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ABSTRACT

Multiparameter stacking has become a standard tool for seismic reflection data processing. Different
traveltime operators exist, whose accuracy depends on the offset and reflector curvature. We introduce
a new, implicit stacking operator derived from evaluating Snell’s law at a locally spherical interface.
Comparison of the resulting traveltime surface with those obtained from the common reflection sur-
face and multifocusing expressions confirm high accuracy and only minor dependence on the reflector
curvature. The examples show that the new method performs well for the whole range of reflector cur-
vatures from nearly planar reflectors to the diffraction limit.

INTRODUCTION

Over the past years, a number of multiparameter stacking operators have been introduced as an exten-
sion of the CMP stacking technique. Examples of such operators are the common reflection surface stack
(CRS, Mueller, 1999), Multifocusing (MF, Gelchinksy et al., 1999), and the shifted hyperbola (de Baze-
laire, 1988). These operators describe the traveltime surface for a reflected event in the short offset limit.
The accuracy of the individual methods differs and depends not only on the considered offset but also on
the reflector curvature.

In this work, we suggest a new stacking operator. It is derived from Snell’s law for a spherical interface
and leads to an implicit expression for the traveltime surface. Although the operator can be applied in an
iterative fashion, we show in our examples that already a single iteration leads to higher accuracy than the
CRS and MF expressions.

After a brief summary of the CRS and MF methods, we introduce a new implicit stacking operator
(ISO) and examine its performance in comparison to CRS and MF.

COMMON REFLECTION SURFACE

The CRS stacking technique was introduced by Mueller (1999) to obtain a simulated zero offset section.
The CRS stack can be considered as an extension of the classic CMP method, where stacking is carried
out over offsets, while in the CRS technique the stack is applied over offsets and midpoints. This leads to
a much larger number of contributing traces, and, thus, to a higher level of the signal to noise ratio.

Whereas the CMP operator is a hyperbola, the corresponding CRS operator is a traveltime surface of
second order that includes the CMP operator as subset. Written in midpoint (xm = x0 +∆xm) and half-
offset (h) coordinates, the CRS operator for monotypic reflections in the two-dimensional zero-offset case
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Figure 1: The meaning of the ZO-CRS parameters β0,RNIP , andRN . NIP indicates the normal incidence
point.
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It contains three wave field attributes or parameters that describe physical properties of the one-way-process
corresponding to the zero-offset situation, namely, the incidence or emergence angle β0; the curvature
KNIP of a wave generated by a point source at the normal incidence point (NIP), the so-called NIP wave;
and the curvature KN of a wavefront generated by an exploding reflector element, the so-called normal
wave. Furthermore, the velocity V0 is that at the source and receiver. The meaning of the attributes is
illustrated in Figure 1. The extension to 3D is straightforward (Müller, 2007).

The parameters are useful for a variety of applications like attribute-based time migration, determina-
tion of geometrical spreading, migration weights and apertures, and Fresnel zones (for an overview, see,
e.g. Mann, 2002). More advanced applications that were recently introduced are NIP-wave tomography
(Duveneck, 2004), multiple suppression (Dümmong and Gajewski, 2008), and data regularisation and pre-
stack data enhancement (Dümmong et al., 2009).

MULTIFOCUSING

The multifocusing operator describes the traveltime of a reflected event in terms of the traveltime of a
central ray and corrections applied at the source and receiver for a paraxial ray. This results in the double
square root expression (e.g., Landa et al., 2010),
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1
V0

√
R2
s + 2Rs∆xs sinβ0 +∆x2

s +
1
V0

√
R2
g + 2Rg∆xg sinβ0 +∆x2

g , (2)

with the source and receiver positions xs and xg , respectively, and ∆xs = xs − x0 and ∆xg = xg − x0.
The quantities Rs and Rg are related to the radii of the N- and NIP-wave by

Rs =
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R−1
N + σ R−1

NIP

and Rg =
1− σ

R−1
N − σ R

−1
NIP

, (3)

where σ is the so-called focusing parameter. For a detailed discussion of its meaning, please refer to Landa
et al. (2010). If the reflector is locally plane, the focusing parameter can be expressed by

σ =
∆xs −∆xg

∆xs +∆xg + 2
∆xs ∆xg
RNIP

sinβ0

. (4)

In a recently-published paper, Landa et al. (2010) state that the accuracy of multifocusing traveltimes
can be enhanced by using the focusing parameter σ accordingly for a spherical reflector. However, the
computation of the parameter σ even for the spherical case is not straightforward. Therefore, we have
restricted our traveltime comparison to planar multifocusing, i.e., using the planar focusing parameter
given by (4).
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Figure 2: Reflection from a circle with radius R and centre (xc, H). Traveltimes t1 and t2 are those from
the stationary point on the circle to the source (xs = xm − xc − h) and receiver (xg = xm − xc + h),
respectively. The angle θ0 is that between the midpoint and the centre, whereas θ is the angle made by the
vertical axis and the line connecting the midpoint and the reflection point.

THE NEW IMPLICIT STACKING OPERATOR

We derive the new stacking operator by considering a spherical reflector with radiusR and centre at (xc, H)
(see Figure 2). These quantities can be also expressed in terms of the CRS parameters β0, RN , RNIP . The
sum t of the traveltimes t1 and t2 of the down- and up-going rays with
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V 2
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2
2 = ((xm − xc) + h−R sin θ)2 + (H −R cos θ)2 (5)

must fulfil Snell’s law in order to describe a reflection from the sphere. This requires that
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For the zero-offset case, i.e., h = 0, we obtain the angle θ0 from (6) by

tan θ0 =
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H
. (7)

After some algebra, substituting (7) and the identities
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cos θ = cos θ0 cos(θ − θ0)− sin θ0 sin(θ − θ0) (8)

in (6) for h 6= 0 leads to
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This expression can be solved for

tan (θ − θ0) =
hH (t2 − t1)

h (xm − xc) (t2 − t1)− ((xm − xc)2 +H2) (t2 + t1)
. (10)
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Note that Equation (10) is exact. Since the traveltimes t1 and t2 also depend on θ, it cannot be solved
analytically. However, if we substitute t1 and t2 for the zero-offset case, i.e., θ = θ0, in (10), we obtain an
update for θ, and thus for the reflection traveltime following (5). Although we could repeat this step in an
iterative fashion, we show in the next section that single, direct application of (10) already leads to a higher
accuracy than the CRS and planar multifocusing expressions.

EXAMPLES

We have computed traveltime surfaces for four different spherical reflectors with the CRS, planar multifo-
cusing (MF), and the new implicit stacking operator (ISO) expressions. The results were compared with
the exact solution. In all cases, we chose V0=2 km/s, β=0 and RNIP=1 km, and only the radius of the
sphere was varied from R=10 m, corresponding to a diffractor-like structure, to R=10 km, describing an
almost plane reflector.

The RMS errors compared in Figure 3 were computed for two different apertures: the first one, (a),
includes xm in [-2 km:2 km] and h in [0:1 km], which is equivalent to a maximum offset over reflector
depth ratio of two. The second aperture, shown in (b), covering xm in [-5 km:5 km] and h in [0:2.5 km]
was chosen in order to evaluate the accuracy far outside the usually-applied range. Figures 4–6 display the
error distributions of the traveltime operators for the different reflector curvatures.

In Figure 3 as well as in Figures 4–6, we observe that within a realistic midpoint and offset range, all
three methods perform reasonably well. The accuracy of the CRS expression deteriorates for smaller radii,
i.e. toward the diffraction limit. Surprisingly, because this is counter-intuitive, MF is very accurate for
diffractions despite the assumption of a planar focusing parameter, and shows higher errors for larger radii.
ISO maintains its overall higher accuracy both in the diffraction as in the planar reflection limit over a wide
range of midpoints and offsets.
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Figure 3: RMS traveltime errors for spherical reflectors with different radii for an aperture of (a) xm in
[-2 km:2 km] and h in [0:1 km], and (b) xm in [-5 km:5 km] and h in [0:2.5 km]. For both apertures, we
observe that the accuracy of CRS deteriorates for smaller radii, i.e. toward the diffraction limit. Planar MF
is highly accurate for diffractions, but less so for larger radii. ISO maintains its high accuracy both in the
diffraction as well as in the planar reflection limit.

CONCLUSIONS AND OUTLOOK

We have introduced a new implicit stacking operator for curved subsurface structures. Numerical examples
show that whereas existing approaches (CRS, planar multifocusing) lead to reasonable accuracy if applied
within a realistic midpoint and offset range, the new operator is not only superior to these approaches for
larger offsets and midpoint distances, but it also maintains the high accuracy for a wide range of reflector
curvatures, from the diffraction limit to quasi-plane reflectors.
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CRS traveltime errors for Rnip=1 km, R=10 m
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CRS traveltime errors for Rnip=1 km, R=100 m
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CRS traveltime errors for Rnip=1 km, R=1 km
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CRS traveltime errors for Rnip=1 km, R=10 km
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Figure 4: Traveltime errors for the CRS operator for spherical reflectors with (a) R=10 m, (b) R=100 m,
(c) R=1 km, (d) R=10 km. The errors decrease for larger radii. Note the different scales.

Future work will include the extension of the new method to three-dimensional subsurface structures
and the application to field data.
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MF traveltime errors for Rnip=1 km, R=10 m
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MF traveltime errors for Rnip=1 km, R=100 m
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MF traveltime errors for Rnip=1 km, R=1 km
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MF traveltime errors for Rnip=1 km, R=10 km
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Figure 5: Traveltime errors for the planar MF operator for spherical reflectors with (a) R=10 m, (b)
R=100 m, (c) R=1 km, (d) R=10 km. The errors increase for larger radii. Note the different scales.
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ISO traveltime errors for Rnip=1 km, R=10 m
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ISO traveltime errors for Rnip=1 km, R=100 m
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ISO traveltime errors for Rnip=1 km, R=1 km
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(c)

ISO traveltime errors for Rnip=1 km, R=10 km

-6 -4 -2  0  2  4  6Midpoint [km]  0
 0.5

 1
 1.5

 2
 2.5

        Half Offset [km]
-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

Time [s]                

(d)

Figure 6: Traveltime errors for the ISO operator for spherical reflectors with (a) R=10 m, (b) R=100 m,
(c) R=1 km, (d) R=10 km. The errors increase very mildly for larger radii. For the diffraction limit, errors
are within machine precision. Note the different scales.


