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ABSTRACT

In this paper we discuss high-resolution coherence functions for the estimation of stacking shape
parameters in seismic signal processing. We focus on the MUltiple SIgnal Classification (MUSIC)
algorithm, which uses the eigendecomposition of the seismic data to measure the coherence. MUSIC
can outperform the traditional semblance in cases of close or interfering reflections. Our main contri-
bution is to propose several simplifications to the implementation of MUSIC. Namely, we propose an
iterative way to obtain the MUSIC coherence function, called power method MUSIC (PM-MUSIC).
We also propose a new way to obtain the MUSIC pseudospectrum, based on the eigendecomposition
of the spatial covariance matrix of the seismic data. This is in contrast to the algorithms in the lit-
erature, which are based on the temporal covariance. We compared temporal and spatial covariance
matrices, implemented with PM-MUSIC, in a synthetic example with two reflections corrupted by
additive white gaussian noise. The results show that our implementation, although computationally
simpler, provides results comparable to the ones in the literature.

INTRODUCTION

In seismic processing, estimation of the parameters that describe the shape of the wavefronts plays an
important role. For stacking, the classical estimation problem is to determine the moveout parameters,
namely the stacking velocity and zero-offset traveltime. The most used approach calculates a shape pa-
rameters spectra, by computing a coherence measure for different values of these parameters. Then, the
parameter that leads to the highest coherence is picked (Taner and Koehler, 1969). The standard coher-
ence function is a second-order energy measure, called semblance (Neidell and Taner, 1971). Semblance
is calculated for a given window of Nt samples taken from Nr receivers. Each window is centered on the
trajectory defined by the moveout parameters being tested, and consists of a few samples before and after
the window center. (The samples may need to be interpolated to form the window.) Let x(l, i) be the l-th
sample of the window at i-th receiver, Then, semblance is defined as

Sc =

l=k+Nt/2∑
l=k−Nt/2

∣∣∣∣∣
Nr∑
i=1

x(l, i)

∣∣∣∣∣
2

Nr

l=k+Nt/2∑
l=k−Nt/2

Nr∑
i=1

|x(l, i)|2
. (1)

As discussed in Biondi and Kostov (1989) and Kirlin (1992), eigenstructure methods can lead to ve-
locity spectra with higher resolution, when compared to semblance. One of most commonly used high
resolution methods is MUltiple SIgnal Classification (MUSIC), introduced by Schmidt (1986). MUSIC is
based in some properties of the eigendecomposition of the seismic data. Recently, MUSIC algorithm has
been used in Asgedon et al. (2011) for the estimation of the common-reflection surface (CRS) attributes.
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The implementation of MUSIC-based velocity spectra is the main focus of this work. In an attempt to
reduce its computational complexity, first, we show that the MUSIC coherence measure can be computed
based on a single eigenvector, the one associated to the largest eigenvalue1. This results in significant
computational savings. Further savings can be obtained by noting that the full eigenvalue decomposition
is not required, and the largest eigenvector can be computed efficiently with the power method (Golub and
Van Loan, 1996).

Finally, we propose a coherence function based on the eigendecomposition of a matrix whose dimension
is lower than the one currently used in the literature. Again, this results in computational savings. However,
as a byproduct, the use of this lower-dimensional matrix seems to improve the performance of the method
when dealing with correlated wavefronts, which is always the case in seismic data (Asgedon et al., 2011).

WINDOWING

As discussed in the introduction, coherence is computed on a window of data centered at some time τk(i),
where k corresponds to a given value of the parameters being tested and i corresponds to the receiver2. The
value of τk depends on some parameters to be estimated. In this paper, we assume a hyperbolic moveout,
so that τk depends on the normal moveout (NMO) velocity vk and the two-way zero-offset traveltime τ0.
For each τ0, the windowed data can be written as a matrix D(θk), with dimension Nr × Nt, where Nt is
the number of samples from the window, Nr is the number of receivers (traces) considered and θk = 1/vk.
In Figure 1, we illustrate how the window operation is applied in seismic data. Note, however, that the
rows of D(θk) appear as vertical lines on the right of Figure 1.

The semblance velocity spectrum is computed from this windowed data. Each coherence function
is calculated for each pair of parameters (vk, τ0), and the velocity spectrum is the coherence measure
computed at several windows, for several pairs of parameters. The locations of peaks from the coherence
function correspond to pairs of parameters from actual reflections arriving at the receivers.

The hyperbolic windowing can also be used for eigenstructure-based coherence calculation. In Ap-
pendix A, we explain the theory behind eigenstructure and MUSIC-based velocity spectra computation.
As discussed in this appendix, for each τ0, different values of θk result in different windows, and thus in
different data matrices. Thus, to each θk corresponds a different temporal covariance matrix, and the ones
resulting in large values of MUSIC-based coherence function correspond to velocities of reflection events.

Here, we present an interesting interpretation of MUSIC. Indeed, when a window with correct values
of τ0 and vk is applied, the windowed data matrix will be represented as in Figure 1. In other words, the
data contains several repetitions of the reflection, all arriving at the same instant at all the receivers, plus
noise terms. In this case, the data can be written as

D(θk) = 1sH + N. (2)

where s is a Nr × 1 vector that contains the samples from the reflected wavelet, 1 is a Nr × 1 vector of
ones, N is an Nr ×Nt noise matrix, which may also contain interfering reflections, and the superscript H
refers to the transpose conjugate operation. However, if N is modeled as an additive white Gaussian noise
matrix, the estimated temporal sample covariance3 matrix is given by

R̂(θk) =
1
Nt

D(θk)DH(θk) (3)

≈ ‖s‖2
Nt

11H + σ2I, (4)

where σ2 is the noise variance and I is the identity matrix of appropriate dimension. Note that we disregard
the cross terms resulting from D(θk)DH(θk), because we assume that the noise is uncorrelated with the
signal.

1In order to simplify our explanations, we will commit an abuse of notation and refer to the eigenvector associate to the largest
eigenvalue as the largest eigenvector.

2For notational convenience, we will drop the explicit reference on the receiver, and use only τk to refer to the center of the
window.

3In this work, we will refer to the estimated sample covariance matrix as covariance matrix.
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Figure 1: Non windowed data, with superimposed window (left); and windowed data (right).

Clearly, the largest eigenvector of R̂(θk) is 1. Thus, one may interpret MUSIC is an attempt to answer
the question: “Is 1 the largest eigenvector or R̂(θk)?” If this answer is positive, then we may assume that
R̂(θk) was formed from a window that contains a reflection. The MUSIC pseudospectrum is a coherency
measure that presents large values when 1 is close to the largest eigenvector of R̂(θk):

PMU (θk) =
1H1

1HPn(θk)1
. (5)

As discussed in Appendix A, Pn(θk) in (5) is the projection matrix on the so-called noise subspace, con-
sisting of the subspace spanned by the eigenvectors associated to the smallest eigenvalues of R(θk).

Some advantages of the windowing operation have been discussed in Kirlin (1992). Perhaps the main
advantage, from the point of view of this work, is that, when searching for events with zero delay, the
methods apply to both broadband and narrowband signals.

SIGNAL AND NOISE SUBSPACES

To begin the simplification of MUSIC, let R(θk) = V(θk)Λ(θk)VH(θk) be the eigendecomposition of
the covariance matrix. Now, V(θk) is unitary, so that

1HV(θk)VH(θk)1 = 1H1 = Nr. (6)

On the other hand, as described in Appendix A, the eigenvectors of the covariance matrix may be separated
into those associated to the signal and noise subspaces: V(θk) = [Vs(θk) Vn(θk)]. Thus

1HV(θk)VH(θk)1 = 1HVs(θk)VH
s (θk)1 + 1HVn(θk)VH

n (θk)1. (7)

Now, recall that Pn(θk) = Vn(θk)VH
n (θk) is the projection matrix onto the noise subspace. If we let

Ps(θk) = Vs(θk)VH
s (θk) be the projection matrix onto the signal subspace, then (7) yields

1HPn(θk)1 + 1HPs(θk)1 = Nr. (8)

We can, therefore, modify the MUSIC equation (5), in order to use the signal subspace projection instead
of the noise one:

PMU (θk) =
Nr

Nr − 1HPs(θk)1
. (9)
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The benefit of using the signal subspace projection is that its dimension is usually smaller than that of
the noise subspace. In consequence, computing 1HPs(θk)1 is also simpler than computing 1HPn(θk)1.
In fact, in the sequel we discuss this issue in more detail, and show how projecting onto the signal sub-
space may allow us to compute only the largest eigenvector of the covariance matrix, which can be done
efficiently with the power method.

Signal Subspace Dimension

If the windowed data contains more than one wavefront, the signal subspace dimension will be greater
than one. As discussed in Kirlin (1992), if the number of wavefronts in the windowed data is greater than
one, the vector 1 will never be an eigenvector of R̂(θk). On the other hand, assume that the wavefronts
have similar but different parameters. Then, only one wavefront will be flattened by the window based
on its parameters, while the other reflections will still appear in the windows, but as slightly incoherent
interference. In consequence, we may assume that the dimension of the signal subspace is one, so that
Vs(θk) consists only of the largest eigenvalue of the covariance matrix.

Note that, if the wavefronts are similar, as might happen when there is a multiple, even eigenstructure
methods may not resolve the two different events. Eigenstructure-based velocity spectra methods have
higher resolution than methods like semblance, which are based on energy measures, but we must know,
or estimate, as in Biondi and Kostov (1989), the number of wavefronts. If we overestimate or underesti-
mate the signal subspace dimension, MUSIC coherence method will fail to locate the spots from the right
parameters. However, the assumption of a single event in each window seems reasonable, as indicated by
simulations.

POWER METHOD

One of the most known methods to calculate the eigenvalues and eigenvectors of a matrix is the power
method (Golub and Van Loan, 1996). It starts with an initial vector that is iteratively updated so that, after
convergence, it becomes proportional to the largest eigenvectors of the matrix.

As mentioned before, if we use a coherence measure based on the signal subspace, as in equation
(9), we only need to estimate the largest eigenvector v of the covariance matrix. As we suspect that this
eigenvector should be v = 1, we initialize the power method with the vector v(0) = 1. For the n-th
iteration, the estimated eigenvector will be:

v(n) =
R̂(θk)v(n−1)

||R̂(θk)v(n−1)|| . (10)

The stop criterion for the power method is based on the difference between consecutive estimates of the
eigenvector, v(n). We say that v(n) is the desired eigenvector if

||v(n) − v(n−1)|| < ξ, (11)

where ξ is a threshold value that controls the desired precision of the algorithm. In general, the number of
iterations n is smaller when the window, for the parameters τ0 and vk, fits well the wavefront reflection.
This is because, in this case, the largest eigenvector will be close to 1, the initial value of the power method.
For the right parameters, usually only one iteration is enough for convergence.

The MUSIC pseudospectrum, combined with the power method (PM-MUSIC) can be written as:

PMU (θk) =
Nr

Nr − 1H v̂v̂H1
=

Nr
Nr − |1H v̂|2 , (12)

where v̂ is the eigenvector computed by the power method.
PM-MUSIC has lower complexity than the conventional MUSIC from equation (5), as the latter re-

quires a full eigendecomposition. Its complexity, however, is larger than that of semblance. This is illus-
trated in Table 1, where we show the number of calculations needed for the semblance and PM-MUSIC
algorithms. In this table, n represents the number of iterations of the power method. In general we have
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Nr > Nt and the calculations in semblance and PM-MUSIC algorithms are dominated by Nr. Disregard-
ing the Nt portion in the algorithms and considering only the number of multiplications from Table 1, we
can see that, asymptotically, PM-MUSIC has order O(N2

r ), while semblance has order O(Nr). Note that
MUSIC has a complexity of orderO(N3

r ), as it needs to compute allNr eigenvalues and eigenvectors from
R̂(θk).

Table 1: Number of Operations for Semblance and PM-MUSIC Algorithms
Algorithm Additions Multiplications
Semblance 2[(Nr − 1) +Nt] NrNt

PM-MUSIC (temporal) n[Nr(Nr − 1) + 2(Nr − 1) +Nr] + (Nr − 1) n(N2
r + 2Nr) +Nr

PM-MUSIC (spatial) Nt(Nr−1)+n[Nt(Nt−1)+2(Nt−1)+Nt]+2(Nt−1) NrNt + n(N2
t + 2Nt) + 2N2

t

The extra complexity in PM-MUSIC is the price to pay for its higher resolution. There is also the
possibility of reducing Nr by the use of partial stacking, as discussed in Key and Smithson (1990).

THE SPATIAL COVARIANCE MATRIX

The spatial covariance matrix of the data in a window with parameter θk can be computed as

r(θk) = E{DH(θk)D(θk)}, (13)

where the dimension of r(θk) is Nt ×Nt. Recall that Nt is the number of samples in the window, which
is usually smaller than the number of receivers, Nr. Thus, the dimension of r(θk) is usually smaller than
R(θk). As before, the spatial covariance matrix can be estimated as

r̂(θk) =
1
Nr

DH(θk)D(θk). (14)

Now, the temporal correlation matrix is estimated as R̂(θk) = 1
Nr

D(θk)DH(θk). Thus, it can be easily
shown that both r̂(θk) and R̂(θk) have the same non-zero eigenvalues, and the corresponding eigenvectors
of r̂(θk), u, are related to the corresponding eigenvectors of R̂(θk), v, as u = DH(θk)v. Thus, instead of
testing whether the all-ones vector, 1, is the largest eigenvector of R̂(θk), as is done in the usual MUSIC,
we may test whether DH(θk)1, is the largest eigenvector of r̂(θk). The advantage is that, in the second
case, we have to compute the eigenvectors of a smaller matrix.

As an alternative interpretation, consider, as before, the case of a window with correct parameters,
resulting in a data matrix that can be approximated as

D(θk) = 1sH + N. (15)

where s is a vector that contains the samples from the reflected wavelet. In this case, the estimated corre-
lation matrix is given by

r̂(θk) =
1
Nt

DH(θk)D(θk) (16)

≈ ssH + σ2I. (17)

Clearly, the largest eigenvector of r̂ is s. Unfortunately, the exact wavelet corresponding to a reflection
is not know. However, if the window contains a reflection, 1 is the largest eigenvector of R̂(θk), so that
DH(θk)1 is the largest eigenvector of r̂(θk). Thus, we may interpret DH(θk)1 as an estimate of the
wavelet s.

Now, for each window formed from the parameters τ0 and vk, we will test, using an eigestructure-
based coherence measure, if ŝ = DH(θk)1 is an eigenvector from matrix r̂(θk). The resulting MUSIC
pseudospectrum, obtained by r̂(θk), can be written as
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Figure 2: CMP section used in simulations.

PMU (θk) =
ŝH ŝ

ŝH ŝ− ŝHPr̂s(θk)ŝ
. (18)

where Pr̂s(θk) is the projection matrix onto the signal subspace of r̂(θk).
As before, we may assume that the signal subspace of r̂(θk) is one-dimensional, so that only the largest

eigenvalue of r̂(θk) needs to be computed. This can be done efficiently with the power method. The
resulting complexity is also illustrated in Table 1. By doing the same assumptions we done for the other
algorithms, we can see that PM-MUSIC, obtained from the spatial covariance matrix, has order O(Nr),
which is comparable to semblance.

NUMERICAL EXAMPLES

In this section we compare the use of temporal and spatial covariance matrices to obtain high resolution
velocity spectra. We will use the semblance coherence function as a benchmark. We also show high reso-
lution velocity spectra obtained by the power method, for both temporal and spatial covariance matrices.

In the simulations, we used a simple synthetic model with two reflections, generated by equation (20) in
Appendix A. The first one has a zero offset traveltime of 1 s and a velocity of 4000 m/s; the second one has
a zero offset traveltime of 1.06 s and a velocity of 4500 m/s. Both reflections are modeled by a zero-phase
Ricker wavelet, with a dominant frequency of 25 Hz and are fully correlated. The CMP section contains
64 receivers. The offset of the first one is 80 m and the distance between them is also 80m. The sample
period is 2 ms and white Gaussian noise was added to the data, in order to get a signal to noise ratio (SNR)
of 15 dB. The CMP section can be viewed in Figure 2.

Covariance Matrices Comparison

Figures 3, 4 and 5 show velocity spectra calculated with semblance from equation (1) and MUSIC from
equations (5) and (18), using temporal and spatial covariance matrices, respectively. The figures show both
the full spectra and a zoom into the part of the spectra close to the actual values of the parameters. The
window size used was 19 samples and velocities were tested from 3000 m/s to 6000 m/s, in increments
of 10 m/s. We have assumed that the signal subspace has rank one, i.e., it is formed by a single signal.
For the temporal covariance matrix, we performed spatial smoothing, described in the appendix, using 47
subarrays, each consisting of 18 receivers. We have also used forward-backward averaging, also described
in the appendix, in the spatially smoothed temporal covariance matrices to increase its rank.

The white squares in the velocity spectra indicate the true location of the parameters, and MUSIC
velocity spectra in figures 4 and 5, are normalized with respect to the largest coherence value of the cor-
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Figure 3: Semblance velocity spectra.
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(a) Temporal covariance MUSIC velocity spectra.
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(b) Temporal covariance MUSIC velocity spectra: closer view.

Figure 4: Temporal covariance MUSIC velocity spectra.

responding spectrum. The results in the figures clearly show that both MUSIC algorithms outperform
semblance in terms of resolution, resulting in more precise velocity estimates. They also indicate that
MUSIC with spatial correlation may present even better resolution than temporal correlation, despite their
lower complexity.

Power Method

Figures 6 and 7 show, for the same CMP section of the previous example, velocity spectra calculated with
PM-MUSIC for temporal and spatial covariance matrices, normalized with respect to the largest coherence
value of the corresponding spectrum. Clearly, the use of the power method has no impact on the results,
when compared to figures 4 and 5.

In Figure 8, we show the histogram of the number of iterations needed for PM-MUSIC convergence,
for both temporal and spatial covariance matrices example. We used ξ = 0.3 in the simulations. As seen
in figure 8(a), for the temporal covariance matrix, in 84.71% of the cases the power method converged in
a single iteration. For the spatial covariance matrix, figure 8(b) shows that PM-MUSIC converged in one
iteration in 76.53% of the cases. Both figures illustrate that the power method converges quickly, hardly
ever requiring more than three iterations.

In Figure 9, we show images of the number of iterations performed by PM-MUSIC, for each point of
the velocity spectra coherency functions. It is possible to see that when we are close to the true shape
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(a) Spatial covariance MUSIC velocity spectra.
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(b) Spatial covariance MUSIC velocity spectra: closer view.

Figure 5: Spatial covariance MUSIC velocity spectra.

Velocity (Km/s)

t0
 (

s
)

Velocity Spectra

 

 

3 3.5 4 4.5 5 5.5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Temporal covariance PM-MUSIC velocity spectra.
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(b) Temporal covariance PM-MUSIC velocity spectra: closer
view.

Figure 6: Temporal covariance PM-MUSIC velocity spectra.
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(a) Spatial covariance PM-MUSIC velocity spectra.
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(b) Spatial covariance PM-MUSIC velocity spectra: closer view.

Figure 7: Spatial covariance PM-MUSIC velocity spectra.
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Figure 8: Histogram of number of iterations for convergence of PM-MUSIC applied on temporal and
spatial covariance matrices.

Velocity (Km/s)

t0
 (

s
)

 

 

3 3.5 4 4.5 5 5.5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

(a) PM-MUSIC for temporal covariance matrix.
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(b) PM-MUSIC for spatial covariance matrix.

Figure 9: Images with the number of iterations required for convergence of PM-MUSIC.

parameters, the number of iterations is small.

CONCLUSIONS

In this paper we discussed the stacking parameters estimation in seismic signal processing. The focus of
our discussion was on the high-resolution method known as MUSIC, which has a better resolution when
compared to the classical semblance. In the literature, MUSIC is traditionally based on the eigendecompo-
sition of the temporal covariance matrix, calculated from seismic data. We presented an iterative method
called PM-MUSIC, to perform the eigendecomposition and compute the coherence. When compared to
MUSIC, PM-MUSIC algorithm presents reduced complexity, due to the fact that it is based on the the
iterative estimation of only the eigenvector associated with the largest eigenvalue from the temporal co-
variance matrix. This is in contrast to MUSIC, which requires the estimation of all the other remaining
eigenvectors. We also presented a new way to perform eigenstructure-based velocity spectra calculation,
based on eigendecomposition of the spatial covariance matrix.

We have compared, with simulations of a simple synthetic model, high-resolution methods and found
that eigenstructure algorithms, based on the spatial covariance matrix, are better than the ones based on the
temporal covariance matrix, when dealing with correlated signals. We observed on simulations that, unlike
MUSIC with temporal matrices, we do not need to use spatial smoothing of forward-backward averaging
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to make the signals uncorrelated, when using the spatial covariance matrix.
We also showed, for this example, the impact of the use of the power method to compute the eigenvec-

tors, for both temporal and spatial covariance matrices. The results confirm that the number of iterations
needed for its convergence is small and the accuracy of the velocity spectra is not affected by its use.
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APPENDIX A

EIGENSTRUCTURE-BASED VELOCITY SPECTRA

The seismic data, recorded at the array of Nr receivers can be modeled as a combination of Ns reflections
from the wavefront source. At the time instant t and at the i-th receiver, the recorded data can be described
as

di(t) =
Ns∑
k=1

sk(t− τk(xi, vk)) + ni(t) (19)
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where sk(t) is the k-th observed reflection from the source s(t), ni(t) is additive noise, uncorrelated with
the source reflections, and τk(xi, vk) is the time difference, referred to as delays, between the wavefronts
arrivals at i-th receiver and the two-way zero-offset traveltime τ0. Although not explicit from the notation,
each reflection is related to different values of τ0.

When the data is reordered in common-midpoint (CMP) gathers, the delays are approximated by the
hyperbolic moveout equation of Dix (1955)

τk(xi, vk) =

√
τ2
0 +

x2
i

v2
k

− τ0 (20)

where xi is the offset between the source and the i-th receiver, and vk is the stacking velocity of the k-th
reflection.

If we assume that the source reflections sk(t) are narrow-band, with center frequency ω, the delays can
be approximated as complex exponentials (Asgedon et al., 2011), so the data can be expressed as

di(t) =
Ns∑
k=1

sk(t)ejωτk(xi,vk) + ni(t) (21)

In order to simplify data manipulations, equation (21) can be written in matrix notation, considering
NT data time samples

D = A(Θ)S + N (22)

where D and N are Nr × NT data and noise matrices, S is an Ns × NT source matrix. Note here that
data matrix D consists in a large rectangular window formed by NT samples, usually much greater than
the hyperbolic window formed by Nt samples. A(Θ) is an Nr ×Ns matrix formed by the ak(θk) steering
vectors. These Nr × 1 vectors are formed by the wavefront arrival delays at each receiver

ak(θk) =


ejωτk(x1,θk)

ejωτk(x2,θk)

...
ejωτk(xNr ,θk)

 (23)

where θk = 1/vk.
The eigenstructure-based methods for velocity spectra calculation are based on the temporal covariance

matrix of the data matrix. Assuming that the sources are zero-mean random process and the noise is
uncorrelated with the source, this covariance matrix can be computed as

R = E{DDH} = A(Θ)E{SSH}AH(Θ) + E{NNH} = A(Θ)RsAH(Θ) + σ2
nI (24)

where E{} is the expectation operator, the superscript H denotes matrix hermitian, Rs is the source tem-
poral covariance matrix, σ2

n is the noise variance and I is the identity matrix. Note that R is an Nr × Nr
matrix.

One of the most popular eigenstructure-based algorithms is MUSIC, which takes into account the eigen-
decomposition of R. Let VsΛsVH

s be the eigendecomposition of A(Θ)RsAH(Θ). Assuming that Rs

is nonsingular, with no pair of sources fully correlated, then Λs has Ns non-zero eigenvalues and Vs span
the same subspace as A(Θ), which is called the signal subspace. In this case, the eigendecomposition of
R can be written as (Kirlin, 1992)

R = VΛVH = VsΛsVH
s + VnΛnVH

n (25)

where Λ = diag(λ1, . . . , λNr ) is a diagonal matrix that contains the eigenvalues of R. We assume that
λ1 ≥ . . . ≥ λNr . Since Λs has Ns non-zero eigenvalues, we see that the smallest eigenvalues of R are
all equal to σ2. The matrix Vn spans a space, called the noise subspace, that orthogonal to the image of
A(Θ). Finally, note that that V is an unitary matrix that can be decomposed as V = [Vs Vn].
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Since the noise subspace is orthogonal to the steering vectors that constitute the signal, we may search
all the possible steering vectors and measure how orthogonal they are to Vn. Then, we may estimate the
parameters Θ as those that yield the steering vectors most orthogonal to the noise subspace. This gives rise
to the MUSIC pseudospectrum, given by

PMU (θk) =
aHk (θk)ak(θk)

aHk (θk)Pnak(θk)
(26)

where ak(θk) is a candidate steering vector and Pn is the projection matrix onto the noise subspace,
given by Pn = VnVH

n . When the candidate steering vector and noise the subspaces are orthogonal, the
denominator in (26) tends to zero. Thus, large values of PMU (θk) will generally correspond to the actual
steering vectors.

The subspace decomposition of the temporal covariance matrix has been widely used in the literature
for the calculation of high resolution velocity spectra coherence functions (Biondi and Kostov, 1989; Key
and Smithson, 1990; Sacchi, 1998; Asgedon et al., 2011).

In practice, the temporal covariance matrix must be estimated from the data. The usual approach is to
use the sample covariance matrix (also called the correlation matrix) as an approximation to the covariance
matrix. For that, we subtract the mean from the data and calculate

R̂ =
1
Nt

DDH (27)

where R̂ is the correlation matrix.

Correlated Signals

Seismic signals are strongly correlated. If two correlated wavefronts are being analyzed at the same win-
dow, the source temporal covariance matrix Rs will be rank deficient, which will result in a mix between
signal and noise subspaces. The eigenstructure methods will then fail to resolve the correlated events in the
coherence spectra.

To deal with correlated signals without losing resolution, a method called spatial smoothing in the
temporal covariance matrix is used (Biondi and Kostov, 1989). Spatial smoothing consists in dividing
the original array of Nr receivers into K overlapping subarrays of (Nr − K + 1) receivers. A temporal
covariance matrix R̂k can be computed for each subarray. The spatial smoothed temporal covariance
matrix, R̂K , will be the average from the K covariance matrices from each subarray

R̂K =
1
K

K∑
k=1

R̂k (28)

When dealing with correlated signals, we can apply into the spatial smoothed temporal covariance
matrices an operation to increase its rank, called forward-backward (FB) averaging and defined in Willians
et al. (1988).

Spatial smoothing has two main drawbacks. First, it reduces the effective number of sensors in the
array from Nr to (Nr −K + 1), reducing the resolution of the eigenstructures methods. It also increases
the computational complexity to determine the estimated temporal covariance matrix.


