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ABSTRACT

The Common-Reflection-Surface stack method parameterizes and stacks seismic reflection events in
a generalized stacking velocity analysis. The implementation is able to deal with a discrete number of
events contributing to a given stack sample such that conflicting dip situations can be handled. How-
ever, the reliable detection of such situations is difficult and missed contributions to the stacked section
might cause artifacts in a subsequent poststack migration. This is deleterious for complex data where
prestack migration is no viable option due to its requirements concerning the accuracy of the velocity
model, such that we might have to rely on poststack migration. In addition to the handling of a small
number of discrete dips, the conflicting dip problem has been addressed by explicitely considering
a virtually continuous range of dips with a simplified Common-Reflection-Surface stack operator in
a process termed Common-Diffraction-Surface stack. In analogy to the Common-Reflection-Surface
stack, the Common-Diffraction-Surface stack has been implemented and successfully applied in a
data-driven manner. As this comes along with significant computational costs, we now present a
much more efficient model-based approach to the Common-Diffraction-Surface stack which is de-
signed to generate complete stack sections optimized for poststack migration. This approach only
requires a smooth macro-velocity model of minor accuracy. We present first preliminary results for a
real land data set.

INTRODUCTION

For more than a decade, the Common-Reflection-Surface (CRS) stack method has been extensively dis-
cussed in the annual WIT reports and in various publications. Therefore, we will here restrict the discussion
of the CRS method to the very basic essentials required in the scope of this contribution: the CRS method
follows the concept of the classical stacking velocity analysis, the local parameterization and stacking of
reflection events by means of an analytic second-order approximation of the reflection traveltime (see, e. g.,
Mann et al., 1999; Jäger et al., 2001). Conventional stacking velocity analysis is applied within individual
common-midpoint (CMP) gathers with the stacking velocity as the only stacking parameter (in general
azimuth-dependent in 3D). In contrast, the CRS approach also takes neighboring CMP gathers in account,
acknowledging the fact that reflection events are caused by spatially contiguous reflector elements in depth.
The relation between conventional stacking velocity analysis and the CRS approach has been described by
Hertweck et al. (2007) in terms of horizontal slowness and two imaging velocities to highlight the sim-
ilarities between these approaches. Equivalent formulations can be given in terms of spatial traveltime
derivatives or in terms of properties of hypothetical wavefronts, namely the emergence direction of the
normal ray connecting the reflection point to the surface and the curvatures of wavefronts associated with a
point source at the reflection point or a exploding reflector segment around the latter, respectively. For the
sake of consistence with related publications, we will use the latter description in the following.

In its simplest implementation, the CRS stack determines only one optimum stacking operator for each
zero-offset (ZO) sample to be simulated. Along this operator, we obtain the maximum coherence in the
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seismic reflection data. This works nicely if there is only one reflection event contributing to the considered
sample or no coherent event at all. However, in the presence of curved reflectors or diffractors, various
events might intersect each other and/or themselves, such that a single stacking operator per ZO sample
is no longer appropriate to completely simulate a stacked section. To account for such situations, Mann
(2001, 2002) proposed to allow for a small, discrete number of multiple stacking operators for a particular
ZO sample. The main difficulty in this approach is to identify conflicting dip situations and to decide how
many contributions should be considered. This implies a tricky balancing between lacking contributions
and potential artifacts due to the unwanted parameterization of spurious events. Due to the discrete number
of considered events, the number of detected and, thus, imaged events might change from sample to sample
such that seismic events might still show up in fragments, only.

The introduction of inversion methods fully exploiting the information contained in the CRS stacking
parameters (Duveneck, 2004a,b) enabled a consistent imaging workflow consisting of CRS stack, normal-
incidence-point (NIP) wave tomography, and prestack depth migration (see, e. g., Mann et al., 2003; Heil-
mann et al., 2004; Hertweck et al., 2004). In this workflow, the stacked section mainly serves as an in-
termediate result for picking rather than as a final image for interpretation. Thus, lacking contributions in
the stacked section due to conflicting dip situations are acceptable and do not affect the final depth image.
However, in data of complex nature and/or high noise level, generating a macro-velocity model of suffi-
cient accuracy for prestack depth migration might not be feasible with reasonable effort. In such cases,
poststack migration with its much lower requirements in velocity model accuracy is more attractive—and
the completeness of the stacked section turns into a relevant issue again.

Soleimani et al. (2009b,a) proposed an adapted CRS strategy designed to obtain a stacked section
as completely as possible by merging concepts of the dip moveout (DMO) correction (e. g., Hale, 1991)
with the CRS approach: instead of only allowing a single stacking operator or a small discrete number
of stacking operators per sample, a virtually continuous range of dips is considered. To simplify this
process and to further emphasize usually weak diffraction events, this has been implemented with a CRS
operator reduced to (hypothetical) diffraction events. This so-called Common-Diffraction-Surface (CDS)
stack approach has been successfully applied to complex land data (Soleimani et al., 2010). However, the
approach is quite time consuming, as separate stacking operators have to be determined for each stacked
sample to be simulated and each considered dip in a data-driven manner by means of coherence analysis in
the prestack data.

Here, we propose a model-based approach to the CDS stack. We assume that a smooth macro-velocity
model has already been determined, e. g. by means of CRS stack plus NIP-wave tomography. Under this
conditions, the parameters of the CDS stacking operators can be easily forward-modeled by means of
kinematic and dynamic ray tracing. In this way, a complete stacked section optimized for poststack depth
migration can be generated in a much more efficient manner compared to the data-driven CDS approach.

TRAVELTIME APPROXIMATION

The CRS method is based on an analytical approximation of the reflection traveltime up to second order
in terms of the half source/receiver offset h and the displacement of the source/receiver midpoint xm with
respect to the location x0 of the stacked trace to be simulated. This approximation can be expressed in
different flavors, e. g. in a parametric form or in Taylor series expansions in terms of traveltime or squared
traveltime, respectively (Höcht et al., 1999). The most popular form is the hyperbolic traveltime expansion,
as it directly resembles the well-known common-midpoint (CMP) traveltime approximation for xm = x0.
For the 2D case considered in this paper, the hyperbolic CRS traveltime approximation can be expressed
as

t2 (xm, h) =
[
t0 +

2 sinα
v0

(xm − x0)
]2

+
2t0 cos2 α

v0

[
(xm − x0)2

RN
+

h2

RNIP

]
, (1)

with v0 denoting the near-surface velocity. The stacking parameter α is the emergence angle of the normal
ray, whereas RN and RNIP are the local radii of hypothetical wavefronts excited by a exploding reflector
experiment or a exploding point source at the (unknown) reflection point of the normal ray, the normal
incidence point (NIP). All these properties are defined at (x0, z = 0).

For a true diffractor in the subsurface, an exploding point source experiment and an exploding reflector
experiment naturally coincide such that RNIP ≡ RN. Thus, for diffraction events, the CRS traveltime
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equation (1) reduces to the CDS traveltime approximation

t2 (xm, h) =
[
t0 +

2 sinα
v0

(xm − x0)
]2

+
2t0 cos2 α

v0RCDS

[
(xm − x0)2 + h2

]
, (2)

with RCDS ≡ RNIP ≡ RN. For reflection events, the CDS operator (2) is an inferior approximation com-
pared to the full CRS operator (1) as RNIP 6= RN. Nevertheless, it still allows to approximate the event
within a reasonably chosen aperture. For the data-driven CDS stack, this simplified operator has been cho-
sen for performance reasons. For the model-based CDS stack, this simplification is mandatory, as there is
no structural information on reflector curvatures contained in the considered smooth macro-velocity model.
Thus, a forward-modeling of the lacking parameter RN is not possible anyway.

Note that the meaning of RCDS depends on the way this stacking parameter is determined: in the
forward-modeling discussed below, it is a completely local second-order property RNIP,mod of the emerging
NIP wavefront at the considered ZO location. In the CRS stack, the second-order property RNIP,data is
determined from the prestack data within a finite aperture. Thus, RNIP,data is, in general, subject to spread
length bias and does not exactly coincide with the forward-modeled RNIP,mod (Müller, 2006). In the data-
based CDS stack, RCDS is influenced by both data-derived attributes RNIP,data and RN,data. It represents a
kind of weighted average of these both attributes, depending on the aspect ratio of the used aperture. In the
context of this paper, we consider the forward-modeled case, i. e., RCDS ≡ RNIP,mod.

FORWARD-MODELING

As already mentioned above, the radius of the NIP wave occurring in the CDS operator (2) is associated
with a hypothetical point source at the NIP. The local curvature of the hypothetical wavefront triggered
by such a point source is considered along the normal ray. The wavefront finally reaches the acquisition
surface with the curvature 1/RNIP. Thus, the first step to model this parameter is to determine the potential
normal ray by means of kinematic ray tracing. As we need this ray for a given surface location and a given
emergence angle, the kinematic ray tracing is performed for the down-going ray.

Kinematic ray tracing consists in the calculation of the characteristics of the Eikonal equation

(∇T )2 =
1

v2 (x, z)
, (3)

which governs the kinematics of the wavefield in a 2D velocity field v (x, z). In the following, we will use
the Einstein summation convention for the sake of briefness. According to Červený (2001), the Eikonal
equation’s characteristics

dxi
du

=
∂H
∂pi

,
dpi
du

= −∂H
∂xi

,
dT

du
= pk

∂H
∂pk

; i = 1, 2 (4)

are defined in a generalized domain consisting of slowness vector ~p and spatial coordinates ~x. The projec-
tion of these characteristics into the space domain represents the searched-for ray paths. A general form of
the Hamiltonian is

H (~x, ~p) = n−1
[
(pi pi)

n
2 − v−n

]
= 0 ; i = 1, 2 , (5)

with n as a real number. For reasons which will become evident below, we will here use the limit of n→ 0
which yields the Hamiltonian

H (~x, ~p) =
1
2

ln (pi pi) + ln v =
1
2

ln
(
v2pi pi

)
. (6)

For this case, the last characteristic in equation (4) reduces to dT/du = 1, i. e., the variable u along the ray
is directly the traveltime. This is a desired feature, as we have to compute ray tracing results for a regular
grid in ZO traveltime.

The corresponding kinematic ray tracing system, a system of four coupled ordinary differential equa-
tions, reads

dxi
dT

= (pk pk)−1
pi

dpi
dT

= −∂ ln v
∂xi

; i = 1, 2 (7)
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and can be numerically integrated with the well known Runge-Kutta scheme of fourth order. The step
length in the numerical solution is chosen as an integer fraction of the sampling rate of the stacked section
to be simulated. In this way, we directly obtain the discrete points along the ray paths corresponding to the
desired output locations in the ZO time domain.

As |~p| ≡ 1/v(x, z) ∀ ~x, the slowness components are not independent of each other such that the
system of equations can be further reduced. However, using Cartesian coordinates, the reduced system is
not able to handle turning rays. Therefore, we use the full system of equations and enforce the relation
between slowness and velocity by an according rescaling of ~p after each ray tracing step.1

The determination of RNIP additionally requires dynamic ray tracing along the ray path. The derivation
of the dynamic ray tracing system again starts with the Eikonal equation, now defined in ray-centered
coordinates (s, n), with s being the coordinate tangent to the ray and n the coordinate normal to the ray.
A Taylor expansion of the phase function T in the vicinity of the central ray introduces the second partial
derivative M of the traveltime normal to the central ray:

M(u) =
∂2T (u, n)
∂n2

∣∣∣∣
n=0

. (8)

The resulting ordinary differential equation of Ricatti type finally yields the dynamic ray tracing system
consisting of two coupled ordinary differential equations of first order. For our chosen propagation variable
u ≡ t along the central ray, this system reads

dq

dt
= v2p ,

dp

dt
= −1

v

∂2v

∂n2
q , (9)

which can be easily numerically integrated along the ray in parallel to the kinematic ray tracing described
above. The properties p and q are related to different coordinate transforms, see Červený (2001) for details.
The only important property here is that their ratio coincides with the the second traveltime derivative
normal to the ray, equation (8):

M(u) =
p(u)
q(u)

. (10)

In turn, for a point source at the NIP, M(u0) at the emergence point of the normal ray is directly related to
the searched-for value of RCDS:

1
RCDS

= v0M(u0) = v0
p(u0)
q(u0)

, (11)

with v0 again representing the near-surface velocity at the emergence point.
A straightforward approach to this task is to integrate the dynamic ray tracing system upwards along

the ray for a given point on the known down-going ray path with the according initial condition for a point
source initial condition in the starting point, i. e., q = 0 and p = 1. However, this approach is highly
inefficient for two reasons:

• dynamic ray tracing had to be performed separately for each considered point on the ray, i. e., hun-
dreds or thousands of times along each ray

• either the entire down-going ray paths had to be kept in memory, or kinematic ray tracing has to be
repeated along the up-going ray path again

Instead, it is far more efficient to perform the dynamic ray tracing in parallel to the kinematic ray tracing
along the down-going ray. However, in this way we cannot directly control the desired “initial” condition
at the NIPs, because now the initial conditions are defined at the acquisition surface rather than at the NIPs.
Fortunately, this problem can be addressed by solving the dynamic ray tracing system for two mutually
orthogonal initial conditions, a point source and a plane wave at the initial point. The initial condition for

1Due to numerical inaccuracies, |~p| slowly starts to deviate from 1/v (x, z) with increasing length of the ray path which would
violate the Eikonal equation (3).
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the latter reads q = 1 and p = 0. Using the index 2 for the point source initial condition and index 1 for
the plane wave initial condition, the solutions can be gathered in a ray propagator matrix Π:

Π (u;u0) =
(
q1 q2

p1 p2

)
. (12)

This ray propagator matrix can be computed along the ray for any value of u along the ray with the two
initial conditions being defined at the emergence location of the central ray associated with u0.

One of the powerful features of the ray propagator matrix Π(u;u0) is that it can be easily converted into
the corresponding propagator matrix Πb(u0;u) describing the dynamic properties in opposite propagation
direction along the ray:

Πb (u0;u) =
(
p2 q2

p1 q1

)
. (13)

The first column of Πb again corresponds to the plane wave initial conditions and the second column to
the point source initial conditions, but these initial conditions are now defined at the considered point u
on the central ray. As we compute Π along the down-going ray for all required locations u on the ray,
Πb is readily available, too. Its second column exactly describes the desired situation: the solution of the
dynamic ray tracing system at the emergence point of the central ray for a point source initial condition at
any considered point u along the ray! Thus, the searched-for stacking parameters are simply given by

1
RCDS(u)

= v0
q2(u)
q1(u)

. (14)

IMPLEMENTATION

The existing 2D implementation of the CRS stack has been extended to allow for a model-based calcu-
lation of stacking parameters. In addition to a new class which actually performs the stacking process,
two additional classes have been added: the first one provides the velocity model and various of its spa-
tial derivatives interpolated to any required depth location, the second one implements the kinematic and
dynamic ray tracing systems and provides the CDS stacking parameter directly on the ZO target grid.
Symbolically and omitting all I/O issues, the algorithm can be summarized as follows:

set up velocity model & derivatives
for each ZO trace {

for each emergence angle on coarse grid {
trace ray up to maximum ZO time
calculate stacking parameters for all ZO samples

}
for each ZO sample {

for each emergence angle on fine grid {
interpolate stacking parameter between nearest rays
stack along CDS operator
calculate semblance along CDS operator
keep track of contribution with highest semblance

}
weighted/thresholded superposition of individual stack results

}
}

The implementation relies on all the existing classes for I/O, stacking, semblance calculation, aperture
handling etc., just as the data-driven counterparts. The model-based CDS algorithm is very efficient, as
the ray tracing is performed only once per ZO trace and emergence angle, rather than within the innermost
loop. In view of the fact that the stacking parameter varies smoothly for a smooth velocity model, the rays
can be calculated on a relatively coarse emergence angle grid. In contrast, the semblance and the stack
itself are quite sensitive to variations of the emergence angle. Thus, stack and semblance are calculated on
a finer emergence angle grid using interpolated stacking parameters.
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The implemented ray tracing system generally supports turning rays such that e. g. overhanging flanks
can be imaged. Depending on the complexity of the considered data, the user can decide whether turning
rays should be further traced or simply terminated at their turning points. The latter option significantly
speeds up the code, as many CDS operators unlikely to actually contribute to the image will not be evaluated
at all. This especially applies to large ZO traveltimes combined with large emergence angles.

Although the stacking parameters do not have to be optimized as in the data-driven approaches, it turned
out to be quite useful to calculate semblance along the individual CDS operators anyway. Note that this
has to be performed only once per emergence angle for each ZO sample rather than dozens or hundreds of
times as in the data-driven CDS stack. Thus, the semblance calculation is not a performance issue in the
model-based case but enables several additional features:

• We can keep track of the CDS operator yielding the highest semblance.2 In this way we can obtain

– a section of the highest encountered semblance,

– a section with the corresponding emergence angle α, and

– a section with the corresponding radius of curvature RCDS.

Obviously, these sections resemble the coherence section, the emergence angle section, and the RNIP
section of the data-driven CRS stack to some extent. Thus, they allow for the identification of ZO
reflection events, the assessment of the quality of the operator fit, and plausibility analyses.

• The semblance associated with a particular CDS operator can be used as a weight factor for its
contribution to the final stack section, probably in combination with a semblance threshold. This
allows to reduce the overall noise level and is subject of our current investigations.

FIRST RESULTS

For the first application of the newly implemented model-based CDS stack, we revisited the 2D land data
set presented by Soleimani et al. (2009a) in the context of the data-driven CDS stack. The line acquired by
an energy resource company in fixed-spread geometry has a length of about 12 km, 50 m shot and receiver
spacing and a temporal sampling rate of 2 ms. For further details on source signals and preprocessing, we
refer to Soleimani et al. (2009a).

A sequence of CRS stack and NIP-wave inversion has been applied to the data to obtain the smooth
macro-velocity model shown in Figure 1. This CRS-based imaging workflow has, e. g., been extensively
discussed by Mann et al. (2003) and Hertweck et al. (2004) such that there is no need to go into any details
here. During the model-based CDS stack, kinematic and dynamic ray tracing is performed in this model for
a coarse emergence angle grid ranging from −22◦ to 22◦ in steps of 2◦. The corresponding ray fan for one
of the ZO trace locations is superimposed on the model in Figure 1. Due to the chosen parameterization of
the kinematic ray tracing system, the stacking parametersRCDS are directly available on the temporal target
grid without the need for any interpolation along the rays. For the stack and the semblance calculation, we
used a finer emergence angle grid ranging from−20◦ to 20◦ in steps of 1◦ with stacking parameters linearly
interpolated in between neighboring rays on the coarse grid.

In Figure 2, the stacked sections obtained with the different approaches are compiled for comparison.
Figure 2a shows the final result of the CRS stack, the stack confined to the first projected Fresnel zone
after local three-parameter optimization (see, e. g., Mann, 2002) and event-consistent smoothing (Hertweck
et al., 2005) of the CRS attributes. The reflection events show up with a high signal-to-noise ratio and high
continuity. However, many events are truncated and only appear in fragments where they intersect more
dominant events. Evidently, this will lead to artifacts in a subsequent poststack migration. Especially faults
will be poorly imaged, as the corresponding edge diffraction are largely missing in the stacked section. In
the data-driven CDS-stacked section in Figure 2b, these conflicting dip situations are fully resolved and the
interference of intersecting events is properly simulated and many new steep events show up. Compared to

2An CDS operator with higher semblance is only accepted as supremum if the number of contributing traces is not lower than for
any other operator for the same ZO sample. This prevents e. g. very steep operators from being selected for such suprema. Semblance
will generally increase with decreasing number of contributing traces, which renders the semblance values incomparable and obscures
the actual quality of the operator fit.
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Figure 1: Macro-velocity model obtained by sequential application of CRS stack and NIP-wave inversion,
here used for the model-based CDS stack. The attribute RCDS has been calculated for all samples in the
ZO target zone and emergence angles −20◦ ≤ α ≤ 20◦. For one emergence location, the ray paths for the
coarse emergence angle grid are superimposed in white.

the CRS result in Figure 2a, the signal-to-noise ratio is slightly lower, but due to more complete and, thus,
more physical stack section, this section is much better suited as input for poststack migration (Soleimani
et al., 2009a,b). Finally, Figure 2c shows the very first result obtained with the data-driven CDS approach.
For this section, all contributions for all considered emergence angles are simply superimposed, without any
weighting or thresholding based on coherence. Whereas we observe even some more steep and/or strongly
curved in the lower part, the result for the shallow part is quite unsatisfactory. The strong continuous
reflection events in the CRS stack result appear much weaker here. We will discuss the probable reason
for this effect below. In any case, the model-based CDS approach is significantly faster than its data-driven
counterpart. Depending on the chosen parameters for the attribute search, the model-based approach is one
to two orders of magnitude faster, although we additionally calculate semblance along the operators which
is not required for this simple, unweighted and unthresholded kind of stack.

As mentioned in the preceding section, we calculate the semblance along each CDS operator in addition
to the stack value. In this way, we can also keep track of the stacking parameters of the operator yielding the
highest semblance value. This allows us to generate attribute pseudo sections—termed “pseudo”, as they
are not optimized in a data-driven way as in the CRS stack or the data-driven CDS stack, but obtained by
forward-modeling. In Figure 3 theRCDS pseudo section can be compared with the optimized and smoothed
NIP wave radius section obtained from the CRS stack. Following the notation introduced above, the latter
represents RNIP,data, whereas the CDS result represents RNIP,mod. At locations where the CRS attributes are
determined in a stable manner, these two attributes should only differ by the aperture-dependent spread
length bias. Indeed, both sections are very similar to each other, especially for the well-determined part
up to about 1.8 s. This result demonstrates that our forward-modeling in the CDS stack, the NIP-wave
inversion, and the CRS stack itself are consistent with each other. Thus, we can be quite confident that the
forward-modeling in the CDS approach is working properly.

Figure 4 compares the optimized and smoothed emergence angle section to the emergence angle pseudo
section obtained by the model-based CDS approach. Although difficult to be seen, along some of the events
both section almost coincide, indicating that the same events have been parameterized at the corresponding
ZO locations. For the shallow part, the CDS result mainly shows a complicated pattern with quite large
emergence angles. We interpret this a combination of an effect of spatial aliasing and aperture issues
which will be discussed in more details below. Generally, the model-based CDS stack has for many ZO
locations encountered the highest coherence for steep and/or strongly curved events which appear only as
a few fragments in the CRS result. Generally, we expect that the CDS traveltime operator (2) will better fit
diffraction events. This has been observed for the data-driven CDS approach and seems to be even more
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Figure 2: a) CRS-stacked section restricted to the projected first Fresnel zone. Note the artificial appear-
ance with various truncated events. b) data-driven CDS-stacked section (modified after Soleimani et al.,
2009a). The noise level is slightly increased, but the interference of intersecting events has been simulated
everywhere. c) preliminary model-based counterpart generated in an significantly smaller computation
time, without weighting suffering from spatial aliasing in the shallow part.
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Figure 3: a) CRS-based NIP wave radius section after event consisting smoothing. b) CDS-based NIP
wave radius pseudo section. The latter only shows the radius of curvature associated with the most coherent
operator, whereas all operators for all angles contribute to the stack section in Figure 2. Note the extensive
similarity of both sections.

pronounced in the model-based approach.
Finally, Figure 5 depicts the maximum coherence values encountered along the CRS operators or CDS

operators, respectively. Note the different scales used in these figures. The CRS-based result shows very
distinct reflection events with high coherence, but almost no indication of detected diffraction events. The
vertical strips with relatively low coherence are associated with faults where lots of edge diffraction events
complicate the wavefield. In contrast, the CDS-based result shows a completely different behavior: the
overall semblance level is far lower and we mainly see diffraction events. These also show upon within
the strips which are associated with low semblance values in the CRS result. The two section seem to
complement each other—strong reflection events in the CRS result, lots of previously unseen diffraction
events in the CDS result.

In summary, we observe a very distinct accentuation of diffraction events and a quite poor performance
in the shallow region for the model-based CDS approach in this first application to real data. We attribute
this behavior to the chosen midpoint aperture. The same aperture definition has been used for CRS stack,
data-driven CDS stack, and model-based CDS stack. This aperture has been optimized for the CRS stack
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Figure 4: a) CRS-based emergence angle section after event consisting smoothing. b) CDS-based emer-
gence angle pseudo section. At many locations, the latter parameterizes steeper events which are almost
completely suppressed in the CRS result. Note that this section only shows the emergence angle associ-
ated with the most coherent operator, whereas all operators for all angles contribute to the stack section in
Figure 2.

to allow a sufficiently stable determination of the normal wave radius of curvature RN, which requires a
sufficiently large aperture in midpoint direction. The CDS stacking operator (2) has one degree of freedom
less and is, therefore, less accurate for reflection events. This applies in particular for concave reflection
events for which the signs of RN and RNIP usually differ. Nevertheless, the data-driven CDS stack adapts
to the reflection event as closely as possible and yields an operator which still fits reflection events reason-
ably. As mentioned above, RCDS is a weighted average of the two wavefront radii in this case. However,
for the model-based CDS approach, the situation is completely different. The forward-modeled radius of
curvature does not at all depend on the reflector curvature or its time domain counterpart RN, such that the
corresponding operator very poorly approximates the reflection event for a larger midpoint displacement,
whereas the fit in the vicinity of the central CMP gather should be very good. The smaller the ZO travel-
time, the larger usually the relative difference between the two radii RN and RNIP, i. e., the fit in midpoint
direction gets even worse. This explains the poor performance at shallow times. In contrast, for diffraction
events, RN ≈ RNIP, thus they are well imaged even within a large midpoint aperture and/or for small ZO
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Figure 5: a) CRS-based coherence section after event consisting smoothing. b) CDS-based coherence
pseudo section. Note the different scaling of both plots. The overall coherence in the latter is significantly
lower and mainly shows those curved events (mainly diffractions) which are missing in the CRS-based
result. Again, the CDS section only shows the semblance value associated with the most coherent operator,
whereas all operators for all angles contribute to the stack section in Figure 2.

times. In our future research, we will investigate the use of smaller midpoint apertures, probably totally
detached from the aperture definitions currently used in the CRS stack. One promising option is to attach a
narrow aperture to the approximation of the common-reflection-point trajectory discussed by Höcht et al.
(1999). Along this trajectory, the influence of RN is negligible.

CONCLUSIONS AND OUTLOOK

We have implemented and tentatively applied a model-based approach to the CDS stack method. This
is intended to fully resolve the conflicting dip problem occurring in complex data and, thus, to allow to
simulate a complete stacked section containing all mutually interfering reflection and/or diffraction events.
In contrast to the entirely data-driven CDS method, this model-based approach is far more efficient. The
required macro-velocity model can be generated with any established method, including the the sequential
application of CRS stack and NIP-wave tomography. The model-based CDS stack is tailored to optimize
the stacked section for a subsequent poststack depth migration. This is relevant for situations in which
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the generation of velocity models sufficiently accurate for prestack depth migration is difficult or even
impossible.

The first results indicate that further investigation are required to assess the appropriate choice of ad-
equate apertures for the model-based CDS stack. With the current aperture choice according to the needs
of the CRS stack, the process acts as a strong filter for diffraction events, a feature which might be very
helpful to delineate discontinuities in the subsurface. With smaller aperture, we expect a joint image of
reflection and diffraction events. The additional use of the coherence as weight factor or criterion to accept
or reject the contribution of a particular CDS operator to decrease the noise level will also be investigated.
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