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ABSTRACT

Over the past years, multi-parameter stacking has become a standard tool for seismic reflection data
processing. Although several traveltime approximations for converted waves may be found in the
literature, all of them are designed for CMP-based observation geometry. In this paper we propose
a double-square root traveltime approximation for converted waves from a curved interface. This
approximation is appropriate for large offsets. In the special case of monotypic waves it gives com-
parable results with other multi-parameter moveout formulas. Furthermore, we demonstrate that a
CRS-type traveltime approximation for converted waves may be derived from the new approxima-
tion. In this context, we also discuss a pragmatic search strategy. The key step of the strategy is
the simulation of a zero-offset section by a stack of γ-CMP gathers, which may be considered as
a first approximation of common conversion point gathers. For non-converted waves this approach
transforms to the well-known pragmatic approach by Müller et al. (1998). The new operator does not
require separation of PP and PS wavefields prior to stacking. In our examples, the effective wavefield
attributes of converted and monotypic waves obtained by the corresponding type of the operator have
comparable values and may be used in joint interpretation.

INTRODUCTION

Time imaging is less sensitive to velocity errors than depth imaging. For this reason, it is often carried out
as a first imaging step, especially for the interpretation of complex models (Landa, 2008). It represents a
convenient and efficient way to obtain a simulated zero-offset section from multi-coverage seismic data by
summing along stacking surfaces in CMP data, and to extract wavefield parameters (attributes) in order to
use them in subsequent imaging steps. Stacking significantly reduces the amount of data and increases the
signal-to-noise ratio (Sengbush, 1983). To stack reflection and diffraction events it is necessary to have a
traveltime moveout expression for a family of source-receiver pairs in a distribution suitable to map the
chosen imaging point. The quality of the ZO section and wavefield parameters significantly depends on the
chosen stacking operator.

Of the existing techniques the following two are known to produce acceptable results for monotypic
waves: multifocusing (MF Gelchinsky et al., 1999a,b) and the Common-Reflection-Surface stack (CRS)
(Müller et al., 1998; Jäger et al., 2001). Stacking operators expressed by these techniques take into account
the curvature of the reflection interface. In the 2D case they are parameterized by three fundamental wave-
front attributes: the emergence angle β and the radii of the normal and normal-incidence point waves, RN

andRNIP, respectively (Hubral, 1983). The MF/CRS stack is determined by a measure of the coherency of
the multi-coverage data for any possible combination of attributes. This search of the global maximum of
the coherency measure in the three-parametric attribute domain turns out to be a time-consuming problem.
To relax the computational demand the so-called pragmatic approach was introduced. The CRS pragmatic
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Figure 1: One-layer model with curved reflector. a) Principal scheme. b) Simplified model. Geometrical
meaning of parameters R, H and φ.

approach (Müller, 1998) allows to split the simultaneous three-parameter search problem into three one-
parametric searches and an optional final three-parametric local optimization. The CRS method gained
significant advantages in terms of computing time by this strategy.

It is a more difficult problem to find powerful coherency-based stacking technique to enhance converted
(e.g., PS or SP) reflections in pre-stack seismic data than to stack non-converted (PP or SS) reflections
(Bergler et al., 2002). Approaches for stacking converted waves as, for instance, by common-midpoint
(CMP) or common-conversion point stack were proposed by Tessmer and Behle (1988), Tessmer et al.
(1990) and Iverson et al. (1989).

The aim of this study was to obtain traveltime approximations of converted waves valid for arbitrary
observation geometry and arbitrary reflector curvature. In this paper, we propose a new traveltime ap-
proximation for converted waves and a pragmatic search strategy, which is based on the CRS approach
and accounts for the asymmetry of PS trajectories. Finally, we present numerical simulations that provide
insight into the accuracy of the new approximation in comparison with the exact solution. Effective at-
tributes of converted and non-converted waves obtained by the corresponding type of operator tend to be
comparable and may be used in further interpretation.

DOUBLE SQUARE ROOT TRAVELTIME APPROXIMATION FOR CONVERTED WAVES

Consider a central point x0, a source point xS and a receiver point xG at the surface z = 0 above a 2-D
constant-velocity medium and a curved reflector of arbitrary shape (Figure 1a). The reflection traveltime
for a converted PS wave as a function of the reflection point (xref , zref ) is:

tPS =
1
VP

√
(xS − xref )2 + z2

ref +
1
VS

√
(xG − xref )2 + z2

ref . (1)

If all source-receiver pairs are located in the vicinity of central point x0, then all reflection points are
located in the close vicinity of the normal-incidence-point (NIP) and hence the reflector may be accurately
approximated by a circle (Figure 1b).

It is assumed that three additional parameters are known: the distance from the central point to the
reflectorH , the emergence angle φ, and the radius of curvature of the reflectorR at the NIP. Approximating
the interface by the circle with radius R and assuming that the distance from the central point to the source
∆xS or the receiver ∆xG is much smaller than the characteristic distance of problem (such as R or H) we
obtain the following expression for the reflection point coordinates:(

xref
zref

)
=
(

sinφ cosφ
− cosφ sinφ

)(
R sinα

R cosα− (R+H)

)
,

where the angle α describes the deviation between the reflection point and the NIP. In Appendix A we
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show that

sinα =
γ∆xG + ∆xS

(1 + γ)(R+H)
sinφ+O(ε2), ε = max(

∆xS
RN

,
∆xG
RN

,
∆xS
RNIP

,
∆xG
RNIP

), ε� 1. (2)

where γ is the ratio of velocities of the P- and S-waves and ε is a small parameter.

Substituting the reflection point approximation into equation (1), after a number of algebraic simplifi-
cations, we obtain the traveltime approximation tSq:

tSq =
t0

1 + γ

√
1 +

2∆xS sinβ
RNIP

+
∆x2

S

R2
NIP

+
(γ∆xG + ∆xS

1 + γ
− 2xS

)γ∆xG + ∆xS
1 + γ

cos2 β

R2
NIP

(
1− RNIP

RN

)
+

γt0
1 + γ

√
1 +

2∆xG sinβ
RNIP

+
∆x2

G

R2
NIP

+
(γ∆xG + ∆xS

1 + γ
− 2xG

)γ∆xG + ∆xS
1 + γ

cos2 β

R2
NIP

(
1− RNIP

RN

)
. (3)

For the purpose of convenience we use CRS parameters in (2) and (3), i.e., a variable change from (R, H ,
φ) to (RN, RNIP, β) was made. The connection between the parameters is given by

R = RN −RNIP, H = RNIP, φ =
π

2
− β.

The approximation tSq is valid for any general location of the source and receiver points xS and xG. It
can also be applied in other acquisition geometries than surface seismic, e.g., in vertical seismic profiling
geometry. If we let the radius of curvature R go to infinity, we obtain the formula for the traveltime of
a wave reflected from a planar interface. Setting R = 0 leads to the exact solution for diffracted waves
(Landa et al., 2010). In the case γ = 1 we obtain multi-parameter moveout corrections like MF or CRS.
Although the tSq approximation was derived for the constant velocity overburden, it is applicable for any
arbitrary velocity model. In that case, the wavefield attributes (RN, RNIP, β) lose their clear geometrical
interpretation and become effective parameters.

PRAGMATIC SEARCH STRATEGY FOR CONVERTED WAVES

The stacking procedure consists of evaluating a measure of the coherency of the multi-coverage data along
traveltime surfaces given by the tSq approximation (3) for any possible combination of wavefield parame-
ters. The determination of the global maximum of the coherency turns out to be too time consuming in a
three-parametric search strategy. Therefore, we propose a pragmatic search strategy, that helps to split the
three-parametric search problem into four one-parametric searches and an optional three-parametric local
optimization.

The CRS stack approach determines optimal values of wavefield attributes for a known near-surface
velocity. For converted waves we additionally require that the near-surface velocities ratio γ is known. The
first search step of the CRS pragmatic approach is an automatic common midpoint (CMP) stack. However,
since the path of the converted wave is asymmetrical, successful stacking of converted waves can not be
achieved using common midpoint gathers, but requires a common conversion point (CCP) gather (Tessmer
and Behle, 1990). For complex models the conversion point can be established only by iterative methods,
e.g. ray tracing, which requires P- and S-velocity models.

For a single horizontal homogeneous layer, Fromm et al. (1985) derived the relation xp = γx/(1 + γ)
with γ = VP /VS as a first-order approximation for the horizontal distance xp of the conversion point
from the source point. Following this idea, we propose to construct γ-CMP gathers: we introduce γ-
CMP coordinates x̃m and h̃. These coincide with the standard CMP coordinates in the particular case of
monotypic waves. γ-CMP gathers may be considered as the first linear approximation of CCP gathers.
Furthermore, we define the inverse of an effective velocity Veff as the algebraic average of the inverse P-
and S-wave velocities. In summary, we use

2
Veff

=
1
VP

+
1
VS

; t0 =
2RNIP

Veff
; x̃m =

xS + γxG
1 + γ

; h̃ =
xG − xS

1 + γ
; ∆x̃m = x̃m − x0.
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The variable change from the source-receiver (xS , xG) domain to the (x̃m, h̃) domain and the Taylor
expansion of the square roots in the tSq approximation (3) omitting all terms of order higher than two leads
us to the CRS-type formula for converted waves in γ-CMP coordinates:

t2γ−CRS =
(
t0 +

2 sinβ
Veff

∆x̃m
)2

+
2t0 cos2 β

Veff

(∆x̃2
m

RN
+

γh̃2

RNIP

)
. (4)

This formula illustrates the close relation between the tSq approximation and the CRS pragmatic ap-
proach. In case of monotypic waves (i.e., γ = 1) it coincides with the CRS stacking operator.

If standard CMP coordinates are substituted in (4) we obtain the same five parameter expression that
was derived by Vanelle et al. (2011). It is formally identical with that of Bergler et al. (2002).

Using Equation (4) we can now formulate a pragmatic approach for converted waves similar to the one
suggested by Müller et al. (1998). It consists of the following steps:

1. Automatic γ-CMP search with ∆x̃m = 0:

t2γ−CMP = t20 +
2t0γh̃2q

Veff
; q =

cos2 β

RNIP
.

Output: ZO section, combined parameter q.

2. Plane wave search in the ZO section with h̃ = 0:

tγ−PW = t0 +
2 sinβ
Veff

∆x̃m.

Output: emergence angle β.

3. Repeated γ-CMP search with ∆x̃m = 0. Fromm et al. (1985) showed that the traveltime of converted
waves expanded into a power series comprise terms of third order that depend on the emergence angle
and RNIP. Due to this fact, the determination of RNIP from the combined parameter q and angle β
is not an accurate procedure. For these reasons an additional RNIP search is required:

tSq =
RNIP

VP

√
1− 2γh̃ sinβ

RNIP
+
γ2h̃2

R2
NIP

+
RNIP

VS

√
1 +

2h̃ sinβ
RNIP

+
h̃2

R2
NIP

−
(
t0 − 2RNIP

Veff

)
.

Output: radius of NIP wave.

4. Hyperbolic search in the ZO section with h̃ = 0:

t2γ−HY =
(
t0 +

2 sinβ
Veff

∆x̃m
)2

+
2t0∆x̃2

m cos2 β

VeffRN
.

Output: radius of normal wave RN.

After the determination of the wavefield attributes (β, RNIP, RN) the local optimization is carried out
with the tSq stacking operator (3). The final ZO section from the multi-coverage data is then constructed
for the attributes of this optimization.

NUMERICAL EXAMPLES

In this section we provide insight into the accuracy and the range of applicability of the tSq approxima-
tion with examples. We begin with simple models like a constant velocity and constant vertical gradient
overburden over a circulare reflector to demonstrate the accuracy of the traveltime approximation and the
coefficient determination. Using a more complex synthetic data set we show that the new formulation also
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Figure 2: Accuracy of traveltime approximations for monotypic waves. (a) Comparison of the reference
traveltime (black), MF (green), CRS (blue) and tSq (red) approximations. (b) Relative errors of the MF
(green), CRS (blue), and tSq (red) approximations.

leads to high quality stack results.

Let us consider the velocity model from Figure 1b with a circular reflector under a homogeneous over-
burden. For monotypic reflections, the reflection point can be found by evaluating the roots of a fourth-
order equation (e.g., Drexler and Gander, 1998). For converted waves the exact solution requires solving a
sixth-order polynomial, which can be achieved with high accuracy by numerical methods (e.g., Abakumov
and Kashtan, 2011). We calculated such solutions as reference traveltimes. For the accuracy studies we
used a model withRNIP = 0.5 km, RN = 1.0 km, β = 30◦, and the near-surface velocities VP = 2.5 km/s
and VS = 1.8 km/s.

For monotypic waves the accurcay of the tSq approximation can be compared not only with the refer-
ence traveltime, but as well with the CRS and MF approximations. The resulting tSq, CRS, MF approxi-
mations and the reference traveltimes in a (standard) CMP gather with a maximum offset of 1.35 km are
presented in Figure 2a. These are compared to the reference traveltimes in Figure 2b where relative errors
are shown. We observe that the tSq approximation exhibits smaller errors for large offsets than MF and
CRS, although MF is more accurate for small offsets.

There is no converted wave expression for the MF approximation or CRS. For these reasons, for con-
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Figure 3: Relative traveltime errors of the tSq approximation for converted waves.
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verted waves the tSq approximation was only compared to the exact solution. The resulting relative errors
are shown in Figure 3. We find that in most regions the error is less than 2%.

In order to investigate the accuracy of the coefficients, we have chosen a medium with a constant vertical
velocity gradient, VP = 2.0 + 1.0 z km/s and γ = 1.4 with a circular reflector with the radius R = 1.0 km
and its midpoint at a depth H = 2.0 km. Reference solutions for the wavefield attributes were generated
by a numerical determination of the reflection and conversion points and subsequent evaluation of results
given in Vanelle (2002). A total of 201 cdp points were used for the stack with a spacing of 0.025 km, and
offsets varying from 0.0 to 2.0 km. Noise with S/N = 5.0 was added to all traces.

Figure 4 illustrates the semblance, emergence angle, RNIP, KN for PP as well as PS reflections, and in
comparison to the reference values. The wavefield attributes are now effective parameters, which do not
have a clear geometrical interpretation any more.
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Figure 4: Semblance (a) and effective wavefield attributes (b)-(d), derived from converted (blue) and
monotypic (red) waves by applying the tSq operator. The effective wavefield attributes tend to have similar
behavior in comparison to the exact values (yellow). The asymmetry in the semblance (a) may be explained
by the asymmetry of the survey.

Finally, we have applied the new operator to a complex synthetic dataset. The NORSAR ray tracing
package was used to generate synthetic seismograms for the model shown in Figure 5. The resulting PP-
and PS-stacked sections in Figure 6 exhibit similar quality. Due to the asymmetry of the PS ray paths,
we observe a better illumination of the distant part of the top reflector in the PS than in the PP stack. We
conclude that joint interpretation of PP- and PS-stacked data using the tSq operator allows for a better
understanding of the subsurface structure.
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Figure 5: Complex velocity model consisting of a homogeneous low velocity near-surface layer, a gradient
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layer and γ = 1.80 in the remaining model parts.
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22 Annual WIT report 2011

CONCLUSIONS

We have introduced a new non-hyperbolic traveltime expression, the tSq approximation, for converted
wave reflections from curved interfaces. For monotypic waves and large offsets, the new formulation leads
to higher accuracy than multifocusing (MF) and CRS. For converted waves, where equivalent expressions
to MF or CRS are not available, the new operator is also highly accurate.

Further more, we have derived a CRS-type expression for converted waves from the tSq approximation.
This hyperbolic operator is expressed in γ-CMP coordinates and allows for a pragmatic search strategy also
for the tSq operator for converted waves. The key step of the strategy is the simulation of the ZO section
by the stack of γ-CMP gathers, which may be considered as the first approximation of CCP gathers. For
the case of monotypic waves this approach reduces to the well-known pragmatic CRS search strategy of
Müller (1998).

Effective attributes of converted and monotypic waves obtained by the corresponding type of tSq oper-
ator provide comparable PP and PS images and may be used in a joint interpretation. The asymmetrical ray
paths of converted waves allow to generate better images of inclined parts of the reflector since monotypic
and converted waves image different parts of the reflector.
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APPENDIX A

In this appendix, we derive equation (2) for sinα. Let us consider a circular reflector with its center denoted
by R, a central point X0, and a source and receiver at XS , XG, respectively (see Figure 7). Then we can
express the deviation angle α = ∠X0RXP between the reflection point and the normal incidence point by
the relations in the triangle:

sinα =
X0XP

RXP
sin(π − φ) =

X0XP

RXP
sinφ =

X0XP

X0R
sinφ

(
1 +O(ε)

)
. (5)

The combination of the Snell’s Law and the relations in the triangles XSOXP , XGOXP ,

sin θ1

Vp
=

sin θ2

Vs
,

l1
sin θ1

=
r1

sinβ
,

l2
sin θ2

=
r2

sin(π − β)
,

lead to the following estimation of the ratio l1/l2:

l1
l2

=
Vp
Vs

r1

r2
= γ

r1

r2
= γ(1 +O(ε)). (6)
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Here we took into account that ε� 1 from (2), hence H � l1, H � l2 and

r1

r2
=

√
H2 − 2Hl1 cosφ+ l21√
H2 + 2Hl2 cosφ+ l22

= 1 +O(ε).

Combination of (6) and the fact that l1 + l2 = XG −XS yields the following expression for X0XP :

X0XP =
γ∆xG + ∆xS

1 + γ
(1 +O(ε)),

where a variable change from XS , XG to ∆xS = XS −X0, ∆xG = XG −X0 was made. Substituting
X0XP into equation (5) gives the final result

sinα =
γ∆xG + ∆xS

(1 + γ)RN
sinφ+O(ε2).


