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ABSTRACT

Diffractions contain the most valuable information about small-scale inhomogeneities and discontinu-
ities in the subsurface. In this paper we propose a diffraction separation technique that works directly
in the common-offset domain. The method is based on a modified CRS- equation tailored for diffrac-
tions. By introducing a constant-offset reference ray, large offsets can also be handled as demonstrated
employing both synthetic and field data.

INTRODUCTION

Seismic diffracted waves may carry high-resolution information about key subsurface structures associated
with potential hydrocarbon traps. However, the amplitudes of these waves are in general much weaker than
those of the reflected waves. During the last years, different approaches have therefore been proposed to
separate diffractions from reflections. Such techniques either work pre-stack or post-stack. Examples of
the latter are the use of plane-wave destruction filters (Fomel, 2002; Fomel et al., 2007) and a modified
version of the Common Reflection Surface (CRS) technique (Asgedom et al., 2011).

Landa et al. (1987) proposed the use of a specialized double-square-root traveltime moveout to enhance
diffractions in a common-offset section. In this paper an alternative constant- offset diffraction separation
technique is proposed. It is based on a modified CRS-equation tailored for diffractions and employing
a constant-offset central ray. By replacing the ZO reference ray with that of constant offset, succesfull
diffraction separation can also be obtained for large offsets. The potential of the method is demonstrated
using controlled data as well as multi-offset GPR data.

FORMULATION

For a given fixed (central) ray, propagating from the source, S0(s0) via a reflecting interface back to the
receiver, G0(g0), the hyperbolic 2-D traveltime formula of a reflected paraxial ray joining the neighboring
source and receiver pair, S(s) to G(g) have the form (see, e.g. Ursin, 1982)

t2(s, g) = (t0 − pS∆s+ pG∆g)2 + t0(−2Msg∆s∆g +Mss∆s2 +Mgg∆g2) , (1)

where
∆s = s− s0, ∆g = g − g0. (2)

Here, the first-order coefficients, pS and pG are the slowness of the central ray tangential to the respective
measurement surfaces,

pS =
∂t

∂s
(s0, g0) =

sinβS
vS

, pG =
∂t

∂g
(s0, g0) =

sinβG
vG

, (3)

with vS and βS being respectively the near-surface velocity and take-off angle of the central ray at the
source S0, with analogous definitions for the quantities vG and βG. In the same way, the second-order
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coefficients are given by (see Ursin, 1982)

Msg =
∂2t

∂s∂g
(s0, g0), Mss =

∂2t

∂s2
(s0, g0), Mgg =

∂2t

∂g2
(s0, g0). (4)

Following Zhang et al. (2001), introduce the following three wavefront curvatures: (i)Kg
CS observed atG0

associated with a wave starting from a point source at S0 (common-source geometry), (ii)Kg
CMP observed

at G0 associated with a wave consisting of the central ray and its paraxial rays in the vicinity of S0 (CMP-
geometry) and (iii) characterized by Ks

CMP when observed at S0. The coefficients Msg , Mss and Mgg in
Eq. (1) can now be expressed by these wavefront curvatures as follows (Zhang et al., 2001):

Msg =
(KG

CMP −KG
CS) cosβ2

G

vG
,

Mss = −K
S
CMP cos2 βS

vS
− (KG

CMP −KG
CS) cos2 βG

vG
,

Mgg =
KG
CS cos2 βG
vG

.

(5)

Diffraction separation in the midpoint-offset domain

The hyperbolic traveltime formula in Eq. (1) is tailored for reflected events. Here we will specialize to
the case of diffractions. It is then more convenient to express the traveltime formula in Eq. (1) in the
midpoint-offset domain (Zhang et al., 2001):

t2(m,h) = [t0 + (pG − pS) ∆m+ (pG + pS) ∆h]2 + t0[2Mmh∆m∆h+Mmm∆m2 +Mhh∆h2], (6)

where
∆m = m−m0 =

1
2

(∆g + ∆s) , ∆h = h− h0 =
1
2

(∆g −∆s), (7)

and, moreover,
Mmh = Mgg −Mss,
Mmm = Mgg +Mss − 2Msg,
Mhh = Mgg +Mss + 2Msg.

(8)

We consider now the special case of a diffractor. Introduce first the wavefront curvature of a CO-experiment
with respect to the receiver side (Zhang et al., 2001):

cos2 βG
vG

KG
CO = Mgg −Msg ⇒ KG

CO = 2KG
CS −KG

CMP . (9)

As discussed by (Zhang et al., 2001), in case of a diffractor, no matter if the energy comes from a CO or
CMP configuration the diffracted waves at G appear to come from a point source at the ’diffraction point’.
This again implies that KG

CO = KG
CMP , which substituted into Eq. (9) yields

KG
CS = KG

CMP , (10)

and, in turn,

Mmh =
cos2 βG
vG

KG
CMP +

cos2 βS
vS

KS
CMP

Mmm = Mhh =
cos2 βG
vG

KG
CMP −

cos2 βS
vS

KS
CMP .

(11)

Zero-offset central ray and constant-offset diffraction separation

In case of a ZO central ray the source S0 will move and coincide with the receiver G0 , and the following
relations hold:

β = βG = −βS , v = vG = vS , p = −pS = pG, KNIP = KG
CMP = −KS

CMP , (12)
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which in combination with Eq. (6) gives the ’classical’ CRS-equation in case of diffractions:

t2D,CRS(m,h) = (t0 + 2p∆m)2 + 2t0
cos2 β

v
KNIP (∆m2 + h2) . (13)

Since this equation represents the traveltime function of a paraxial ray, the perturbations of both midpoint
and offset have to be small. Consider now a CMP-configuration (e.g., ∆m = 0), which gives the alternative
version of Eq. (13):

t2D,CRS(m0, h) = t2CMP (h) = t20 + 2t0
cos2 β

v
KNIPh

2 = t20 +
4h2

v2
NMO

, (14)

where we have introduced the so-called NMO-velocity.
Next, we assume a constant half-offset h0 and rewrite Eq. (13) accordingly:

t2D,CO(m,h0) = (tCMP (h0) + aCO∆m)2 + bCO∆m2 , (15)

with the introduction of the parameters

aCO =
2 sinβ
v

= 2p , bCO =
4

v2
NMO

. (16)

Equation (15) can now be used to enhance diffractions within a constant-offset (CO) section. In practice this
could be implemented as a two-step procedure: (i) determine NMO-velocity from Eq. (14) and parameter
aCO from Eq. (15) using a coherency analysis and (ii) stack data according to Eq. (15) choosing a proper
aperture. The main problem with this formulation is that it is valid only for smaller offsets. In order to
handle larger offset, the ZO central ray should be replaced by a CO central ray.

Constant-offset central ray and constant-offset diffraction separation

The starting point now is based on Eq. (6) and Eq. (11). Consider first a CMP-sorting which simplifies
Eq. (6) as follows:

t2D(m0, h) = t2CMP (∆h) = [t0 + (pS + pG) ∆h]2

+ t0

(
cos2 βG
vG

KG
CMP −

cos2 βS
vS

KS
CMP

)
∆h2 , (17)

or alternatively,
t2CMP (∆h) = (t0 + aCMP∆h)2 + bCMP∆h2 , (18)

upon the introduction of the parameters

aCMP = pS + pG , bCMP = t0

(
cos2 βG
vG

KG
CMP −

cos2 βS
vS

KS
CMP

)
. (19)

Unlike Eq. (14), Eq. (18) is no longer a standard NMO-equation but represents a Taylor-expansion around
the arbitrary half-offset h0 chosen for the central ray. The constant-offset case can be easily derived from
Eq. (6) and Eq. (11) by setting ∆h = 0. Using the parameter bCMP from the rightmost Eq. (19), we find

t2(m,h0) = [t0 + (pG − pS) ∆m]2 + bCMP∆m2. (20)

Upon the introduction of the new parameter

aCO = pG − pS , (21)

Eq. (20) can be alternatively recast as

t2(m,h0) = (t0 + aCO∆m)2 + bCMP∆m2 , (22)
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Figure 1: Common-offset sections used for diffraction separation corresponding to a half-offset of 100 m
(a) and 650 m (b).

which, in turn, can be regarded as a generalization of Eq. (15) when the central ray has an arbitrary half-
offset h0. Eq. (22) can now be used to enhance diffractions employing the two-step procedure: (i) determine
parameters aCMP , bCMP from Eq. (18) and parameter aCO from Eq. (22) using a coherency analysis and
(ii) stack data according to Eq. (22) choosing a proper aperture.

Note that the input to this latter stack can be either the constant-offset data or mini-stacked constant-
offset data (e.g. the data are stacked within a small offset-range around the chosen half-offset using
Eq. (18)).

SYNTHETIC DATA EXAMPLE

Synthetic data were generated for a simple model consisting of a horizontal reflector placed at a depth of
600 m and two point diffractors placed at a depth of respectively 200 m and 600 m. The velocity was set to
2000 m/s. A total number of 240 shot gathers were computed employing a source interval of 25 m. Each
shot record consisted of 96 receivers with a group spacing of 25 m. In the simluations a Ricker wavelet
with a center frequency of 30 Hz was employed. The data were superimposed white Gaussian noise with a
variance of 10% of the maximum (noise-free) trace amplitude.

Diffraction separation in the common-offset domain was tested employing both (i) a ZO central ray and
(ii) a constant-offset central ray. Two different half-offsets were considered: 100 m and 650 m. Figures 1(a)
and 1(b) show the corresponding common-offset sections.

Zero-offset central ray diffraction separation

Diffraction separation was now carried out based on Eq. (15). Since in this case the NMO-velocity was
known use of Eq. (14) was not needed here. However, this NMO-velocity only provide the value of bCO at
the apex of the diffractions. In order to obtain the parameter bCO for the complete diffraction traveltime,
it is necessary to perform a constrained search within a small range around 4

v2NMO
. Figures 2(a) and 2(b)

show the coherency map for the search of parameters aCO and bCO using semblance (small and large offset
respectively). The correspondng diffraction-only sections obtained after a coherency thresholding of 0.2
are shown in Figs 2(c) and 2(d). It can be easily seen from Figs 2(b) and 2(d) that the diffraction separation
does not work well in case of a large offset.

Constant-offset central ray diffraction separation

This time the diffraction separation procedure is based on Eqs (18) and (22). First data are sorted in CMP-
gathers and a 2-D parameter search is carried out to determine the parameters aCMP and bCMP . Note
that this is not a standard NMO-velocity analysis, but a shifted moveout analysis around the (reference)
constant-offset trace. Next, for each common-offset section, we use Eq. (22) to determine the parameter
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Figure 2: Coherency map based on semblance for small (a) and large (b) offsets. Diffraction only stacked
sections for small (c) and large (d) offsets after applying a coherency threshold of 0.2.

aCO. In order to take into account possible inaccuracies we also allow parameter bCMP to vary ±20%
around its original value. Thus, in practice also a 2-D parametric search is carried out again but with a
constrained bCMP . Figs 3(a) and 3(b) show the coherency map for this 2-D parameter search for the small
and large offset respectively.

In order to suppress the reflected energy one needs to use an aperture with a size larger than the first
Fresnel zone. However, the CRS traveltime equation in Eq. (22) only works for small apertures. As a conse-
quence, we face a tradeoff between the amount of suppression in the reflected energy and the applicability
of the CRS traveltime equation. After selecting an optimal aperture the corresponding diffraction-only
stacks are as shown in Figs 3(c) and 3(d). Unlike before, diffraction separation now works also quite well
in case of a large offset.

Possible improvements in S/N can be obtained if after the first step in the CMP-domain a mini-stack
is performed over a small range of offsets based on the optimal parameter set aCMP and bCMP . The
corresponding coherency map for the determination of aCMP and bCMP in a CMP gather for the half-
offset of 650 m is shown in Fig 4(a). The corresponding common offset section after mini-stacking in the
CMP-domain is shown in Fig 4(b). This section should be compared with the original one in Fig 1(b).
The improvement in S/N is clearly demonstrated. The second step of the diffraction separation procedure
is carried out in the common-offset domain as described above. The difference here is that the input data
is now the common- offset section in Fig. 4(b) and not the original section as given in Fig 1(b). We
also used the coherency map in Fig. 4(a) in order to threshold the noise from the signal. The coherency
map in Fig. 3(b) is now replaced. Correspondingly, the diffraction-only stack in Fig. 3(d) is replaced by
that in Fig. 4(d). Direct comparison between Figs 4(d) and 3(d) shows a slight improvement due to the
mini-stacking and the coherency thresholding.
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Figure 3: Coherency map based on semblance for small (a) and large (b) offsets. Diffraction only stacked
sections for small (c) and large (d) offsets after applying a coherency threshold of 0.2.
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Figure 4: Coherency map based on semblance for the determination of parameters aCMP and bCMP (a).
Common-offset section after mini-stack in the CMP domain (b). Coherency map based on semblance for
the determination of parameters aCO and bCMP (c). Diffraction only common-offset section after applying
a coherency threshold of 0.2 (d).
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Figure 5: Common-offset section corresponding to a half-offset of 2.5 m used for diffraction separation.
The black rectangle indicates the part of the data used for analysis.

GPR DATA EXAMPLE

The Ground Penetrating Radar (GPR) field data is composed of 28 different half-offsets running every 0.1
m from 0.3 to 3 m. The CMP spacing is 0.1m covering a 55m-long profile. Figure 5 shows the common-
offset section corresponding to a half-offset of 2.5 m. We can see that almost all the diffracted energy are
hidden behind the stronger reflections. Now, following the same procedure as for the synthetic case, we
selected part of the data that fall within the black rectangle in Figure 5 and diffractions were separated from
reflections employing both ZO and CO central rays. Here, we performed 2-D search directly on CO gathers
to obtain parameters aCO and bCO without going to the CMP gathers. The corresponding coherency maps
for the ZO and CO central rays respectively are shown in Figs 6(a) and 6(b). It is clear that the CO
central ray managed to separate the diffractions for this large offset while the ZO central ray approah did a
much poorer job. The diffractions only common-offset section for both approaches are shown in Figs 6(c)
and 6(d). Direct comparison shows that the constant-offset ray approach gave a much richer distribution of
diffractions.

CONCLUSIONS

A diffraction separation technique that works directly in the common-offset domain has been proposed. It
is based on a modified CRS-equation tailored for diffractions. By introducing a constant-offset reference
ray, large offsets can also be handled. The feasibility of the method has been demonstrated employing both
synthetic and GPR field data.
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