: CRS stacked section of diffracted and reflected events. For parameter searches we used shot
offset apertures. We can see, that for the crossline directly above the diffractor, zero-offset CRS stack
provides a very good approximation of diffraction response.

which is directly above the diffraction apex. The high value of semblance is almost one and indicates
that the velocity is determined correctly. Note that a semblance based analysis is usually influenced by
the poor signal-to-noise ratio. However, the S/N ratio is improved in the poststack domain therefore more
reliable velocities can be extracted. Figure 4b shows a semblance plot as a function of lateral position,
X coordinate, for the correct time-migration velocity. We observe a semblance maximum at the correct
special position of the diffraction apex. Also the lateral focusing is very good, i.e., the proposed velocity
analysis provides both the correct time-migration velocity and the spacial position of the diffraction apex.
With the estimated velocity model we perform poststack Kirchhoff time migration. Figure 5 shows the
time-migrated image of the diffraction-only data. The diffraction is well focused validating the correctness
of the estimated time-migration velocities.

Also depth migration velocity analysis is applied to the diffraction-only data. First, we apply scans
for effective medium-velocities. Figure 6 shows the effective-velocity panel for a CMP which is located
directly above the diffractor location. Figure 8 shows the depth-migrated image of the isolated diffracted
events. The diffraction is well focused. However, we observe that the residual reflection is still present
similarly to the time-migrated section. Although the residual reflection is focused in the CRS stacked
section it is very smeared in the migrated sections. The reason for this may be a contribution of boundary
effects because of the limited operator size and the end of the reflector boundary (Hertweck et al., 2005). In
this case, the migration stack does not sum up all the data necessary for complete destructive interference
and, as a consequence, migration artifacts appear resulting in a smeared reflection image. Figure 7 shows
the gradient panel for a CMP which is directly above the diffractor position. Also here the semblance value
is quite high. The smoothed depth velocity model can be calculated using equation (5). These velocities
can be used as an initial velocity model for depth migration of all seismic events.
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Figure 3: Stacked section after the application of the separation algorithm. The reflected events are well
attenuated. However, some parts of residual reflections are still present. We explain their presence due to
complexity of the proper attribute estimation near the section border.

DISCUSSION AND CONCLUSIONS

We have presented a method to image diffractions in three dimensions. The novelty of the method is
the separation of diffracted events in three dimensions using kinematic wavefield attributes and migration
velocity analysis using diffraction traveltimes. The first step in our approach is the attenuation of reflected
events by a simultaneous application of the CRS-based diffraction operator and a diffraction filter.

The isolated diffracted events we used for a poststack migration velocity analysis. The velocity analysis
consists of a velocity scan and the evaluation of the corresponding semblance norm for each sample in the
time domain or grid point in the depth domain, respectively. In the poststack domain, the data are reduced
and a good S/N ratio is present. The computational efficiency of analytical traveltime calculations coupled
with the speed and low cost of current high performance computing techniques allow a very fast and robust
initial depth-migration velocity analysis.

Application to synthetic data demonstrates that the presented method leads to focused images of diffracted
events.
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Figure 4: Results of time-migration velocity analysis. (a) Time-migration velocity panel. The velocity
panel is chosen for a CMP which is directly above the diffraction apex. The high value of semblance
indicates the velocity is correctly determined. (b) Semblance plot as a function of lateral position, X
coordinate, for the correct time-migration velocity. The semblance maximum is at the correct special
position of the diffraction apex.
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Figure 5: Time-migrated section of diffraction-only data. We used the estimated time-migration velocities
to perform 3-D poststack Kirchhoff time-migration. The diffraction is well focused to its apex that confirms
our time-migration velocity analysis. Artefacts in image caused by residual reflected events are due to
aperture effects.
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Figure 6: Depth-migration velocity panel for a CMP which is directly above the diffractor location. The
estimated depth velocity is an effective medium velocity. The high value of semblance indicates that the
calculated traveltimes match seismograms well.
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Figure 7: Gradient panel. The estimated gradients can be used to calculate a smooth depth velocity model.
These velocities can be used as an initial velocity model for poststack Kirchhoff depth migration of both
reflected and diffracted events.
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Figure 8: Depth-migrated section of diffraction-only data. We used the estimated effective velocities for 3-
D poststack Kirchhoff depth-migration with a constant velocity. The diffraction is well and correct focused
to its spatial position. Artefacts in image caused by residual reflected events are due to aperture effects.


