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ABSTRACT

In this paper we developed a higher resolution method for the estimation of the three traveltime param-
eters that are used in the 2D zero-offset, Common-Reflection-Surface stack method. The underlying
principle in this method is to replace the coherency measures performed using semblance with that of
MUSIC (MUltiple SIgnal Classification) pseudo-spectrum that utilizes the eigenstructure of the data
covariance matrix. The performance of the two parameter estimation techniques (i.e. semblance and
MUSIC) was investigated using synthetic seismic diffraction and reflection data corrupted with white
Gaussian noise. The estimated parameters employing MUSIC were shown to be superior of those
from semblance.

INTRODUCTION

Many important tasks in seismic processing and imaging require the estimation of traveltime parameters.
Such parameters include, among others, velocities (e.g., for stacking and time-migration purposes), travel-
time slopes and curvatures (e.g., for slant, common-reflection-surface (CRS), multifocus (MF) stacks) and
event picking for tomographical methods. As shared with many other areas of activity, a basic feature of
seismic signals (referred to as events) is that they exhibit some sort of coherent or aligned energy. More
specifically, seismic events (e.g., reflections or diffractions) align themselves along curves or surfaces (re-
ferred to as moveouts) within the data. The basic strategy for signal detection and information extraction, is
to express these moveouts as a function of a few, meaningful parameters, and to estimate such parameters
so as the moveout optimally approximates the events. In general, the search for parameters, sometimes
referred to as wavefront shaping parameters, carry key information about the geological structure under
investigation.

To assess how well a moveout, defined by some trial parameters, approximates a target signal, a number
of quantifiers (or coherence measures) has been proposed. General discussions on coherency measures
applied to seismic data can be found in the pioneering papers of Taner and Koehler (1969), Neidell and
Taner (1971), Gelchinsky et al. (1985), with a clear emphasis on the second-order coherence measure
semblance. Semblance quantify the likelihood between the trial moveout and the target event by stacking
the data along that moveout and measuring the energy of the output.

Adopting the notation as in Kirlin (1992), for a given sample, k, at a given (reference) trace, the so-

mailto:mtygel@gmail.com


16 Annual WIT report 2010

1.94

1.96

1.98

2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

100 200 300 400 500 600

T
im

e
 [
s
]

Half offset [m]

Figure 1: Time window used to compute semblance.The two red lines show the traveltime trajectories
bounding the window used to select the data.

called semblance coefficient, or simply semblance, Sc, can be mathematically written in the form

Sc =

j=k+N/2∑
j=k−N/2

∣∣∣∣∣
M∑
i=1

x(j, i)

∣∣∣∣∣
2

M

j=k+N/2∑
j=k−N/2

M∑
i=1

|x(j, i)|2
. (1)

Here the semblance coefficient is computed forN samples taken fromM traces in a window centered about
the trajectory defined by the moveout equation generated by the trial traveltime parameters (cf. Figure 1).
In the following, the given sample, k, and reference trace, as well as the number of samples, N , and
number of traces, M , will be fixed throughout. As a consequence, we do not need to incorporate them into
the semblance notation, which will be simply written as Sc. To construct the window in Figure 1, proper
interpolation is performed to select the appropriate samples. In the language of electrical engineers, the
above-described windowing process steers the stacking along the trial moveout.

Semblance can be described in terms of the covariance matrix, of the data. Following, e.g., Du and
Kirlin (1993), within the selected time window along the chosen trial moveout, semblance can be written
in the form

Sc =
uTRu
Mtr(R)

, (2)

where u is a column vector of ones, which can be referred to as the unitary steering vector, and R is the
covariance of the data. Assuming the different sources can be described by a zero-mean stochastic process,
the data covariance matrix is given as

R = E{DDH} , (3)

where D = (dij) is the data matrix, in which dij is the recorded data at the i-th trace and j-th sample.
As in usual notation, E{} and tr() represent the expected value and matrix trace, respectively. Moreover,
superscripts T and H represent transpose and conjugate transpose, respectively. As pointed out by Neidell
and Taner (1971), equation 2 provides the interpretation that semblance can be regarded, within the selected
time window, as a normalized output/input energy ratio. The denominator, tr(R), is the normalization used
by semblance in order to generate a maximum peak of unity at the “correct” moveout parameters (namely,
the ones for which we have the optimal stack).
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Even though semblance is a good measure of coherency, it can in many times provide insufficient res-
olution for the parameter estimation. That is the case, in particular, for interfering events. There is, thus, a
motivation to look for alternatives to overcome these difficulties. As recognized in sonar and radar appli-
cations, methods exploiting the properties of the eigenstructure (namely, eigenvalues and eigenvectors) of
the data covariance matrix can lead to far better resolution results than semblance (Schmidt, 1986; Biondi
and Kostov, 1989; Kirlin, 1992).

The basic idea of the eigenstructure approach is to decompose the data covariance matrix into two
orthogonal subspaces. The first is the signal subspace, which is generated by the eigenvectors associated
to high eigenvalues. The second is the noise subspace, generated by the small or zero eigenvalues. In this
paper, we use the eigenstructure method called MUltiple SIgnal Classification (MUSIC), introduced by
Schmidt (1986). MUSIC exploits the fact that the “correct” moveout, represented as a steering vector, must
lie in the signal subspace and therefore is orthogonal to the noise subspace eigenvectors. As a consequence,
the projection of the steering vector onto the noise subspace provides a nearly vanishing value. The inverse
of such a projection (namely the sum of the dot products of the steering vector with the noise eigenvectors)
should peak when the steering vector represents a correct moveout.

This work can be seen as a follow up of Biondi and Kostov (1989), in which the application of MUSIC to
single-parameter velocity analysis and slant stacks is described. Here, we extend the application of MUSIC
to Common-Reflection-Surface (CRS) multi-parameter estimation. Besides the theoretical exposition of
the technique, applications to first synthetic examples, consisting of dipping planar reflectors and point
diffractors, are provided. Comparisons of the obtained results and conventional semblance confirm, at least
for these initial examples, the expected far better resolution of MUSIC.

CLASSICAL MUSIC: NARROWBAND AND UNCORRELATED SIGNALS

In its original or classical form (Schmidt, 1986), MUSIC considers an array of Nr receivers recording W
incoming reflected or diffracted signals, in an arbitrary background medium. In time domain, the data
recorded by the i-th receiver can be modeled as

di(t) =
W∑

w=1

sw(t− τθi,w) + ni(t) , (i = 1, 2, . . . , Nr) , (4)

where sw(t) is the source pulse associated with event w, and ni(t) is the additive random noise at the i-th
receiver. Finally, τθi,w is the traveltime (or time delay) of the w-th incoming signal (or event) arriving at
the i-th receiver. The superscrit, θ, indicates that the moveouts depend on a set of one or more parameters,
here denoted, by a so-called parameter vector, θ. The most popular trial-moveout example is the normal-
moveout (NMO), applied for velocity analysis in the common-midpoint (CMP) configuration. In the 2D
situation, the single parameter to be estimated is the NMO-velocity. An example of multi-parameter move-
out is the general hyperbolic moveout used by the common-reflection-surface (CRS) stacking method. As
previously indicated, application of MUSIC to velocity analysis has been described by Biondi and Kos-
tov (1989). Here we extend the analysis to CRS parameter estimation in 2D data. In this situation, three
parameters are to be estimated. In order not to disturb the main flow, the description of the generalized
hyperbolic or, more simply, the CRS traveltimes, τi,w, are postponed to Appendix A.

Narrowband signals

For narrowband signals sw(t) the traveltimes can be expressed as exponential phase shifts around the center
angular frequency ω. For notation simplicity, that fixed frequency will be omitted. As a consequence, the
data model in equation (4) can be recast as

di(t) =
W∑

w=1

sw(t) exp (−iωτθi,w) + ni(t) . (5)

After time discretization, the above equation can be recast in matrix form as

D = A(θ)S + N , (6)
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where D = (dij) = (di(tj)) and N = (nij) = (ni(tj)) are, respectively, the Nr ×Nt data and additive
noise matrices, and S = (swj) = (sw(tj)) is the W ×Nt source matrix. Finally,

A(θ) = (a1(θ), . . . ,aw(θ), . . . ,aW (θ)) (7)

is the Nr ×W array response matrix containing all the steering vectors

aw(θ) =


exp(−iωτθ1,w)
exp(−iωτθ2,w)

·
·
·

exp(−iωτθNr,w
)

 . (8)

MUSIC utilizes the eigenstructure of the data covariance matrix defined by equation 3. Substituting equa-
tion (6) into equation (3) and assuming uncorrelated noise with variance of σ2

n, the covariance matrix can
be recast as

R = A(θ)[E{SSH}]A(θ)H + E{NNH} = A(θ)RsA(θ)H + σ2
nI , (9)

where Rs and I are respectively the source covariance and identity matrices. The MUSIC algorithm
performs an eigendecomposition of this covariance matrix

RU = ΛU , (10)

where Λ =diag(λ1, λ2, . . . , λNr
) contains the eigenvalues satisfying λ1 ≥ λ2 ≥ · · · ≥ λNr

, and U =
[u1,u2, . . . ,uNr ] are the corresponding orthonormal eigenvectors of R. The unitary matrix of eigenvectors
U can be decomposed further as U = [Us Un], where the columns of Us comprise the eigenvectors
corresponding to the largest eigenvalues of R (the signal subspace), and with Un containing the remaining
(noise) eigenvectors.

Uncorrelated signals

For MUSIC to be applicable in our parameter search problem, the different source pulses, sw(t), should be
uncorrelated resulting in a covariance matrix Rs having full rank equal to the number of eventsW recorded
at the receivers. If the M source vectors are linearly independent then the matrix Rs is positive-definite
which results in A(θ)RsA(θ)H to be a positive semi definite matrix with its rank spanning the steering
vectors corresponding to the appropriate parameters we are searching. With the above condition satisfied
and since the noise subspace is orthogonal to the signal subspace, the MUSIC pseudo-spectrum, PMU (θ),
is given by

PMU (θ) =
a(θ)a(θ)H

a(θ)Pna(θ)H
, (11)

where a(θ) is the test steering vector and Pn is the noise subspace projection matrix given by Pn =
UnUH

n . Since the steering vectors a(θ) are orthogonal to the eigenvectors spanning the noise subspace
un, it follows that the parameter estimates will occur at those parameter values for which we have

a(θ)Pna(θ)H ≈ 0 . (12)

This corresponds to large peaks in the MUSIC pseudo-spectrum as given by equation (11).

Wideband uncorrelated signals

As indicated above, the MUSIC algorithm was originally developed for narrowband and uncorrelated signal
applications. If the condition of uncorrelated signals is maintained, an alternative to this situation is to
decompose a wideband data into narrowband data components and then treat each narrowband separately
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Figure 2: Concept of spatial smoothing.

(Biondi and Kostov, 1989). The MUSIC pseudo-spectrum at the center angular frequency ωi of the i-th
narrowband now takes the form

PMU (θ;ωi) =
a(θ;ωi)a(θ;ωi)H

a(θ;ωi)Pn(ωi)a(θ;ωi)H
, (13)

where a(θ;ωi) and Pn(ωi) are respectively the test steering vector and the noise subspace projection matrix
at the the i-th center angular frequency ωi. The strategy followed in this work is to Fourier transform the
test data and select a narrowband close to the center frequency of the source pulse as input to MUSIC.

SEISMIC MUSIC: WIDEBAND AND CORRELATED SIGNALS

Seismic signals are highly correlated and require a special modification to be used by the original MUSIC
algorithm. The consequence of having correlated sources is that there will be a rank deficiency in the
source covariance matrix Rs that will result in a mix of signal and noise subspaces. As a result, the
MUSIC algorithm will loose its power to peak at the appropriate estimated parameters.

In order to handle correlated sources, spatial smoothing over the covariance matrix, can be employed
(Biondi and Kostov, 1989). The idea is to subdivide the array of Nr sensors into K identical overlapping
subarrays of Nr −K + 1 receivers (cf. Fig 2) and then compute the covariance for all the subarrays and
average the result. If the covariance matrix for subarray k is Rk, the spatially smoothed covariance is given
by

RK =
1
K

K∑
k=1

Rk . (14)

To be able to implement spatial smoothing within seismics, one has to taper the data within a window
following the event(s) (cf. Figure 1). The purpose of this tapering is to make the delay times of the event
linear (which is the basic requirement behind spatial smoothing) (Biondi and Kostov, 1989).

The other advantage of performing the analysis in a given window is to make the steering vectors,
required for generating the MUSIC pseudo-spectrum, to be frequency independent. This allows us to
handle wideband seismic data. This process of windowing the event can also be interpreted as steering
of the correlation matrix before eigendecomposition and using unity steering vectors for generating the
MUSIC pseudo-spectrum (Kirlin, 1992).

Ideally, when the window is “perfectly“ matching the event, which will be the case of an optimal choice
of the moveout parameters, the signal would be flattened and all traces will nearly have the same moveout.
As a consequence, the steering vectors used in equation (11) will be simply replaced by a vector of ones
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making them frequency independent. In this situation, the MUSIC pseudo-spectrum generates a peak
resulting in the identification of the correct estimates of the parameters.

In practice, the windows are constructed by moveouts, defined by trial parameters. Peaking of the
corresponding MUSIC pseudo-spectra identifies, thus, the correct parameters. Following this approach,
Kirlin (1992) has shown that MUSIC can be applied for the single-parameter case of velocity analysis.
In other words, the objective was to obtain a high-resolution velocity spectrum. In this work, we extend
that strategy to the CRS muti-parameter estimating problem. In other words, our objective is to obtain
high-resolution estimates of the CRS parameters, which are three in the present 2D situation.

Figure 3: Synthetic CMP data used for comparison of MUSIC with semblance. A point diffractor and a
dipping reflector (β = 200) with the same τ0 = 2sec. is used to generate the data. Note that the two events
are very close to each other and it is difficult to distingush them.

Figure 4: Synthetic ZO section used for comparison of MUSIC with Semblance. A point diffractor and a
dipping reflector (β = 200) is used to generate the data. The red dot (x0 = 540m and τ0 = 2sec.) shows
the location where we performed the parameter search.

NUMERICAL EXAMPLES

In this section we compare MUSIC and semblance for traveltime parameter estimation in the situations
of classical MUSIC (narrowband uncorrelated signals) and seismic MUSIC (wideband correlated signals).
For a simple model of a point diffractor and a dipping reflector with a homogeneous overburden, we
analysed the cases: (a) CMP configuration, which requires the determination of a single parameter, C of
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CRS traveltime (cf. A-1) and (b) ZO configuration, which requires the determination of two parameters,
namely parameters A and B of the CRS traveltime (cf. A-1). The two events (diffraction and reflec-
tion) were chosen to be almost undistinguishable. All the test parameter points within RMS velocities of
[1000:7.5:4000] m/s were tested for parameter C and [−4×10−4:1×10−5:4×10−4] for parameterA and
[−3× 10− 6:1× 10− 7:3× 10− 6] for parameter B. As seen below, in all situations, MUSIC performed
much better then semblance.

Classical MUSIC

To illustrate the application of MUSIC for narrowband uncorrelated signals we considered a point diffractor
and a dipping reflector illuminated under a CMP configuration. For a given CMP gather, the data consists
of (compare with equation 5)

di(t) = sdiff (t) exp(−iωτdiff ) + sdip(t) exp(−iωτdip) + ni(t) , (15)

where sdiff and sdip are the sources and τdiff and τdip are the traveltimes for the diffractor and dipping
reflector events, respectively. Moreover, ni(t) is the additive noise. The traveltimes for these two events
are described by the ordinary NMO equations

τ2
diff (h) = T 2

0 + Cdiffh
2 and τ2

dip(h) = T 2
0 + Cdiph

2 , (16)

where the velocity coefficients for the diffractor, Cdiff , and dipping reflector, Cdip, are given by

Cdiff =
4

v2
RMS

and Cdip =
4 cos2 β

vRMS
. (17)

Here, vRMS and β represent the root mean square (RMS) velocity and the dip angle, respectively.
The sources, sdiff (t) and sdip(t) are produced by a single narrowband source, s(t), modified by two

realizations of a random phase perturbations, φdiff (ω) and φdip(ω), so as to produce uncorrelated sources.
In frequency domain, this process is generally described as

sdiff (ω) = s(ω) exp[iφdiff (ω)] and sdip(ω) = s(ω) exp[iφdip(ω)] . (18)

A synthetic CMP gather was generated employing equations (16) and (18) together with a Ricker zero-
phase wavelet with a center frequency of 20 Hz (cf. Fig. 3). The fold was 40 representing a half-offset
range from 40 m to 820 m. The data was sampled with 2 ms and white Gaussian noise with a variance
of 10% of the maximum trace amplitude was added. The parameter estimation process was benchmarked
using the classical semblance analysis of Neidell and Taner (1971).

The output from MUSIC (cf. equation (13)) is shown in Figure 5 together with the result obtained using
semblance. As a result, MUSIC is seen to outperform semblance and resolve the two parameters well.

To perform a two-parameter test, we have now simulated a zero-offset (ZO) section for the same previ-
ous point diffractor and dipping reflector (cf. Fig. 4). The corresponding two ZO traveltimes for diffraction
and reflection now are given by

τ2
diff (xm) = τ2

0 +Bdiff (xm − x0)2 and τ2
dip(xm) = [τ0 +Adip(xm − x0)]2 , (19)

with Bdiff = Cdiff and Adip = 1.71× 10−4 (corresponding to a dip of 200 and a homogeneous medium
with constant velocity 2000 m/s). As seen from Appendix A, the above equations represent the generalized
hyperbolic (CRS) traveltime of equation A-1, in which the conditions

Bdiff = Cdiff and Bdip = 0 , (20)

have been implemented. As indicated in Appendix A, the far left equation above represents the diffraction
condition. The far right equation is due to the fact that, in this considered experiment, the N-wave is planar.

Based on equations (19), using the previous uncorrelated sources (18), synthetic ZO data were com-
puted for midpoints between 40m and 1040m. The results from the two-parameter search (A and B) are
shown for respectively MUSIC (cf. Figure 6) and semblance (cf. Figure 7). MUSIC gives well resolved
results as opposed to the semblance where the estimated parameters are more inaccurate.
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Figure 5: Spectrum of parameter C using both MUSIC and semblance (point diffractor and a dipping
reflector β = 200). The black dotted lines show the correct location of the parameters Cdiff and Cdip. We
see that only MUSIC was able to resolve the two parameters.
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Figure 6: Determination of parameters A and B based on MUSIC for a diffractor and a dipping reflector
β = 200. The black stars show the correct parameter locations.
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Figure 7: Determination of parametersA andB based on semblance for a diffractor and a dipping reflector
β = 200. The black stars show the correct parameter locations.
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Figure 8: Parameter C determined using both MUSIC and semblance (point diffractor and a dipping
reflector β = 200). The black dotted lines show the correct parameter locations.
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Figure 9: Determination of parameters A and B based on MUSIC for a diffractor and a dipping reflector
β = 200. The black stars show the correct parameter locations.
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Figure 10: Determination of parameters A and B based on semblance for a diffractor and a dipping
reflector β = 200. The black stars show the correct parameter locations.
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Seismic MUSIC

To examine the performance of MUSIC compared to semblance in case of wideband correlated signals, we
generated synthetic data based on the traveltime equations (16) for a CMP gather and equations (19) for a
ZO section. The parameter search was performed within a time window of 25 time samples with the ZO
traveltime being the middle sample and following a hyperbolic delay trajectory defined by the traveltimes.
For the computation of the MUSIC pseudo-spectrum, the samples within the hyperbolic window were
used to form the data covariance matrix and the associated eigen decomposition. In order to reduce the
correlated source effect we performed spatial smoothing of the covariance matrix using 31 subarrays each
consisting of 10 receivers for the CMP data and 37 subarrays each consisting of 15 receivers for the ZO
data.

The results of the parameter search is shown in Figure 8 for the CMP data (i.e., determination of
parameter C) and Figures 9 and 10 for the ZO section (i.e., determination of parameters A and B). It is
obvious that both semblance and MUSIC can resolve parameters A and B, but MUSIC shows a higher
resolution in general. However, for parameter C only MUSIC is able to resolve the two events.

CONCLUSIONS

In this paper we discussed the CRS traveltime parameters estimation problem in seismic signal process-
ing. The conventiona1 semblance algorithm was found to generate a lower resolution estimates of the
parameters. For the purpose of obtaining higher resolution parameter estimate, we replaced semblance
with MUSIC algorithm. This algorithm allowed us to estimate the parameters within a resolution limit
that is significantly better than the classical semblance. This work can be seen as a follow up of previous
applications of MUSIC to single-parameter velocity analysis and slant stacks. Now, MUSIC is extended
to Common-Reflection-Surface (CRS) multi-parameter estimation. Applications of the technique to first
synthetic examples, consisting of dipping planar reflectors and point diffractors, and comparison to conven-
tional semblance, confirm, at least for these initial situations, the expected far better resolution of MUSIC.
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APPENDIX A: GENERAL HYPERBOLIC MOVEOUT

The CRS method uses the so-called generalized hyperbolic (normal) moveout, which is the natural gen-
eralization of the NMO, valid for CMP gathers, to CRS supergathers, in which source-receiver pairs are
arbitrarily located around the (reference) central point, which is usual taken as a CMP. In 2D, the general-
ized hyperbolic moveoutdepend on three parameters, as opposed to conventional NMO, which depends on
a single parameter (NMO-velocity).

Figure 11: CRS parameters for a given source-receiver pair around a central ray at x0w .

Mathematically, the generalized hyperbolic moveout, τi,w, associated with the event, w, in the data,
is specified by the zero-offset (ZO) traveltime, τ0w , and (reference) trace location, x0w , and given by (see
Figure 11)

[τθi,w(xmi
, hi)]2 = [τ0w +Aw(xmi

− x0w)]2 +Bw(xmi
− x0w)2 + Cwh

2
i , (A-1)

where xmi
is the midpoint coordinate and hi is the half-offset coordinate for the i-th receiver. Here,

θ = {Aw, Bw, Cw} , (A-2)

is the CRS parameter vector, with three parameters, Aw, Bw and Cw, to be estimated from the data. It is
instructive to recall that these parameters are related to the angle and curvature quantities as follows (Jäger
et al. (2001))

Aw =
sinβ0w

v0w

, Bw =
2τ0w cos2 β0w

v0w

KNw and Cw =
2τ0w cos2 β0w

v0w

KNIPw , (A-3)

where KNw and KNIPw are the curvatures of respectively the normal (N) and normal-incident-point (NIP)
wavefronts, β0w is the emergence angle and v0w is the medium velocity. All these quantities are evaluated
at the central point, x0w . Still considering the CRS parameters, we make the following observations:
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(a) In the CMP configuration of source-receiver pairs symmetrically located with respect to the central
point, namely, xmi

= x0w , we have

[τθi,w]2(hi) = τ2
0w

+ Cwh
2
i , (A-4)

with the CMP, single parameter vector θ = {Cw}. Moreover, we have the relation

Cw =
4

v2
NMO

, (A-5)

with Cw given by the far most equation (A-3).

(b) In case the recorded data stems from a diffraction, the condition Bw = Cw holds. This is because,
as the reflector shrinks to a point, the N-wave turns out to be identical to the NIP-wave (Zhang et al.,
2001). As a consequence, the hyperbolic moveout of diffraction (or diffraction traveltime), reduces
to

[τθi,w]2(xmi
, hi) = [τ0w +Aw(xmi

− x0w)]2 +Bw[(xmi
− x0w)2 + h2

i ] (A-6)

with the diffraction, two-parameter vector θ = {Aw, Bw}.


