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ABSTRACT

Three-dimensional wave-equation migration techniques are still quite expensive because of the huge
matrices that need to be inverted. Several techniques have been proposed to reduce this cost by
splitting the full 3D problem into a sequence of 2D problems. We compare the performance of splitting
techniques for stable 3D Fourier Finite-Difference (FFD) migration techniques in terms of image
quality and computational cost. The FFD methods are complex Padé FFD and FFD plus interpolation,
and the compared splitting techniques are two and four-way splitting as well as alternating four-way
splitting, i.e., splitting into the coordinate directions at one depth and the diagonal directions at the
next depth level. From numerical examples in homogeneous and inhomogeneous media, we conclude
that alternate four-way splitting yields results of the same quality as full four-way splitting at the cost
of two-way splitting.

INTRODUCTION

Because of its superiority in areas of complex geology, wave-equation migration is substituting Kirchhoff
migration in practice. However, while Kirchhoff migration counts on more than 30 years of technological
development, wave-equation migration methods still need to be improved in various aspects. One of these
aspects is the efficient implementation of three-dimensional wave-equation migration.

The application of a three-dimensional wave-equation migration technique adds the problem of com-
putational cost to those of stability and precision of the chosen migration algorithm. To speed up migration
techniques like finite-difference (FD) (Claerbout, 1971) or Fourier finite-difference (FFD) migration (Ris-
tow and Rühl, 1994), a technique known as splitting is frequently used. In this context, splitting means
the separation of a single-step 3D migration into two 2D passes within planes parallel to the horizontal
coordinate axes, usually the inline and crossline directions (Brown, 1983).

When the splitting is applied to the implicit FD migration operator in such a way that the resulting
equations are solved alternatingly in the inline and crossline directions, the resulting FD scheme is known
as an Alternating-Direction-Implicit (ADI) scheme. This procedure has the drawback of being incorrect
for strongly dipping reflectors, resulting in large positioning errors for this type of reflectors when the dip
direction is away from the coordinate directions and thus outside the migration planes. This imprecision
leads to numerical anisotropy, i.e., a migration operator that acts quite differently in different directions.

To improve this behaviour while retaining the advantages of a rather low computation cost, different
procedures have been proposed over the years. Ristow (1980, see also Ristow and Rühl, 1997) proposed
to perform, in addition to the 2D migration in the coordinate planes, also 2D migrations in the diagonal di-
rections between the coordinate axes. Kitchenside (1988) used phase-shift migration plus an additional FD
propagation step of the residual field to reduce the splitting error. Graves and Clayton (1990) proposed the
implementation of a phase-correction operator using FD and incorporating a damping function to guarantee
the stability of the 3D FD migration scheme.
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Inverting the idea of Kitchenside (1988), who propagated the field using phase shift and the residual
using FD, Li (1991) proposed to use conventional FD migration plus a residual field correction by phase
shift to improve the migrated image quality. Without any need to modify the conventional 3D FD migration,
the Li correction adds a phase-shift filter at certain steps of the downward extrapolation. This technique
corrects not only for the splitting error, but also for the positioning error of steeply dipping reflectors.

Collino and Joly (1995) solved a family of new 3D one-way wave equations by the ADI method. These
equations significantly reduce the numerical anisotropy, but are approximately four times as expensive as
conventional two-way splitting. Wang (2001) developed an alternative method to improve the precision of
the FD solution of the one-way wave equation. To guarantee stability and efficiency, he keeps the implicit
FD scheme and the alternation of directions, but interpolates between the ADI solution and the wavefield
before each step of extrapolation. He calls the resulting method ADI plus interpolation (ADIPI). As a
drawback, this ADIPI can produce instabilities in the presence of strong lateral velocity variations.

Zhou and McMechan (1997) proposed a 45◦ one-way wave equation that can be expressed as a system
of differential equations of first and second order (Zhang et al., 1988), and factored into a product of two
one-dimensional terms corresponding to the lateral directions (Mitchell and Griffiths, 1980; Graves and
Clayton, 1990). A big asset of the method is that the conventional FD extrapolation can be used with
very little modification. In this way, the efficiency of conventional splitting is preserved, without adding
the necessity of any error compensation. However, the method is also instable for strong lateral velocity
contrasts and needs rather heavy model smoothing.

Biondi (2002) showed that FFD migration is more precise than other methods that use implicit finite
differences like pseudoscreen propagators (Jin et al., 1999) and high-angle screen propagators (Xie and
Wu, 1998). Given that the computational complexity of all three methods is approximately the same, FFD
migration is more attractive than the others. Unfortunately, when conventional FFD migration is applied in
the presence of strong velocity contrasts, it can generate numerical instabilities, too.

To overcome the problem of instabilities in models with strong lateral velocity contrasts, Biondi (2002)
presented a correction to the FFD method that avoids stability problems. To derive it, he adapted a theory
of Godfrey et al. (1979) and Brown (1979), which improves the stability of the 45◦ equation. The corrected
FFD method is unconditionally stable for arbitrary velocity variations, as much in the velocity model as in
the reference velocity. Particularly, and differently from conventional FFD migration, it is unconditionally
stable even if the reference velocity is smaller than the model velocity. This new property allows for the
application of the interpolation technique, conventionally used to improve phase-shift and split-step migra-
tion (Gazdag and Sguazzero, 1984) but impossible in FFD migration, because it needs propagation with a
larger and a smaller reference velocity. The resulting migration technique is called FFD plus interpolation,
or shortly FFDPI.

Another, computationally less expensive method to stabilize FFD migration in the presence of strong
lateral velocity contrasts was proposed by Amazonas et al. (2007). It substitutes the real Padé approx-
imation (Bamberger et al., 1988) used in the derivation of FFD migration (Ristow and Rühl, 1994) by
its complex version (Millinazzo et al., 1997). In this way, the incorrect treatment of near horizontal and
slightly evanescent waves of the real Páde approximation is improved, leading to a more stable FFD algo-
rithm, shortly referred to as complex Padé FFD (CPFFD) migration.

In this work, we study possibilities of efficiently implementing these stable FFD migration techniques in
3D. We implemented and compared splitting techniques for FFDPI (Biondi, 2002) and CPFFD (Amazonas
et al., 2007) migration. Our numerical tests indicate that a very robust, highly efficient, and satisfactorily
accurate method is alternate four-way splitting, i.e., splitting into the coordinate directions at one extrapo-
lation step and into the diagonal directions at the next step.

THEORETICAL BACKGROUND

The one-way wave equation

The one-way wave equation (Leontovich and Fock, 1946) can be derived starting from the scalar wave
equation, which for a homogeneous medium is given by

∂2p(x, t)
∂z2

+
∂2p(x, t)
∂x2

+
∂2p(x, t)
∂y2

− 1
c2
∂2p(x, t)
∂t2

= 0 , (1)
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where p(x, t) is the scalar wavefield and c = c(x) is the spatially varying wave velocity. For moder-
ately varying media, where velocity derivatives can be neglected, Fourier transform in time and horizontal
coordinates x and y allows to represent equation (1) as

∂2P (kx, ky, z, ω)
∂z2

− (−iω)2

c2

(
1− c2

ω2
(k2
x + k2

y)
)
P (kx, ky, z, ω) = 0 . (2)

Equation (2) can be factorized into[
∂P (kx, ky, z, ω)

∂z
− (−iω)

c

√
1− c2

ω2
(k2
x + k2

y)

]
×[

∂P (y, kx, ω)
∂z

+
(−iω)
c

√
1− c2

ω2
(k2
x + k2

y)

]
P (kx, ky, z, ω) = 0 . (3)

The two differential operators in equation (3) represent, when taken alone, one-way wave equations that
describe up and downgoing waves. For migration, the one-way wave equation of interest is the one de-
scribing downgoing waves, i.e.,

∂P (kx, ky, z, ω)
∂z

=
(−iω)
c

√
1− c2

ω2
(k2
x + k2

y)P (kx, ky, z, , ω) . (4)

Inverse Fourier transform in the horizontal wavenumbers kx and ky yields then formally

∂P (x, ω)
∂z

=
(−iω)
c(x)

√
1 +

c2(x)
ω2

(
∂2

∂x2
+

∂2

∂y2

)
P (x, ω) . (5)

The actual restrictions that apply to equation (5) in inhomogeneous media are much less severe than the
above derivation indicates. Of course, for the formal representation (5) to make practical sense, the square
root of the differential operator needs to be approximated in terms of numerically executable operations.

Expansion of the square root

A well-used possibility for the approximation of the square root in the one-way wave equation (5) in terms
of numerically executable operations is an expansion into a Padé series (Bamberger et al., 1988)

√
1 + Z ≈ 1 +

N∑
n=1

anZ

1 + bnZ
(6)

where the Padé coefficients are

an =
2

2N + 1
sin2

(
nπ

2N + 1

)
, and bn = cos2

(
nπ

2N + 1

)
. (7)

This approximation is used in most practical FD migration schemes. Depending on the number N of
terms used in the expansion, it gives rise to the so-called 15◦, 45◦, or 60◦ migrations.

However, when the interest is on accurate imaging up to very high propagation angles, approximation
(6) has a drawback. For propagation angles close to 90◦, the argument Z of equation (6) becomes close
to −1. However, for Z < −1, where wave propagation enters the evanescent domain, the left side of
equation (6) is imaginary, while its right side remains real. Thus, the approximation breaks down abruptly,
which causes instabilities when using the real approximation (6) for migration in models with strong lateral
velocity contrasts.

To overcome this problem, Millinazzo et al. (1997) proposed to rotate the branch cut of the complex
plane before application of the Padé approximation. Denoting the rotation angle by α, the representation
of the square root is

√
1 + Z = eiα/2

√
(1 + Z)e−iα = eiα/2

√
1 + [(1 + Z)e−iα − 1] , (8)
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which, after expansion into a Padé series according to equation (6), yields

√
1 + Z = C0 +

N∑
n=1

AnZ

1 +BnZ
, (9)

where the complex Padé coefficients are given by

An ≡ ane
−iα/2

[1 + bn(e−iα − 1)]2
, Bn ≡

bne
−iα

1 + bn(e−iα − 1)
, (10)

C0 ≡ eiα/2

{
1 +

N∑
n=1

an(e−iα − 1)
[1 + bn(e−iα − 1)]

}
. (11)

Note that in equation (11), C0 is an approximation to one. This approximation gets the better the more
terms N are used in the sum. However, for a finite number of terms N , this approximation is always
imperfect. Therefore, it is more practical to directly use C0 = 1. We will use this value for C0 in the
following derivations.

Fourier finite difference migration

The complex Padé approximation (9) allows more stable implementations of not only FD but also FFD
migration (Amazonas et al., 2007). The derivation of 3D complex Padé FFD (CPFFD) migration is very
similar to the original derivation of Ristow and Rühl (1994). It starts from the difference between the square
root of equation (5) and a corresponding one where the velocity has been replaced by a constant reference
velocity cr, viz.,

iω

c(x)

√
1 +

(
c(x)
ω

)2(
∂2

∂x2
+

∂2

∂y2

)
− iω

cr

√
1 +

(cr
ω

)2
(
∂2

∂x2
+

∂2

∂y2

)
. (12)

Expanding both square roots in equation (12) in complex Padé series according to equation (9), we find

ik0

{
p
√

1 +X2 −
√

1 + p2X2
}
≈ ik0

{
p

[
1 +

N∑
n=1

AnX
2

1 +BnX2

]
−

[
1 +

N∑
n=1

Anp
2X2

1 +Bnp2X2

]}
,

(13)
where we have used the notations

k0 ≡
ω

cr
, p ≡ cr

c(x)
, and X2 ≡

(
c(x)
ω

)2(
∂2

∂x2
+

∂2

∂y2

)
. (14)

Joining the two series into one, expanding the fractions into Taylor series, and grouping the terms of
equal power leads to

ik0

{
p
√

1 +X2 −
√

1 + p2X2
}
≈ ik0

{
p− 1

+
[∑N

n=1Anp(1− p)X2
(

1−Bn (1−p3)
1−p X2 +B2

n
(1−p5)

1−p X4 −B3
n

(1−p7)
1−p X6 + ...

)]}
. (15)

Since
1− pn+1

1− p
= 1 + p+ p2 + ...+ pn , (16)

this expression is, up to second order, equivalent to a Taylor series expansion of a Padé expression of the
form

ik0

{
p
√

1 +X2 −
√

1 + p2X2
}
≈ ik0

{
(p− 1) +

N∑
n=1

Anp(1− p)X2

1 + σBnX2

}
, (17)
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where σ = 1 + p+ p2.
Using this approximation, the one-way wave equation (5) can be represented as

dP

dz
=

{
−ik0

√
1 + p2X2 − ik0

[
(p− 1) +

N∑
n=1

Anp(1− p)X2

1 +BnσX2

]}
P , (18)

which is the complex Padé equivalent to standard FFD migration (Ristow and Rühl, 1994).
As seen above, the theoretical value of σ obtained from this expansion is σ = 1 + p+ p2. However, 2D

numerical experiments of Amazonas et al. (2007) indicate that other expressions for σ can produce better
results. For small contrasts, they suggest σ = 3p and for high fidelity up to high propagation angles, they
propose σ = 1 + p3.

Implementation

To solve equation (18), we separate it into a set of differential equations. The first two terms provide the
equations

dP

dz
= −ik0

√
1 + p2X2P (19)

and
dP

dz
= −ik0(p− 1) , (20)

the analytic solutions of which are

P (x, z + ∆z, ω) = e−ik0
√

1+p2X2∆zP (x, z, ω) (21)

and
P (x, z + ∆z, ω) = e−ik0∆zC0(p−1)P (x, z, ω) . (22)

The remaining terms of equation (18) from the Padé series are represented by differential equations

dP

dz
= −ik0

Anp(1− p)X2

1 +BnσX2
P , (n = 1, . . . , N) . (23)

Discretizing these differential equations using a Crank-Nicolson FD scheme, we obtain

P j+1 − P j

∆z
= −ik0

Anp(1− p)X2

1 +BnσX2

P j+1 + P j

2
, (24)

where P j = P (r, zj , ω). Equation (24) means that the following implicit equation needs to be solved:{
1 +

[
Bnσ + i

k0∆z
2

Anp(1− p)
]
X2

}
P j+1 =

{
1 +

[
Bnσ − i

k0∆z
2

Anp(1− p)
]
X2

}
P j . (25)

We still need to discretize of the derivatives in the horizontal coordinates, i.e., replace the differential
operator X2 by its difference operator

X2 ≈ X2 =
c2(xk, yl, zj)

ω2

(
D2
x

∆x2
+

D2
y

∆y2

)
, (26)

where the matrices D2
x e D2

y represent difference operators for the second derivatives in x and y. For
simplicity, we choose second-order difference operators, i.e.,

D2
xP

j
k,l = P jk+1,l − 2P jk,l + P jk−1,l and D2

yP
j
k,l = P jk,l+1 − 2P jk,l + P jk,l−1 , (27)

for k = 1, . . . , nx and l = 1, . . . , ny with nx e ny denoting the number of grid points in the x and y
directions. The resulting difference equation equivalent to differential equation (23) reads[

I + Cn

(
D2
x

∆x2
+

D2
y

∆y2

)]
Pj+1 =

[
I + C∗n

(
D2
x

∆x2
+

D2
y

∆y2

)]
Pj , (28)
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where I is the identity matrix and Pj is the matrix formed by the elements P jk,l at a fixed depth level zj .
Moreover, Cn is the complex matrix with elements

(Cn)k,l =
c2

ω2

[
Bnσ + i

k0∆z
2

Anp(1− p)
]
, (29)

with c = c(xk, yl, zj), σ = σ(xk, yl, zj), and p = p(xk, yl, zj), and the asterisk denotes the complex
conjugate.

Two-way splitting

In the technique called two-way splitting, also known as alternating-directions-implicit (ADI) method
(Wachspress and Harbetler, 1960; Douglas, 1962; Mitchell and Griffiths, 1980), one substitutes equation
(28) by its approximate factorized form(

I + Cn
D2
x

∆x2

)(
I + Cn

D2
y

∆y2

)
Pj+1 =

(
I + C∗n

D2
x

∆x2

)(
I + C∗n

D2
y

∆y2

)
Pj . (30)

This equation has the advantage of being solvable in two 2D steps. Under the assumption that the inverse
operator in y,

(
I + CnD2

y/∆y
2
)−1

, commutes with both operators in x, equation (30) can be rewritten as(
I + Cn

D2
x

∆x2

)
Pj+1 =

(
I + C∗n

D2
x

∆x2

)
P̃j (31)

where the intermediate value P̃ j , defined as

P̃j =

(
I + Cn

D2
y

∆y2

)−1(
I + C∗n

D2
y

∆y2

)
Pj , (32)

can be found solving the system(
I + Cn

D2
y

∆y2

)
P̃j =

(
I + C∗n

D2
y

∆y2

)
Pj . (33)

The advantage of splitting is in the computational cost. While the numerical solution of equation (28)
requires the solution of a system of size nx×ny , the cascaded solution of equations (33) and (31) demands
only the solution of nx systems of size ny , followed by ny systems of size nx. Since all these systems
are tridiagonal, there are very efficient ways to solve them, which makes the splitting technique orders of
magnitude faster than the solution of the original 3D system.

On the other hand, this procedure also has disadvantages. The biggest one is the introduction of nu-
merical anisotropy into the propagation of the wavefield, because the numerical error increases with the
azimuth between the propagation direction and the coordinate directions. This degrades the migrated im-
age, introducing errors in the positioning of steeply dipping reflectors.

Splitting in more directions

To overcome the problems with numerical anisotropy, Ristow and Rühl (1997) proposed to generalize
the technique to splitting into more than two directions. The idea is to approximate the 3D square-root
operator by a sequence of 2D operators in different directions. In practice, most uses rely on three, four or
six directions to avoid symmetry problems. The unknown coefficients of these 2D operators are obtained
from Taylor series expansions or by optimization techniques.

The multi-way splitting form of the 2D Padé operators is given by the complex Padé expansion of the
square-root operator in equation (5) for multiple directions,√

1 +
c2(x)
ω2

(
∂2

∂x2
+

∂2

∂y2

)
≈ 1 +

2
K

K∑
j=1

N∑
n=1

αnw
2
j

1 + βnw2
j

, (34)
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where K is the number of directions. Moreover, wj are the derivative operators in the splitting directions,
i.e., wj = cosφj u + sinφj v, with φj = (j − 1)∆φ (for j = 1, 2, . . . ,K, and ∆φ = 2π/K) being the
azimuth of the rotated direction.

There are two ways of obtaining the unknown coefficients αn and βn in equation (34). One way is,
as detailed above for the full 3D case, by Taylor series expansion of the fractions and comparison of the
result with the direct Taylor series expansion of the square root. Alternatively, optimization techniques can
be employed to find optimum coefficients that minimize the numerical anisotropy for a certain range of
medium velocities and a given reference velocity within the range of interest of propagation angles.

In conventional implementations of multi-way splitting, operators (34) are applied in sequence at one
single depth level before proceeding to the next one. In this paper, we apply the differential operators w1

and w3 for φ1 = 0◦ and φ3 = 90◦, i.e., the derivatives in the x and y directions, at one depth level, and
leave the application of the operators w2 and w4 for φ2 = 45◦ and φ4 = 135◦, i.e., the derivatives in the
diagonal directions, to the next depth level. In this way, we simulate four-way splitting, but with practically
the same cost as conventional two-way splitting.

Stable FFD migration and FFDPI migration

We compare our results of CPFFD migration to another stable FFD migration technique, FFDPI migration
(Biondi, 2002). It is based on a a correction to the FFD method that avoids stability problems. To derive it
Biondi (2002) starts from the real version of equation (18). In our notation, he rewrites the last part of the
operator inside the summation as

anp(1− p)X2

1 + bnσX2
=
anp(1− p)

bnσ

bnσX
2

1 + bnσX2
. (35)

This representation of the operator corresponds to the differential equations
dP

dz
= −ik0

anp(1− p)
bnσ

bnσX
2

1 + bnσX2
P , (n = 1, . . . , N) . (36)

This form of the differential equation can be implemented in a stable way by the realization of the product
σX2 as a symmetrical matrix product ΣTX2Σ, where Σ is a diagonal matrix containing the values of the
square root of σ. The remaining factor anp(1−p)/bnσ can also be represented as a product with a diagonal
matrix.

In 3D, after two-way splitting, the resulting difference equation is approximated by the system[
I + CxΣT

xD2
xΣx

]
Pj+1 =

[
I + C∗xΣ

T
xD2

xΣx

]
P̃j (37)[

I + CyΣT
y D2

yΣy

]
P̃j =

[
I + C∗yΣ

T
y D2

yΣy

]
Pj , (38)

where Σx and Σy are diagonal matrices with elements

(Σx)km =
c(xk, yl, zj)

ω∆x

√
bnσ(xk, yl, zj)δkm (39)

(Σy)lm =
c(xk, yl, zj)

ω∆y

√
bnσ(xk, yl, zj)δlm . (40)

Moreover, matrices Cx e Cy are given by

Cx = I + i
k0∆z

2
ε∆x and Cy = I + i

k0∆z
2

ε∆y , (41)

where ∆x and ∆y are diagonal matrices with elements

(∆x)km =
an
bn

p(xk, yl, zj)|1− p(xk, yl, zj)|
σ(xk, yl, zj)

δkm , (42)

(∆y)lm =
an
bn

p(xk, yl, zj)|1− p(xk, yl, zj)|
σ(xk, yl, zj)

δlm , (43)

and ε is given by
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Figure 1: Reference impulse response, obtained with phase-shift migration using the true medium velocity.
From left to right: Central vertical cut in the x-z plane, and horizontal cuts at 150 m, 750 m, and 1250 m
depth.

ε = sgn (1− p) =
{

1 se cr < c(x) ,
−1 se cr > c(x) . (44)

According do Biondi (2002), for the equivalence between the original differential equation and its stable
discretization to be guaranteed, it is essential that ε is constant on the depth level zj under consideration,
i.e., that the reference velocity is larger or smaller than all model velocities at the current depth level.

Biondi (2002) proves that this implementational correction stabilizes FFD migration, even in the pres-
ence of strong lateral velocity contrasts and for reference velocities larger than the medium velocity. In this
way, this version of the FFD method possesses the necessary characteristics to be utilized as the main part
of a precise and efficient high-angle wave-equation migration method. To attain a desired precision, one can
interpolate between wavefields obtained for a sufficiently dense set of reference velocities. Theoretically,
this allows to obtain arbitrary precision by increasing the number of reference velocities. The structure of
this FFDPI method is similar to PSPI (Gazdag and Sguazzero, 1984) and to the extended split-step method
(Kessinger, 1992).

NUMERICAL EXPERIMENTS

Tests in a homogeneous medium

To study the numerical anisotropy of FFD migration operators after splitting, we calculated impulse-
responses for zero-offset migration in a homogeneous medium with velocity 2.5 km/s. The source pulse
was a Ricker wavelet with central frequency 25 Hz, with its centre positioned at an arrival time of 0.56 s.
The migration grid was ∆x = ∆y = 12.5 m, and ∆z = 10 m. All our examples used a complex Padé
implementation of FFD migration with 3 terms in the series.

Figure 1 shows one vertical and three horizontal cuts through the reference impulse response, obtained
with phase-shift migration using the true medium velocity. The amplitude decay at high propagation angles
is caused by the source implementation, which did not use the amplitude correction of Wapenaar (1990).
The red line in the top left figure indicates the true theoretical position of the event, given by the half-circle
z =

√
(cte)2 − (x− xs)2, where te is the observation time of the event in the data, here 0.56 s, and xs is

the source position, here the centre of the image, i.e., xs = 1850 m. The non-circular appearance of this
line in Figure 1 is due to the overstretched vertical axis. For a better comparison, we will present all other
impulse responses below in the same way.

Figure 2 shows the corresponding four cuts of the impulse response of complex Padé FFD migration us-
ing conventional two-way splitting. Here, the value of the reference velocity was chosen as cr = 1875 m/s,
i.e., p = cr/c(x) = 0.75. We observe the well-preserved circular shape of the impulse response in the
deepest horizontal cut (bottom left), i.e., for propagation directions close to the vertical axis. However, the
shallow and, principally, medium horizontal cuts reveal a visible deformation, indicating the loss of quality
for higher propagation angles. Also note the amplitude loss in the directions of the coordinate axes that
are visible in the shallow and medium horizontal cuts. In the vertical cut (top left), only a slight deforma-
tion from circular shape is visible, which is due to the cut being within the coordinate plane, where the
errors are the smallest. The amplitude loss for high propagation angles reflects the quality of the three-term
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Figure 2: Impulse response of FFD migration using conventional two-way splitting; p = 0.75.
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Figure 3: Impulse response of FFD migration using conventional four-way splitting; p = 0.75.
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Figure 4: Impulse response of FFD migration using alternating four-way splitting; p = 0.75.

Padé approximation. Note that the observed behaviour will be emphasized in media with strong lateral
variations, where much smaller values of p will occur.

Figure 3 shows the impulse response of FFD migration using conventional four-way splitting. The
circular shape of the impulse-response has been nicely recovered by the application of the two additional
differential operators in the diagonal directions. Also, the amplitude loss in the coordinate directions is no
longer visible. Note that this image has about twice the computational cost of the one in Figure 4.

Figure 4 shows the impulse response of CPFFD migration using alternating four-way splitting, i.e., two-
way splitting in the coordinate directions at one depth level and in the diagonal directions at the next depth
level. It is hard to spot any difference to the result of complete four-way splitting of Figure 3. The circular
format of the operator is almost perfect, and even the slight amplitude loss along the coordinate axes is as
well recovered as by complete four-way splitting. Note that this image has about the same computational
cost as the one obtained with conventional two-way splitting of Figure 2.

Figure 5 shows the impulse response of FFDPI migration using conventional two-way splitting, with
interpolation between wavefields obtained for p = 0.9 and p = 1.1. We chose these values to reflect the fact
that for FFDPI, generally reference velocities closer to the medium velocity are available for interpolation.
We observe a good preservation of the circular shape, particularly in the horizontal cuts. In the vertical cut,
we note that the wavefront lags slightly behind the true position, starting already at rather low propagation
angles of about 35◦. The amplitude decay for high propagation angles is reduced as compared to FFD,
probably because the reference velocities are closer to the medium velocity than in the previous examples.
Finally, the shallowest cut exhibits some numerical dispersion, causing a distorted pulse shape.
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Figure 5: Impulse response of FFDPI migration using conventional two-way splitting, with interpolation
between p = 0.9 and p = 1.1.

0

500

1000

1500

P
ro

fu
n

d
id

a
d

e
�[

m
]

0 1000 2000 3000
Distancia�[m]

0

1000

2000

3000

D
is

ta
n

c
ia

�[
m

]

0 1000 2000 3000
Distancia�[m]

0

1000

2000

3000

D
is

ta
n

c
ia

�[
m

]

0 1000 2000 3000
Distancia�[m]

0

1000

2000

3000

D
is

ta
n

c
ia

�[
m

]

0 1000 2000 3000
Distancia�[m]

Figure 6: Impulse response of FFDPI migration using alternating four-way splitting, with interpolation
between p = 0.9 and p = 1.1.

Figure 6 shows the impulse response of FFDPI migration using alternating four-way splitting, with
interpolation between wavefields obtained for p = 0.9 and p = 1.1. Almost no improvement over the
conventional two-way splitting result of Figure 5 is visible.

Tests in an inhomogeneous medium

For a more realistic test of the different splitting techniques for FFD migration, we calculated zero-offset
impulse responses for the EAGE/SEG salt model. Here, we used a seismic pulse in the centre of the model,
described by a Ricker wavelet with central frequency of 15 Hz, dislocated by te = 1.1 s, and a migration
grid with ∆x = ∆y = ∆z = 20 m. To avoid spurious events from the spike reflectors, we regularized the
model using a 7× 7 median filter.

We represent the results by vertical cuts parallel to the y-z plane at x = 4.14 km and x = 6.80 km, and
parallel to the x-z plane at y = 4.14 km and y = 10.22 km, as well as horizontal cuts at depths z = 1.7 m,
z = 2.9 km, z = 3.5 km, and z = 4.1 km. Figures 7 and 8 show these cuts through the EAGE/SEG salt
model after filtering.

Figures 9 and 10 show the corresponding cuts through the impulse response of FFD migration with
two-way splitting, and Figures 11 and 12 those of FFD migration with alternating four-way splitting. The
differences between these sets of figures are due to numerical anisotropy, which is not always easy to see
at this scale. The most visible difference is the one between the top left images of Figures 10 and 12. The
circular shape of three quarters of the wavefront is well preserved in Figure 12, while visibly distorted in
Figure 10. Similar distortions are present in the other figure parts. Some events, particularly in the diagonal
directions, are slightly more advanced in Figures 11 and 12 than in Figures 9 and 10. Also, some amplitude
differences are visible. We refrain from presenting the results of complete four-way splitting, because they
look virtually identical to those in Figures 11 and 12.

For comparison, Figures 13 and 14 show the impulse response of FFDPI migration with two-way
splitting. Since the theory of Biondi (2002) is only formulated for a single term of the Padé series, so is
our implementation. Because of the strong dependence of FFDPI on reference velocities not too far from
the true model velocity, this numerical experiment needed 10 reference velocities. For being a very robust
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Figure 7: EAGE/SEG salt model. Representation by 4 vertical cuts at x = 4.14 km, x = 6.80 km (top),
y = 4.14 km, and y = 10.22 km (bottom).
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Figure 8: EAGE/SEG salt model. Representation by 4 horizontal cuts at z = 1.7 km, z = 2.9 km,
z = 3.5 km, and z = 4.1 km (from left to right).

method, the impulse response is not subject to any instabilities, even with the reference velocities being
still a bit far from the medium velocities. This remains true even for less reference velocities, though the
image quality degrades considerably. Because of the need for a rather large number of reference velocities,
FFDPI is a rather expensive method. In our implementation, it used about three times the computational
time of alternating four-way FFD.

Even for this experiment with 10 reference velocities, we still see some effects of numerical dispersion
in Figures 13 and 14. Also, the results still exhibit quite visible differences to Figures 11 and 12. Since we
have at this time no 3D reverse-time migration available, it is hard to tell which results are better positioned.
Visual inspection and comparison to results of FD migration (not shown here) make us believe that the FFD
results are more reliable than the FFDPI results with 10 reference velocities. More accurate results can be
obtained by further increasing the number of reference velocities.

CONCLUSIONS

In this paper, we have implemented 3D versions of complex Padé FFD (CPFFD) and FFD plus interpolation
(FFDPI), which have proven to be more stable in the presence of strong lateral velocity contrasts than other
FFD migration implementations. For CPFFD migration, we have compared the effects of different ways of
directional splitting and compared its results to those of FFDPI migration. Alternating four-way splitting,
i.e., applying the differential operators in the coordinate directions at one depth level and in the diagonal
directions at the next depth level, proved to be an improvement over conventional two-way splitting at
almost no extra cost. The results were comparable to complete four-way splitting, i.e., all four directions
applied at all depth levels. Extensions of the alternating splitting technique can be thought of like eight-way
splitting where the remaining directions are covered two by two in the next two depth steps.

From our numerical tests with splitting the CPFFD and FFDPI migration operators, we conclude that
FFDPI migration is the most robust of the tested methods. Even implemented only using two-way splitting,
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Figure 9: Impulse response of FFD migration with two-way splitting. Cuts as above.
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Figure 10: Impulse response of FFD migration with two-way splitting. Cuts as above.

it did show only a fair amount of numerical dispersion, but no visible numerical anisotropy. However, for
practical use, FFDPI is a rather expensive method because it needs a large number of reference velocities
to function with acceptable precision. Thus, for a more economic migration with acceptable image quality,
alternating four-way splitting in FFD migration is an interesting alternative.

One minor problem of multi-way splitting should be mentioned. The differential operator in the di-
agonal directions can cause aliasing effects because of the fact that the grid spacing in this direction is
by a factor of

√
2 larger than in the coordinate directions. Off-diagonal directions may complicate things

further, because they require resampling.
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Figure 11: Impulse response of FFD migration with alternating four-way splitting. Cuts as above.
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Figure 13: Impulse response of FFDPI migration with two-way splitting using 10 reference velocities.
Cuts as above.
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Figure 14: Impulse response of FFDPI migration with two-way splitting using 10 reference velocities.
Cuts as above.
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