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ABSTRACT

Applied to unmigrated data, the Common-Reflection-Surface (CRS) method is able to produce high-
quality stacked sections, as well as useful traveltime parameters for a number of imaging and inver-
sion purposes. One difficulty of the CRS method is the treatment of diffractions, especially when
located close to reflections, and also triplications. In these regions, the CRS parameters obtained by
coherence-measure procedures become inaccurate. In this context, and also for more general rea-
sons, it might be interesting to investigate the use of the CRS methodology in the time-migrated
domain, where diffractions have been collapsed and triplications untangled. The CRS method applied
to the time-migrated domain approximates the zero-offset reflection traveltime as a second-order Tay-
lor expansion in image point coordinates, in the vicinity of a given image ray. It is to be remarked
the analogy to the conventional CRS application to the unmigrated, poststack domain, in which the
zero-offset reflection traveltime is approximated as a second-order Taylor expansion in midpoint co-
ordinates, in the vicinity of a given normal ray. Based on pioneering work of the mid eighties at
NORSAR, we use the methodology of surface-to-surface propagator matrices for anisotropic media
and obtain expressions that relate reflector dip and curvature to first and second derivatives of the
time-migration reflection time with respect to image point coordinates. This provides an interpreta-
tion of the CRS coefficients. Besides its intrinsic interest, such quantitative relationships can provide
useful constraints for the construction of selected reflectors from interpreted reflection events in the
time-migrated domain.

INTRODUCTION

The Common-Reflection-Surface (CRS) stack produces, besides simulated zero-offset sections, also first
(slope) and second (curvature) derivatives of zero-offset reflection traveltime with respect to source-receiver
midpoint coordinates. As well known, such derivatives are identified as CRS attributes or parameters and
are given a physical interpretation, namely: (a) The first derivative is well related to the ray-parameter
vector of the normal ray at its emergence point and (b) the second derivative is related to the curvature of
the normal wave that starts on the normal-incidence point (NIP) of the reflector and is measured also at the
normal-ray emergence point.

Time migration, either post-stack or pre-stack, is widespread used in seismic processing to produce
initial time-domain images and velocity in a simple and efficient way (Hubral and Krey, 1980; Yilmaz,
2000). Together with its advantages of computational efficiency and robustness with respect to a back-
ground velocity model, time migration has the the drawback of producing distorted images, in some cases,
even under mild lateral velocity variations (Robein, 2003). An option to overcome the imaging difficulties
of time migration is to convert the time-migrated images into depth, which includes, as an obligatory step,
the conversion of the time-migrated velocities into a corresponding depth-velocity field.

The theoretical explanation of the time migration procedure has been given in Hubral (1977) by means
of the concept of image rays. For an isotropic medium, the image ray starts normally to the measurement
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surface and travels down to hit, generally non-normally, the reflector. In this way, it can be seen as a “dual”
of a normal ray, which starts, generally non-normally, at the measurement surface and hits normally the
reflector. For an anisotropic medium, the duality between the image and normal rays is still valid: in this
case, it is not the ray but the slowness vector that is normal to the measurement surface (image ray) and the
reflector (normal ray).

Quite recently, Cameron et al. (2006, 2007) unveiled the theoretical relationship between the time-
migrated and depth velocity fields and presented algorithms to estimate depth velocities and trace image
rays from a given time-migrated velocity field. A modified algorithm for the same purposes has been also
presented in Iversen and Tygel (2008). Application of the theory to actual time-to-depth conversion has
been presented in Cameron et al. (2008). The above papers show that a depth velocity field and also image
rays can be fully constructed from a given time-migrated velocity field. As a consequence, individual time-
migrated reflection curves can be readily converted into depth by simply moving time samples along the
image ray.

Considering prestack time-migrated data, one can apply the CRS method to obtain, besides a zero-offset
data volume, also linear (slope) and quadratic coefficients for zero-offset time-migrated reflections. Such
coefficients may be seen as dual with respect to their zero-offset unmigrated counterparts. A question that
naturally arises is what could be a physical meaning of the time-migrated CRS coefficients. For a given
depth velocity model (e.g., a model that has been directly extracted from the time-migrated velocity field)
and using the machinery of surface-to-surface propagator matrices (see, e.g., Bortfeld, 1989; Červený,
2001) we provide an interpretation of such coefficients in terms of reflector dip and curvature in depth.
Our approach is heavily based on the pioneering work carried out in the eighties by Iversen, Åstebøl
and Gjøystdal at NORSAR (see Iversen et al., 1987, 1988). They show that the time-migrated reflection
traveltime and its derivative with respect to midpoint determines the reflector dip and, in addition, the
second derivatives provides the reflector curvature. Both quantities are evaluated at the point the image
ray hits the reflector. Explicit expressions for the reflector dip and curvature are provided in terms of the
propagator matrix in ray-centered coordinates of the image ray, assumed to be already derived from the
time-migrated velocity field. Here these works are reviewed and suitably modified, to provide the sought-
for interpretation of the CRS attributes of time-migrated reflections and to take into account anisotropic
media.

PARAMETERS OF ZERO-OFFSET REFLECTIONS IN UNMIGRATED AND MIGRATED
TIME DOMAIN

The unmigrated and migrated time domains are both five-dimensional. For common-offset migration these
domains can be defined in terms of the coordinates (x,h, TX) and (m,h, TM ). Here, x defines the
common midpoint between source and receiver locations, while h is half of the source-receiver offset. The
vector m specifies a so-called common-image point in the time-migrated domain, i.e., the location of a
common-image gather. The coordinates (x,h) and (m,h) are curvilinear and are related to respective
measurement surfaces ΣX and ΣM specified for the unmigrated and migrated domains. For practical
reasons, one will in most cases choose the surfaces ΣX and ΣM identical; nevertheless, it is ultimate to
distinguish between midpoint coordinates x and image-point coordinates m along this common surface.

In the unmigrated domain the common-reflection surface has the form TX(x,h). It is common to
approximate this surface to second order in x and h, based on CRS coefficients known at some reference
location (x = x0,h = 0). In this respect, probably the most “natural” coefficients one can think of are the
traveltime derivatives

TX0 = TX(x0,h = 0) , (1)

pXx0 =
(
∂TX

∂xi
(x0,h = 0)

)
, (2)

MXxx
0 =

(
∂2TX

∂xi∂xj
(x0,h = 0)

)
, (3)

MXhh
0 =

(
∂2TX

∂hi∂hj
(x0,h = 0)

)
. (4)
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These coefficients can be computed directly from the seismic prestack data, without knowledge of the
depth-velocity model. For clarity of notation, subscript zero on the lefthand-side entities is generally
skipped. Moreover, in this paper we do not consider traveltime derivatives taken with respect to offset
or attributes related to such traveltime derivatives. This allows us to use a more simple notation, pX and
MX , for the traveltime slope and curvature entities in equations 2 and 3.

In the migrated domain, the common-reflection surface is given by the function TM (m,h), and the
traveltime parameters corresponding to those in equations 1-4 are,

TM0 = TM (m0,h = 0) , (5)

pMm
0 =

(
∂TM

∂mi
(m0,h = 0)

)
, (6)

MMmm
0 =

(
∂2TM

∂mi∂mj
(m0,h = 0)

)
, (7)

MMhh
0 =

(
∂2TM

∂hi∂hj
(m0,h = 0)

)
. (8)

Observe that the matrix MMhh
0 vanishes if the seismic data have been perfectly time-migrated. The pa-

rameters subjected to our interest in this paper are those in equations 5-7, which are generally referred to
without subscript zero. For further simplification, we write the traveltime slope and curvature parameters
in these equations as pM and MM .

PARABOLIC REFLECTION TRAVELTIME IN THE UNMIGRATED DOMAIN

In the following, we find it convenient to consider parabolic approximations of traveltime instead of the
usual hyperbolic approximations. There is no lack of generality in doing so, and moreover, the obtained
results are the same for the two approximations. We assume that, for a target reflection in the zero-offset
volume, the reflection traveltime in the vicinity of a reference common midpoint x0, is approximated by
the Taylor parabolic polynomial

TX(x) = TX(x0) + ∆xTpX +
1
2

∆xTMX∆x , (9)

where x = x0 + ∆x and pX and MX are the first-derivative vector and second-derivative matrix of
traveltime with respect to midpoint, both evaluated at x0. In order to draw attention to the wave-theoretical
interpretation of pX and MX , let us for a moment assume that the medium along the measurement surface
ΣX is isotropic and homogeneous. The linear (2D-vector) coefficient, pX , can then be written as (see, e.g.,
Spinner, 2007, equation 3.8)

pX =
∂TX

∂x
=
(
∂TX

∂xi

)
=

2 sin θ
v0

(cosφ, sinφ)T , (10)

where θ is the emergence angle of the normal ray with respect to the normal to the surface ΣX , φ is the
angle between the x1 axis and the projection of the ray onto ΣX , and v0 is the isotropic medium velocity
at x0. In other words, pX corresponds to the ray parameter vector of the normal ray emerging at the point
x0. The quadratic (2 × 2-matrix) coefficient, MX , has the expression (see, e.g., Spinner, 2007, equation
3.10)

MX =
∂2TX

∂x2
=
(
∂2TX

∂xi∂xj

)
=

2
v0

HKNHT , (11)

where KN is the wavefront curvature matrix of the normal wave (or N-wave; see, e.g., Hubral, 1983) and
H is a matrix describing the transformation

∆x = Hq , (12)

which relates the x-coordinates and the vector q of the first two wavefront-orthonormal coordinates of
the normal ray at x0. It is our aim to provide a similar interpretation of the coefficients of a parabolic
approximation of reflections in the time-migrated domain.
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PARABOLIC REFLECTION TRAVELTIME IN TIME-MIGRATED DOMAIN

As previously indicated, we use the coordinate vectors m, to locate the zero-offset traces in the time-
migrated domain. We consider the Taylor parabolic approximation of the time-migrated reflection travel-
time of a target reflector, TM (m), at trace location, m = m0 + ∆m, in the vicinity of a reference trace
m0. It is given by

TM (m) = TM (m0) + ∆mTpM +
1
2

∆mTMM∆m , (13)

in which the linear and quadratic coefficients, pM and MM are given by

pM =
∂TM

∂m
=
(
∂TM

∂mi

)
and MM =

∂2TM

∂m2
=
(

∂2TM

∂mi ∂mj

)
, (14)

all derivatives being evaluated at m = m0. The above expression can be interpreted as twice the traveltime
along the image ray from the initial point with coordinate m to the point where it hits the reflector. The
time TM (m0) is twice the traveltime along the central image ray from the reference point to the image
incident point (IIP), namely the point where the (central) image ray hits the reflector.

It is our aim to characterize the geometric attributes, namely dip and curvature of the reflector at the
point IIP in depth, as functions of the coefficients pM and MM .

PROPAGATOR MATRIX OF THE CENTRAL IMAGE RAY

It is convenient to formulate our problem using the theoretical framework of ray-propagator matrices (see,
e.g., Červený, 2001; Iversen, 2006). In this way, we introduce the 4 × 4 surface-to-surface propagator
matrix of the central (downgoing) image ray

T =
(

A B
C D

)
, (15)

which connects the (known) measurement surface ΣM , called anterior surface, to the (unknown) target
reflector, ΣZ , called posterior surface.

Points on the reflector will be specified by 2D orthogonal curvilinear coordinates, z = (z1, z2)T . The
initial and final points of the central image ray are specified by the coordinates m0 and z0, respectively.
With the above considerations, the (one-way) traveltime of a paraxial image ray that joins the point m =
m0 + ∆m at ΣM to the point z = z0 + ∆z at ΣZ can be expressed as

T (z,m) = T (z0,m0) + ∆zTpZ(z0)−∆mTB−1∆z +
1
2

∆mTB−1A∆m +
1
2

∆zTDB−1∆z . (16)

In the above expression, pZ(z0) is the projection of the slowness vector of the central ray on the tangent
plane to the posterior surface at its end point. Observe that we have used the fact that for an image ray the
slowness projection, pM (m0), on the tangent plane to the anterior surface at its initial point vanishes.

The coordinates m and z, which refer to the initial and endpoints of a specified paraxial image ray, are
connected. To find that connection, we recall the properties of the propagator matrix to write

∆z = A∆m + B∆pM = A∆m . (17)

Note that ∆pM = pM (m) − pM (m0) = 0, since both the central and paraxial rays are image rays, so
that pM (m) = pM (m0) = 0. Now, we express ∆z as a second-order expansion of ∆m,

∆zk =
∂zk
∂mj

∆mj +
1
2

∂2zk
∂mi∂mj

∆mi∆mj . (18)

We recognize that the first derivative in equation 18 equals the matrix element Akj , while the second
derivative equals ∂Akj/∂mi. It should be noted that the latter term cannot be computed from standard
paraxial ray theory, which is based on first-order expansions of position and slowness. We insert equation
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18 into equation 16, while neglecting terms of order three and higher in the resulting traveltime expansion,
and we use the property

ATD − CTB = I (19)

inherent in the formulation of surface-to-surface ray propagator matrices. The result is

T (z,m) = T (z0,m0) + ∆mTATpZ +
1
2

∆mT
(
E + CTA

)
∆m , (20)

where the elements of matrix E are given by

Eij =
∂2zk

∂mi∂mj
pZk =

∂Akj
∂mi

pZk . (21)

We now require that the observed two-way traveltime parameters are consistent with the one-way trav-
eltime parameters simulated by the field of image rays. Comparison of equations 13 and 20 yields

TM (m0) = 2T (z0,m0) , (22)

pM = 2ATpZ , (23)

MM = 2
(
E + CTA

)
. (24)

WAVEFRONT-ORTHONORMAL LOCAL COORDINATE SYSTEM

As indicated above, we assume that a depth-velocity model is known. As a consequence, the central image
ray can be traced into depth, so that the point where it hits the reflector can also be assumed as known.
That point, called IIP and specified by the curvilinear coordinate, z0, is obtained by following the central
image ray trajectory until the time T = TM/2 is consumed. Moreover, the slowness vector is normal to
the wavefront at the IIP, namely,

p̂ =
1
c
n̂ , (25)

where c denotes phase velocity.
Following (Červený, 2001), it is helpful to introduce a local wavefront-orthonormal coordinate system

(y1, y2, y3) such that the third axis (y3) is normal to the wavefront. The other two axes can be freely speci-
fied so that a right-hand Cartesian system is obtained. Quantities belonging to the wavefront-orthonormal
coordinate system will be denoted with a superscript Y . Considering wavefront-orthonormal coordinates,
the slowness and ray-velocity vectors are written

p̂Y =
(

0
1/c

)
, v̂Y =

(
vY

c

)
. (26)

Moreover, the vector vY is zero if the medium is isotropic at the actual ray/interface intersection point.
As shown in (Iversen, 2006), the wavefront coordinate system allows for the computation of the subma-

trix systems (QE ,PE) and (QD,PD), which correspond to hypothetical wavefront solutions initialized,
respectively, as an exploding reflector (E) and a point diffractor (D) at the anterior surface. The two solu-
tions form the 4× 4 matrix

Φ =
(

QE QD

PE PD

)
, (27)

which constitutes the surface-to-surface propagator matrix of the central image ray with respect to the given
measurement (anterior) surface and the wavefront surface that corresponds to the central image ray at the
IIP. We remark that the above-defined propagator matrix is an inherent property of the given central image
ray and measurement surface, defined independently of the interface. To account for that interface, we need
to introduce an additional local coordinate system. The new coordinate system enables the construction
of a so-called projection matrix, Y, which embodies the properties of the interface and provides the link
between the propagator matrices T and Φ in the form

T = YΦ . (28)

The explicit expression of Y will be given in the next section.
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INTERFACE LOCAL COORDINATE SYSTEM

In accordance with the previous observation, the determination of the sought-for reflector dip and curvature
at the point IIP will be obtained with the help of an additional local 3D-Cartesian system, also having its
origin at the IIP. This is the interface-orthonormal coordinate system, defined such that the third axis is
perpendicular to the interface. The remaining axes, are arbitrarily defined so that the system is also right-
hand oriented.

We observe that our results will be the same if we consider an orthogonal curvilinear coordinate system
for the interface or a continuum of local Cartesian interface-orthonormal systems, with axes tangential to
those of the curvilinear coordinate system at every point along the interface. Therefore, to avoid unnec-
essarily complications of notations in the following, the local interface coordinates are written simply as
ẑ = (z, z3).

Following Červený (2001) the transformation from wavefront-orthonormal to interface-orthonormal
coordinates is described to the first order by the relation

ẑ = Ĝŷ . (29)

Being a coordinate transformation between orthonormal Cartesian coordinate systems, matrix Ĝ is an
orthonormal matrix. As such, it satisfies the relations

Ĝ−1 = ĜT , Ĝ−1Ĝ = Î , ĜĜ−1 = Î . (30)

Matrix Ĝ has as columns the unit vectors of the wavefront-orthonormal coordinate system expressed with
respect to the interface coordinate system. The third column of matrix Ĝ is therefore a unit vector normal
to the wavefront, for which we use the notation n̂Z . Here, superscript (z) signifies that the vector belongs
to the interface coordinate system. It is convenient to express vector n̂Z as a 3× 1 column matrix

n̂Z =
(

nZ

nZ3

)
, (31)

where nZ = (nZ1 , n
Z
2 )T is the two-component vector (2 × 1 column matrix) of the vector n̂. In the same

way, the orthogonality of matrix Ĝ (equation 30), implies that the third line of that matrix is given by the
transpose of the unit vector normal to the interface

ν̂Y =
(

νY

νY3

)
, (32)

where νZ = (νZ1 , ν
Z
2 )T is the two-component vector (2×1 column matrix) of the vector ν̂. Note especially

that
νY3 = nZ3 = G33 . (33)

In accordance with Červený (2001), we let G denote the 2×2 upper left sub-matrix of matrix Ĝ. Moreover,
we adopt the form of matrix Ĝ used by Iversen (2005),

Ĝ =
(

G nZ

νY
T

nZ3

)
. (34)

Here, νY is a two-component vector yet to be determined. It belongs to the wavefront-orthonormal coordi-
nate system, as indicated by the superscript (y), and constitutes the projection of the unit interface normal
into the tangent plane to the wavefront. Using equation 30 we find that

GTG + νY νY
T

= I , GGT + nZnZ
T

= I , (35)

as well as two equivalent results for the vector νY ,

νY = −GT nZ

nZ3
, νY = −nZ3 G−1nZ . (36)
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With the help of the matrix Ĝ, we can obtain an explicit expression of the projection matrix, Y, of equa-
tion 28. We have

Y =

(
(G−Aan)−T 0(

E− pZ3 D
)

(G−Aan)−T (G−Aan)

)
. (37)

Here, D is the curvature matrix of the posterior surface. More specifically, in the interface-orthonormal
coordinate system the equation of the reflector is

z3 = −1
2
zTDz . (38)

The 2× 2 matrix E is given by

Eij =
1
c

[
Gi3Gjmη

Y
m +Gj3Gikη

Y
k +Gi3Gj3(ηY3 −

1
c
ηYl vl

Y )
]
, (39)

and
Aan ≡ pZvY

T
(40)

is the 2 × 2 anisotropy matrix. Both matrices E and Aan are introduced and described in great detail
by Červený (2001). The entities viY and ηiY , i = 1, 2, 3, are components of the ray-velocity vector v̂Y

and the slowness-derivative vector η̂Y = dp̂Y /dT , specified in wavefront-orthonormal coordinates. For
isotropic media, we have Aan = 0. It is to be observed that in many situations, one can also consider that
E = 0. For example, this is the case if the medium is locally homogeneous. Matrix E is also zero if the
slowness vector is normal to the interface.

INTERPRETATION OF CRS COEFFICIENTS OF TIME-MIGRATED REFLECTIONS

Interpretation of the CRS coefficients pM and MM of the time-migrated traveltime of equation 13, will be
given in terms of the of reflector dip and curvature determined by them. Accuracy of results will depend,
of course, on the quality of CRS parameter estimation and the given or obtained depth velocity field.

Expressions of the reflector dip and curvature can be readily derived once the propagator matrix, T , is
obtained. For that matter, we insert equation 37 into equation 28 to find, after some algebra,

A = (G−Aan)−T QE , (41)

C =
(
E− pZ3 D

)
A + A−TQE

TPE , (42)

and similarly
B = (G−Aan)−T QD , (43)

D =
(
E− pZ3 D

)
B + B−TQD

TPD . (44)

Interpretation of pM : Estimation of reflector dip

A consequence of equations 33 and 36 is that the projection of the slowness vector into the tangent plane
of the interface can be expressed as

pZ = −1
c
Gf , (45)

where

f ≡ νY

νY3
. (46)

Vector f is of particular importance in the following, since it provides all the information required to
estimate the normal vector to the reflector. Matrix G, however, needs not be known for this purpose, which
will be shown below.
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The image-ray field corresponds to an exploding reflector initial condition at the measurement surface
in the time-migration domain. We can therefore take QE as the 2×2 geometric spreading matrix belonging
to the image-ray wavefront and apply a slightly restated form of equation 41,

A−T = (G−Aan) QE
−T . (47)

Using equation 45 and the definition of the anisotropy matrix Aan in equation 40, we find that

A−T = G
(

I + f
vY

vY3

)
QE
−T . (48)

We apply equations 45 and 48 in equation 23, which yields

f = − c
2

(
1 +

1
2
vY

T
QE
−TpM

)
QE
−TpM , (49)

which applies to anisotropic conditions at the point where the image ray hits the reflector. For isotropic
conditions, equation 49 reduces to the simple result

f = − c
2
QE
−TpM . (50)

Knowing vector f , we can compute the reflector normal as

ν̂Y =
1

±
√

1 + fT f

(
f
1

)
, (51)

where a convention for the vector direction must be specified.

Interpretation of MM : Estimation of reflector curvature

Having estimated the reflector normal vector by equation 51, one can construct matrix Ĝ in equation
34 according to any preferred convention. Note especially that it is not necessary to require the local
interface coordinate system to be aligned with the plane of incidence. Using matrix Ĝ we can compute the
anisotropy matrix Aan, the projected geometric spreading matrix A, and the inhomogeneity matrix E. On
these grounds we can consider all the latter matrices to be known. Now we want to express the curvature
matrix of the reflector, D, in terms of the known matrices. For that, we use equation 42 in combination
with the condition given in equation 24, which yields the formula

D =
1
pZ3

[
A−T

(
QE

TPE + E − 1
2
MM

)
A−1 + E

]
. (52)

Equation 52 is exact. However, since matrix E can not be computed from conventional dynamic ray tracing
along a single image ray, it is tempting to assume that its effect is negligible. In particular, we observe that
matrix E is zero if the slowness vector of the image ray is normal to the reflector. The effect of matrix E
will clearly be quite small as long as the angle between the slowness vector and the reflector normal is also
small.

CONCLUSIONS

Application of the CRS method in the time-migrated domain provides, besides a refined time-migrated
volume, also linear and quadratic CRS coefficients. These coefficients can be interpreted in terms of the
reflector dip and curvature in depth. For a given anisotropic depth-velocity model, the CRS coefficients (or
time-migrated CRS parameters) determine the dip and curvature of the reflector at the point the reference
image ray hits the reflector. Recent literature has shown how an isotropic depth-velocity model can be
constructed directly from the time-migrated velocity field, which is naturally obtained in the pre-stack
time-migration process. Potential application of the obtained results can be, for example, the construction
of selected reflectors in depth to help setting constraints for velocity-model building. We look forward to
seeing further research in this direction.
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