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ABSTRACT

Time-migration velocity analysis can be carried out automatically by evaluating the coherence of
the migrated seismic events in the common-image gathers (CIGs). The performance of a conjugate-
gradient method for automatic time-migration velocity analysis depends on the the coherence mea-
sures used in the objective function. We compare the results of four different coherence measures,
being are conventional semblance, differential semblance, an extended differential semblance using
extended images, and the product of the latter with conventional semblance. In our numerical exper-
iments, the objective functions based on conventional semblance and on the product of conventional
semblance with extended differential semblance provided the best velocity models, as evaluated by
the flatness of the resulting common-image gathers. The method can be easily extended to anisotropic
media.

INTRODUCTION

Kirchhoff time migration aims at focusing seismic events at an image point by stacking the observed data
along a analytically speficied diffraction-traveltime surface. This surface represents the traveltime of a
diffraction at the image point. The choice of an analytic representation of the stacking surface restricts
the applicability of Kirchhoff time migration to media with moderate velocity variations in the scale of the
aquisition geometry.

Time migration tries to describe the full complexity of the traveltimes of the wave propagation between
the image point and the earth’s surface by a relatively small number of parameters at each image point. In
this respect, the parameter set attributed to each image point defines an effective constant-velocity medium
that defines the diffraction-traveltime surface there, but is strictly valid only at this image point.

Time migration velocity analysis consist of estimating this set of parameters at each image point. In-
spite of is obvious intrinsic contradictions this process has a number of advantages, the most important
ones being its algorithmic simplicity, low computational cost, and high robustness in comparison to the
construction of a depth migration velocity model.

Because of the underlying assumption of a smoothly varying velocity, the resulting parameter sets are
also supposed to vary smoothly in the image space. Consequently, they can be represented by smooth
interpolators such as, e.g., B-splines. The grid spacing between adjacent nodes can be of the order of the
length of the seismic line, which greatly reduces the dimension of the parameter space.

Simplicity and robustness of time migration justify its use in the standard processing sequence of most
seismic data. Even when the time migrated image is not convenient for structural interpretation, the so-
constructed time-migration velocity model can still be used for the construction of an initial depth velocity
model by means of time-to-depth conversion. This initial depth velocity model can then later be refined
using more sophisticated depth migration-velocity analysis techniques like tomographic methods (Billette
et al., 2003).
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Recently, we have studied different methods of obtaining an initial model for time time migration
(Schleicher et al., 2008; Schleicher and Costa, 2009). Now, we are interested in how to refine such an
initial model. An efficient criterion to improve a time-migration velocity model is to require that migrated
images of the same image point as obtained, e.g., from migration of neighbouring common-offset sections,
must exhibit a certain degree of similarity. A common method to evaluate this similarity is the use of
common-image gathers (CIGs), where all migrated traces that correspond to the same horizontal position
in the image space are displayed next to each other. If the model parametrization is consistent with the
data, the corresponding events must align horizontally in a CIG (Faye and Jeannot, 1986; Zhu et al., 1998).
This criterion can be automatically applied by evaluating the coherence along horizontal lines through the
CIG (Sattlegger, 1975; Abbad et al., 2009).

In this work, we investigate different implementations of time-migration velocity analysis that use the
optimization of different types of coherence measures in the CIGs. In our numerical test, we use conven-
tional semblance (Neidell and Taner, 1971), differential semblance (Symes and Carazzone, 1991), and two
related new coherence measures based on extended images.

COHERENCE MEASURES FOR TIME-MIGRATION VELOCITY ANALYSIS

Migration velocity analysis by means of the minimization of differential semblance (Symes and Carazzone,
1991) was proposed by Chauris and Noble (2001), since this is frequently considered the most robust
of the conventional coherence measures. To solve this optimization problem, the adjoint-state method
(Mulder and ten Kroode, 2002; Plessix, 2006) is very convenient to analytically calculate the gradient of
the objective function. We start from the general migration-velocity-analysis functional for 2D or 3D time
or depth migration using differential semblance as proposed by Mulder and ten Kroode (2002),

Minimize J [η(x)] =
1
2

∫
dx

∫
dz
∫
dh
[∫

dζS(h− ζ) ∂∂ζ (Γ(x, ζ)I(x, ζ))
]2

∫
dz
∫
dh
[∫
dζS(h− ζ)Γ(x, ζ)I(x, ζ)

]2 (1)

subject to I(x, h) =
∫
dx F (x− x′)

∫
dξW (ξ, h,x′; η)D[ξ, h, t = τD(ξ, h,x′; η)] ,

where x = (x, z) denotes the image point, with x representing one (2D) or two (3D) horizontal coordi-
nates and z representing depth or vertical time. Also, η(x) represents the parameter set that describes the
diffraction-traveltime surface at image point x, and I(x, h) is the migrated section at x for half-offset h,
possibly filtered by a spatial filter F , e.g., a mask to pass only selected regions to the migration-velocity
analysis, or some smoothing operator. Moreover, Γ(x, h) represents the muting operator applied to the
CIGs, S(h) is a smoothing operator, D(ξ, h, t) represents a single common-offset section with ξ being
the CMP coordinate. Finally, W indicates a weight function for the migration operator, which includes
a frequency filter (derivative in 3D, half-derivative in 2D), and τD represents the diffraction-traveltime
surface.

Gradient computation unsing the adjoint-state method

The augmented Lagrangian associated with problem (1) is easily seen to be given by

L(I,η, λ) =
1
2

∫
dx

DΛ(x)
Λ(x)

+
∫
dx
∫
dh λ(x, h)

{
I(x, h)−

∫
dx′ F (x− x′)M(x, h,η)

}
,(2)

where λ(x, h) are Lagrangian multipliers. Moreover, to simplify the notation in the derivation of the
functional’s gradient below, we have introduced the symbols

DΛ(x) ≡
∫
dz

∫
dh

[∫
dζ S(h− ζ)

∂

∂ζ
(Γ(x, ζ)I(x, ζ))

]2

, (3)

Λ(x) ≡
∫
dz

∫
dh

[∫
dζ S(h− ζ) (Γ(x, ζ)I(x, ζ))

]2

, (4)
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and
M(x, h,η) ≡

∫
dξ W (ξ, h,x′; η)D[ξ, h, t = τD(ξ, h,x′; η)] . (5)

The variation of the Lagrangian functional (2) with respect to I , c e λ can then be written as

δL =
∫
dx

∫
dz
∫
dh
[∫

dζS(ζ − h) ∂∂ζ (Γ(x, ζ)I(x, ζ))
] [∫

dβS(β − h) ∂
∂β (Γ(x, β)δI(x, β))

]
Λ(x)

−
∫
dx
DΛ(x)
Λ(x)2

∫
dz

∫
dh

[∫
dζS(ζ − h)Γ(x, ζ)I(x, ζ)

] [∫
dβS(β − h)Γ(x, β)δI(x, β)

]
+
∫
dx
∫
dhλ(x, h)

{
δI(x, h)−

∫
dx′ F (x− x′)δη(x′) · ∇ηM(x, h,η)

}

+
∫
dx
∫
dh δλ(x, h)

[
I(x, h)−

∫
dx′ F (x− x′)M(x, h,η)

]
. (6)

The last factor in the numerator of the fraction in the first line of equation (6) can be integrated by parts.
This yields ∫

dβS(β − h)
∂

∂β
(Γ(x, β)δI(x, β)) = −

∫
dβΓ(x, β)δI(x, β)

∂

∂β
S(β − h) , (7)

where the boundary term vanishes, because the muting operator Γ satisfies Γ(x, hmin) = Γ(x, hmax) = 0.
Substitution of equation (7) back in equation (6) yields, after reorganization of the integrals in the first

and second lines with convenient changes of the integration variables,

δL = −
∫
dx

∫
dz

∫
dhδI(x, h)Γ(x, h)

∫
dβ ∂

∂hS(h− β)
[∫

dζS(ζ − β) ∂∂ζ (Γ(x, ζ)I(x, ζ))
]

Λ(x)

−
∫
dx

∫
dz

∫
dhδI(x, h)Γ(x, h)

DΛ(x)
Λ(x)2

∫
dβS(h− β)

[∫
dζS(ζ − β)Γ(x, ζ)I(x, ζ)

]
+
∫
dx
∫
dhλ(x, h)

{
δI(x, h)−

∫
dx′ F (x− x′)δη(x′) · ∇ηM(x, h,η)

}

+
∫
dx
∫
dh δλ(x, h)

[
I(x, h)−

∫
dx′ F (x− x′)M(x, h,η)

]
, (8)

which can then be regrouped into

δL = −
∫
dx

∫
dz

∫
dh δI(x, h){

Γ(x, h)
[

1
Λ(x)

∫
dβ

∂

∂h
S(h− β)

(∫
dζS(ζ − β)

∂

∂ζ
(Γ(x, ζ)I(x, ζ))

)
+
DΛ(x)
Λ(x)2

∫
dβS(h− β)

(∫
dζS(ζ − β)Γ(x, ζ)I(x, ζ)

)]
− λ(x, h)

}
−
∫
dx
∫
dh λ(x, h)

[∫
dx′ F (x− x′)δη(x′) · ∇ηM(x, h,η)

]
+
∫
dx
∫
dh δλ(x, h)

[
I(x, h)−

∫
dx′ F (x− x′)M(x, h,η)

]
. (9)

It is now convenient to choose λ as

λ(x, h) = Γ(x, h)
{

1
Λ(x)

∫
dβ

∂

∂h
S(h− β)

[∫
dζS(ζ − β)

∂

∂ζ
(Γ(x, ζ)I(x, ζ))

]
+
DΛ(x)
Λ(x)2

∫
dβS(h− β)

[∫
dζS(ζ − β)Γ(x, ζ)I(x, ζ)

]}
(10)



78 Annual WIT report 2010

and also use that
I(x, h) =

∫
dx′ F (x− x′)M(x, h,η) . (11)

Substitution in equation (9) yields then

δL = −
∫
dx δη(x) · ∇η

{∫
dh

∫
dx′ λ(x′, h)F (x′ − x)M(x, h,η)

}
, (12)

where λ(x′, h) is now given by equation (10). More explicitely, the variation to be calculated is

δL = −
N∑
j=1

∫
dx δηj

{∫
dh

∫
dx′ λ(x′, h)F (x′ − x)

∂

∂ηj
M(x, h,η)

}
, (13)

where N represents the number of parameters characterizing the diffraction-traveltime surface.
In the derivative of the migrated image M(x, h,η) with respect to the traveltime parameters η, the

derivative of the weight function is of a lower order in frequency than the derivative of the phase term and
can, thus, be neglected (Mulder and ten Kroode, 2002), i.e.,

∂

∂ηj
M(x, h,η) ≈

∫
dξ W (ξ, h,x; η)D′[ξ, h, t = τD(ξ, h,x; η)]

∂τD
∂ηj

. (14)

This yields the final expression for the gradient of the objetive function as

δL = −
N∑
j=1

∫
dx δηj

{∫
dh

∫
dx′ λ(x′, h)F (x′ − x)

∫
dξ W (ξ, h,x; η)D′[ξ, h, t = τD(ξ, h,x; η)]

∂τD
∂ηj

}
. (15)

In other words, the dependence of the objective function on the medium parameters is essentially contained
in the derivative ∂τD/∂ηj . Note that this derivation is valid for general medium representations, indepen-
dently of the actual type and number of parameters η. In particular, it can be applied in anisotropic media
once a suitable traveltime parameterization is available.

Implementational aspects

The implementation of an algorithm of time-migration velocity analysis based on the above discussion
requires a spatial representation of the velocity model. If we assume that the model parameters are repre-
sented by B-splines of the form

ηj(x) =
∑
I

∑
J

ηIJj BI(x1)BJ(x3) , (16)

we can represent the gradient δL as

δL = −
N∑
j=1

∑
I

∑
J

δηIJj

∫
dx BI(x1)BJ(x3)∫

dh

∫
dx′ λ(x′, h)F (x′ − x)

∫
dξ W (ξ, h,x; η)D′[ξ, h, t = τD(ξ, h,x; η)]

∂τD
∂ηj

. (17)

In other words, in terms of the B-splines coefficients, we can conclude that

∂L
∂ηIJj

=
∂J

∂ηIJj
= −

∫
dx BI(x1)BJ(x3)

{∫
dh

∫
dx′ λ(x′, h)F (x′ − x)∫

dξ W (ξ, h,x; η)D′[ξ, h, t = τD(ξ, h,x; η)]
∂τD
∂ηj

}
. (18)
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Moreover, from the point of view of computational efficiency, it is important to observe that the deriva-
tive of the migrated image M(x, h,η) with respect to the medium parameters η, given by equation (14), is
easily calculated during the migration process. It represents a second sum with a slighlty modified weight
factor, adding only a very small extra cost to the migration procedure.

The computation of the gradient is thus given simply by projecting the product of the two images,
λ(x, h) e ∂M(x, h,η)/∂ηj , into the B-splines bases that represent the model, that is,

∂L
∂ηIJj

=
∂J

∂ηIJj
= −

∫
dx BI(x1)BJ(x3)

[∫
dh

∫
dx′ λ(x′, h)F (x′ − x)

∂M

∂ηj

]
. (19)

The main cost of the gradient evaluation is contained in the computation of the expression within brackets
(Mulder and ten Kroode, 2002). To evaluate this expression, two groups of image gathers are needed, being
conventional CIGs and corresponding CIGs associated with ∂M(x, h,η)/∂ηj . In this way, the overall cost
of the methods is approximately twice the cost of a simple pre-stack time migration.

The gradient ∂J/∂ηIJj can be used in optimization methods like conjugate-gradient or quasi-Newton
methods, to update the velocity model and minimize the differential semblance in the CIGs. In this way,
a given initial model as obtained from, for instance, conventional velocity analysis, can be refined into a
better time-migration velocity model.

Time migration in isotropic media

To apply the algoritm to 3D time-migration velocity analysis in isotropic media, let now the image point
be explicitely denoted by x ≡ (x, y, τ), where (x, y) denote the coordinates of the projetion of the image
point into the earth’s surface, and where τ is the traveltime along the image ray to the image point. Also,
we approximate the diffraction-traveltime surface by

τD(ξ, h,x) = ts + tr =

√
(ξx − hx − x)2 + (ξy − hy − y)2

c2(x, y, τ)
+ τ2

+

√
(ξx + hx − x)2 + (ξy + hy − y)2

c2(x, y, τ)
+ τ2 , (20)

where c(x, y, τ) represents the time migration velocity. Since this is the only medium parameter describing
the diffraction-traveltime surface, we observe that N = 1 and η1 = c in equation (15). Thus, the parameter
derivatives reduce to

∂τD(ξ, h,x)
∂c

=
∂ts
∂c

+
∂tr
∂c

= −1
c

{
ts

[
1−

(
τ

ts

)2
]

+ tr

[
1−

(
τ

tr

)2
]}

. (21)

To correct for the geometrical spreading factor during migration, we choose the weight function as
proposed by Peles et al. (2001), i.e.,

W (ξ, h,x) =
1
2
cτ

(
ts
tr

+
tr
ts

)√
1
ts

+
1
tr
. (22)

Alternatively, one can use a unit weight function (i.e., no weight and no spreading compensation) during
migration. In this case, an approximate geometrical-spreading correction needs to be applied to the data
after migration, before the velocity analysis.

Alternative objective functions

A point of criticism to differential semblance as an annihilator to measure the absence of moveout of
events in a CIGs relates to its rather local character (Abbad et al., 2009). Differential semblance can



80 Annual WIT report 2010

result in small values even if the event still exhibits some residual moveout, particularly for aquisitions
with a large offset variation. This feature of differential semblance is a disadvantage for velocity analysis,
particularly for anisotropic media. Abbad et al. (2009) propose an alternative objective function that has
the disadvantage of not being analytically differentiable. To extend the active region of the annihilator and
avoid this problem, we test the performance of the method using the following alternative functionals

J1[η(x)] =
1
2

∫
dx

1−

∫
dz
[∫H

0
dhI(x, h)

]2
H
∫
dz
∫H

0
dhI2(x, h)

 =
1
2

∫
dx S(x) , (23)

J2[η(x)] =
1
2

∫
dx

∫
dz
∫ L

0
dγW (γ)

∫H−γ
γ

dhWh(h) [∆I(x, h, γ)]2∫
dz
∫
dhI2(x, h)

=
1
2

∫
dx E(x) , (24)

J3[η(x)] =
1
2

∫
dx S(x) E(x) , (25)

where J1 is based on conventional semblance S(x), J2 uses an extended version E(x) of the differential
semblance, and J3 uses the product of the latter two coherence measures. In the above functionals, I(x, h)
is a smoothed version of the migrated image, represented as

I(x, h) =
∫
dζSz(z − ζ)

∫ H

0

dσSh(h− σ)Γ(x, ζ, σ)I(x, ζ, σ) , (26)

with I(x, z, h) = I(x, h) given by the second line of problem (1). Moreover, equations (23) and (24) make
use of extended images given by

∆I(x, h, γ) = I(x, h+ γ)− I(x, h− γ) . (27)

The objective functions (24) and (25) using the extended differential semblance E(x) retain the desirable
properties of differential semblance, but extend the domain of the annihilator.

Gradient of the functionals To use the new functionals in an optimization method, we need their gradi-
ents. Since the derivations are rather similar, we determine, as an example, the gradient of functional (24).
Its Lagrangian is given by

L(η) =
1
2

∫
dx E(x) +

∫
dx
∫
dhλ(x, h)

{
I(x, h)−

∫
dx′ F (x− x′)M(x, h,η)

}
. (28)

The variation of this Lagrangian functional is

δL(η) =
∫
dx

∫
dz
∫ L

0
dγW (γ)

∫H−γ
γ

dhWh(h)∆I(x, z, h, γ)δ∆I(x, z, h, γ)∫
dz
∫
dhI2(x, h)

−
∫
dx

E(x)∫
dz
∫
dξ I2(x, z, ξ)

∫
dz

∫
dξ I(x, z, ξ)δI(x, z, ξ)

+ other terms, (29)

where the other terms arise from the variation of the second term of equation (28) and are identical to the
last two lines of equation (6).

Because of equation (26), the variation of the smoothed image I is given by

δI(x, h) =
∫
dζSz(z − ζ)

∫ H

0

dσSh(h− σ)Γ(x, ζ, σ)δI(x, ζ, σ) (30)

and that of the extended images by

δ∆I(x, h, γ) = δI(x, h+ γ)− δI(x, h− γ)

=
∫
dζSz(z − ζ)

∫ H

0

dσ [S(h+ γ − σ)− S(h− γ − σ)] Γ(x, ζ, σ)δI(x, ζ, σ) . (31)
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Substituting these expressions, as well as the definition

J (x, h, γ) ≡
∫ H−γ

γ

dσ Sh(h− σ)Wh(σ)∆I(x, σ, γ) , (32)

in equation (29) yields, after a convenient reorganization of the integrals,

δL(η) = −
∫
dx
∫
dh δI(x, h)Γ(x, h){∫

dζ Sz(z − ζ)
∫ L

0
dγ W (γ) [J (x, ζ, h+ γ, γ)− J (x, ζ, , h− γ, γ)]∫

dζ
∫
dξI2(x, ζ, ξ)

+
E(x)∫

dz
∫
dξ I2(x, z, ξ)

∫
dζ Sz(z − ζ)

∫
dξ S(h− ξ)Wh(ξ)I(x, ζ, ξ)− λ(x, h)

}
+ other terms, (33)

where the other terms now equal the last two lines of equation (9). From equation (33), we recognize that
with the following choice for λ(x, h),

λ(x, h) = λ2(x, h) = Γ(x, h)

{∫
dζ Sz(z − ζ)

∫ L
0
dγ W (γ) [J (x, ζ, h+ γ, γ)− J (x, ζ, , h− γ, γ)]∫

dζ
∫
dξ I2(x, ζ, ξ)

+
E(x)∫

dz
∫
dξ I2(x, z, ξ)

∫
dζSz(z − ζ)

∫
dξ S(h− ξ)Wh(ξ)I(x, ζ, ξ)

}
. (34)

the final expression for the variation of the gradient of the objective function is again given by equation
(15).

The corresponding derivations for functionals (23) and (25) leads to the following expressions for
λ(x, h),

λ(x, h) = λ1(x, h) = Γ(x, h)
∫
dζ Sz(z − ζ)

∫
dσ Sh(σ − h)

{ ∫
dξ I(x, ζ, ξ)

H
∫
dα
∫
dβ I2(x, α, β)

+

∫
dα
[∫
dβ I(x, α, β)

]2 I(x, ζ, σ)

H
[∫
dα
∫
dβ I2(x, α, β)

]2
}
, (35)

λ(x, h) = λ3(x, h) = E(x)λ1(x, h) + S(x)λ2(x, h) , (36)

where the latter is an immediate consequence of the product rule of differentiation. In both cases, the
variation of the Lagrangian is still described by the same expression (15).

NUMERICAL EXAMPLES

We have applied the above technique of velocity model refinement to the Marmousoft data (Billette et al.,
2003). These data were constructed by Born modeling in a smoothed version of the Marmousi model
(Versteeg and Grau, 1990). The true Marmousoft velocity model is depicted in Figure 1.

Model representation

As detailed above, we chose to represent the velocity model by B-splines, using a grid with 15× 31 nodes,
with grid spacing intervals of 0.1 s in vertical time and 250 m in the horizontal direction. The starting
model was a homogeneous model with a constant velocity of 1500 m/s.

For the extended differential semblance, we chose a window length of four traces and in all functionals,
we applied the smoothing operator five times along the vertical and offset axes.
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Figure 1: Marmousoft velocity model.
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Figure 2: Velocity models obtained from a constant starting model using a conjugate gradient method with
the objective functions as detailed in the text. (a) Semblance; (b) Differential Semblance; (c) Extended
Differential Semblance; (d) Extended Differential Semblance × Semblance.

Optimization method

To estimate the B-splines coefficients, we employed an implementation of the conjugate-gradient method
(Byrd et al., 1993, 1995; Zhu et al., 1994, 1997), with at most 100 evaluations of the objective function and
a maximum 40 iterations. The convergence criterion was a precision tolerance of 10−10.
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Figure 3: Selected CIGs along the Marmousoft model after automatic time migration velocity analysis
using the semblance functional (24).

Velocity results

Figure 2 shows the resulting velocity models using the four tested functionals. We observe that the main
general features are correctly recovered by all four objective functions. The functionals using differential
semblance and the product of extended differential semblance times conventional semblance yield the most
detailed models. Since the original Marmousoft model of Figure 1 is in depth, it is hard to judge which of
the time-migration models of Figure 2 is actually the best one.

Image gathers

The best test for a time-migration model is, of course, a time migration. Figures 3 to 6 show selected
common-image gathers after time migration using the four different velocity models of Figure 2. The CIGs
corresponding to the objective functions using semblance (model in Figure 2a), differential semblance
(model in Figure 2b), extended differential semblance (model in Figure 2c), and extended differential
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Figure 4: Selected CIGs along the Marmousoft model after automatic time migration velocity analysis
using the differential semblance functional (1).

semblance multiplied by semblance (model in Figure 2d), are depicted in Figure 3, 4, 5, and 6, respectively.
We see that the general aspect of all CIGs is that most events are reasonably flat. Independently of the
objective function, the central region between CIG 6000 and CIG 7500 presents the most difficulties. This
problem should be attributed to the general limitations of time migration in geologically complex areas
rather than taking it as an indication of a poor velocity model. Visual inspection seems to indicate that the
best flattening is achieved by the semblance (Figure 3) and product (Figure 6) objective functions.

For a more quantitative analysis, we have compiled Table 1. It shows the mean values of all four
objective functions after otimization of each of them. We see that minimum semblance objective function
is obtained when miminizing itself. On the other hand, all other three objective functions are minimized
when minimizing the product objective function. This results confirms in a more quantitative manner
what our visual inspection of the CIGs already indicated, namely that the resulting velocity models of the
semblance and product objective functions produce the best flattened image gathers.
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Figure 5: Selected CIGs along the Marmousoft model after automatic time migration velocity analysis
using the extended differential semblance functional (23).

CONCLUSIONS

Time-migration velocity analysis can be carried out automatically by evaluating the coherence of the mi-
grated seismic events in the common-image gathers (CIGs). In this work, we have studied the performance
of an adjoint-state implementation of a conjugate-gradient method for automatic time-migration velocity
analysis using four objective functions based on different coherence measures. The four coherence mea-
sures tested are conventional semblance, differential semblance, an extended differential semblance using
extended images, and the product of the latter with conventional semblance. In our numerical experiments,
the objective functions based on conventional semblance and on the product of conventional semblance
with extended differential semblance provided the best velocity models, as evaluated by the flatness of the
resulting common-image gathers.

The present approach to time-migration velocity analysis can be extended to arbitrary anisotropic me-
dia. Although analytic expression to the describe the diffraction-traveltime surfaces are no longer available
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Figure 6: Selected CIGs along the Marmousoft model after automatic time migration velocity analysis
using the product functional (25) of extended differential semblance and semblance.

for the more general cases of anisotropy, the numerical evaluation of these surfaces is still simple and com-
putationally efficient. An example for nonhyperbolic velocity analysis was given by Abbad et al. (2009).
For VTI media, analytic approximate traveltime representations are available in the literature (see, e.g.,
Alkhalifah and Tsvankin, 1995; Fomel, 2004). Aleixo and Schleicher (2010) presented hightly accurate
two-parameter traveltime approximations for VTI media. Therefore, an extension of the ideas presented in
this work to VTI media is straightforward.
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Objective function values
Optimized objec-
tive function

Semblance Differential
Semblance

Extended Differen-
tial Semblance

Extended Differen-
tial Semblance ×
Semblance

Semblance 0.0602710 25.83693 2.829875 1.425242

Differential Sem-
blance

0.0894132 26.01136 2.659655 1.346235

Extended Differen-
tial Semblance

0.0648145 34.74438 4.180604 2.116063

Extended Differen-
tial Semblance ×
Semblance

0.1037669 24.07932 2.617682 1.307488

Table 1: Values of the objective functions after migration velocity analysis. Left column: Optimized
objective function. Other columns: Resulting values of all four objective functions.
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