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ABSTRACT

The objective of this work is to demonstrate the application of single-stack redatuming. The purpose of
this operation is to transform seismic data acquired in a certain measurement level, in order to simulate
data as if acquired at another level. Recent theoretical advances allow to perform this transformation
for zero-offset data in a single step. It consists of performing a single weighted stack along adequately
chosen stacking lines. In this work, we demonstrate the application of this method to synthetic seismic
data for media with two or many flat layers and in models with lateral velocity variations. In the first
case the data are generated at and redatumed to flat surfaces, in the second situation both surfaces
of acquisition and redatuming have different topographies, and in the third experiment data from a
laterally varying medium are redatumed to a flat datum using only velocity information in the top
layer. Moreover, we quantitiatively discuss the dependence of the operator on the velocity model. Our
examples demonstrate the quality of the redatumed data both kinematically and dynamically.

INTRODUCTION

Redatuming is used with the objective to transform seismic data acquired at a certain measurement level
to simulate data as if acquired at another level (Wapenaar et al., 1992). The standard way of realizing a
redatuming is by downward continuation of seismic time data (Berryhill, 1979, 1984, 1986). The main goal
when using redatuming is to improve the data quality. In practice, redatuming is frequently used to remove
the interference of topography from the data, simulating the acquisition at a planar datum. However, the
general ideas of redatuming are not restricted to the datum being planar. The general redatuming formalism
can include topography at both the original acquisition surface and the new datum.

Over the years, many attempts have been made to achieve the goal of determining the seismic data
at a new datum. Wapenaar et al. (1992) proposed a one-way Kirchhoff-Helmholtz extrapolation. Other
contributions to the theory of wave-equation-based redatuming methods include the works of Yilmaz and
Lucas (1986), Bevc (1997), and Schneider et al. (1995). Schuster and Zhou (2006) provide a comprehensive
summary about the state of the art in redatuming

As geometrically discussed by Hubral et al. (1996) and mathematically shown by Tygel et al. (1996), re-
datuming is a true-amplitude configuration transform (particular case), developed from chaining of diffrac-
tion stack migration and isochron stack demigration (Pila et al., 2007b,a).

In practice, redatuming is often only employed kinematically, without regard to preserving the ampli-
tudes. However, when we want to use the dynamic information, for instance in a subsequent true-amplitude
migration (see, e.g., Schleicher et al., 1993; Hanitzsch et al., 1994), amplitude preservation is of fundamen-
tal importance in the complete processing sequence, including redatuming. In this work, we demonstrate
the application of true-amplitude single-stack redatuming to synthetic seismic data for media with two or
many flat layers and in models with lateral velocity variations. Moreover, we discuss the dependence of
the single-stack redatuming operation on the velocity model. We quantify the kinematic and dynamic error
as a function of the error in the velocity model.
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METHODOLOGY

Redatuming is one of the many imaging operations that can be described by chaining Kirchhoff-type mi-
gration and demigration integrals. For this purpose, all that has to be done is to interchange the order of
integrations and analytically evaluate the new inner integrals. In this way, many one-step imaging opera-
tions of the type of a diffraction stack can be developed (Schleicher et al., 2007).

In this work, we study a 2.5D true-amplitude redatuming, i.e., we study the amplitude behavior when
redatuming data. The attribute 2.5D (Bleistein, 1986) indicates that in our experiments we consider 3D
wave propagation in a 2D earth model. The velocity is invariable in the y direction and the seismic line is
positioned along the x-axis.

In the analysis below, the location of the source-receiver positions along the original seismic line on the
acquisition surface Zo is described by their horizontal midpoint coordinate ξ. In other words, the original
sources and receivers are located at the points S = (ξ − h, 0,Zo(ξ − h)) and G = (ξ + h, 0,Zo(ξ + h)),
where h is the half-offset. Correspondingly, the simulated source-receiver positions on the new datum Zr
are described by their horizontal midpoint coordinate η. The numerical experiments below only consider
the zero-offset situation, i.e., h = 0 m, with sources and receiver in the same position and equally spaced
along the x-axis.

We know that for each point (η,τ ) in the redatumed section to be constructed, there is a weighted
diffraction-stack operation along problem-specific stacking surfaces, the so-called inplanats t = Tr(ξ; η, τ),
that achieves the desired true-amplitude transformation. Accordingly, the simulated data at a new level can
be expressed as a single stacking operator with a weight function Wr(ξ; η, τ) acting upon the input data,
i.e.,

Ur(η, τ) =
1√
2π

∫
A

dξWr(ξ; η, τ)D1/2[U(ξ, t)]|t=Tr(ξ;η,τ) , (1)

where U(ξ, t) stands for the input data and Ur(η, τ) represents the redatumed output data. Moreover, A
denotes the aperture of the stack, that is, the region over which data are stacked to contribute to the output
value at (η, τ). Finally, D1/2 is the half-derivative operation which helps to correctly recover the pulse
shape of the source wavelet. It can be represented as

D1/2[f(t)]| = F−1
[
|ω| 12 e−iπ2 sgn (ω)F [f(t)]

]
, (2)

where F denotes the Fourier transform.

STACKING CURVE AND WEIGHT FUNCTION

The determination of the stacking curve is related to the kinematic properties of the problem. The stacking
line connects all point in the input section where a reflection event might have been recorded that would
appear in the redatumed section at an output point (η, τ). On the other hand, the weight function is related
to the amplitude behaviour. The condition for a true-amplitude weight function is that, asymptotically, the
simulated reflections must have the same geometrical-spreading factor that the reflections would have if
they were actually acquired on the new datum. As shown by Pila et al. (2007b), the resulting true-amplitude
weight function does not depend on any reflector property. Thus, it is possible to evaluate it for any point
(η, τ) in the redatumed section using only information about the velocity model.

The stacking curve Tr is determined using two steps:
1) Given a point (η, τ ) at the new datum, we must construct the isochron ZIr(x; η, τ) in depth. This

isochron is defined by all points M = (x,ZIr(x; η, τ)) in depth for which the sum of traveltimes along
the ray segments SrM and MGr, which connect the depth point M to the source-receiver pair (Sr, Gr),
is equal to the given time τ or, mathematically,

T (Sr,M) + T (M,Gr) = 2T (Sr,M) = τ , (3)

where the central expression is valid for zero-offset. The traveltimes T (Sr,M) and T (Gr,M) depend, of
course, on the available macrovelocity model.

2) In the next stage, we consider the isochron ZIr(x; η, τ) as a reflector in an experiment with the
input distribution of source-receiver pairs at the original measurement surface z = Zo(ξ). The resulting
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traveltime curve can be written as;

t = Tr(ξ; η, τ) = TD(ξ;x∗; z∗) , (4)

where
TD(ξ;x∗; z∗) = T (S,M∗) + T (M∗, G) = 2T (S,M∗) (5)

is the diffraction traveltime curve of the stationary point M∗ = (x∗, z∗). For each source-receiver pair at a
position ξ, point M∗ represents the point on the isochron z = ZIr(x; η, τ) where a reflection would occur
that would be registered at ξ with a traveltime t. Point M∗, supposed to be unique, has the coordinates
(x∗, z∗ = ZIr(x∗; η, τ)), where its horizontal coordinate, x∗ = x∗(ξ; η, τ) is obtained from the stationarity
condition (Fermat’s principle)

∂

∂x
[TD(ξ;x, z)] |x=x∗ = 0. (6)

Pila et al. (2007b) demonstrated that the weight function Wr(ξ; η, τ) can be obtained from a fully
analogous analysis to the one presented for migration to zero-offset (MZO) in Tygel et al. (1998). The
reason is that both operations belong to the general class of configuration transforms. The arguments and
mathematical derivations applied to both situations are completely analogous. The final redatuming weight
function for an arbitrary medium, configuration and topography reads

Wr(ξ; η, τ) =
voS
viS

√
σiS + σiG
σoS + σoG

LiSLiG
LoSLoG

(
cos θiS
L2

iS

+
cos θiG
L2

iG

)
1

cosφ

√
cos θoR
v3
R

exp {iπ[1− sgn (Ki −Ko)]/4}√
2|Ki −Ko|

, (7)

where viS , voS , vR are the velocities at the sources on the input, output datums and at pointM , respectively.
Also, σiS , σiG are the so-called optical lengths of ray segments MSi and MGi, respectively, i.e., the inte-
gral of squared velocity in traveltime along the ray. Analogously, σoS , σoG, represent these factors along
segments MSo and MGo, respectively. These factors represent the out-of-plane geometrical-spreading
factors.

The in-plane components of the geometrical spreading are given by LiS and LiG, along segments
MSi and MGi, and LoS and LoG, along segmentes MSo and MGo, respectively. Moreover, symbols
θiS and θiG represent the angles that the rays MSi and MGi make with the surface normal at Si and Gi,
respectively, and φ is the surface dip angle at Si. In addition, θoR is the reflection angle at M in output
configuration. Finally, Ki and Ko are the curvatures of the input and output isochrons, respectively. For
the zero-offset configuration, Pila et al. (2007b) simplified expression (7) to

Wr(ξ; η, τ) =
voS
viS

√
2
σiS
σoS

cos θs
cosφ

1

v
3/2
R L

2

oS

exp {iπ[1− sgn (Ki −Ko)]/4}√
Ki −Ko

, (8)

Homogeneous medium without topography

For simple velocity models, the stacking curve (4) and weight function (8) can be further simplified. For
example, for a homogeneous medium with a flat surface and a flat datum, i.e., zi(x) = 0 and zr(x) = zr,
the geometry reduces to the one depicted in Figure 1.

The stacking curve and the weight function for this case were derived by Pila et al. (2007b), resulting
in

Tr(ξ; η, τ) =
2
vo

(Ro + `) = τ + 2
`

vo
(9)

and

Wr(ξ; η, τ) =
√

2
vo

(
Ro + `

Ro

)
zr
`3/2

. (10)
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Figure 1: The unique reflection from an input source-receiver pair to the isochron z = Zo(ξ; η, τ) crosses
the center of the semicircular isochron.

Homogeneous medium with topography

Pila et al. (2007b) have also shown how the stacking line and weight function must be modified if topog-
raphy is present at the acquisition surface zi = zi(ξ) and at the datum zr = zr(η). The stacking curve (4)
is still valid, with ` denoting the distance between Si and So, and in the weight function (8), the constant
value zr needs to be replaced by the variable topography according to

zr → z0 = [zr(η)− zi(ξ)− (ξ − η)z′i(ξ)] . (11)

No other changes are required.

ANALYSIS OF THE VELOCITY DEPENDENCE

In this section, we study the behaviour of the redatuming operation (1) when subject to a variation of the
underlying velocity model. We suppose that the operation was carried out with an erroneous velocity model
ṽ that differs from the correct model v by a certain error ∆v. In the following we denote all quantities that
belong to the erroneous velocity model with a tilde. For instance, the resulting wrongly redatumed data
will be denoted by Ũr(η, τ). To understand the error in Ũr(η, τ) due to the error in the velocity field, we
study the velocity derivative of the Fourier transform of equation (1),

Uo(η, ω) =
1√
2π

∫
A

dξWr(ξ; η, τ)e−iωTr (iω)1/2Ui(ξ, ω). (12)

We observe that in this equation, only the weight function, Wr, and the stacking curve, Tr, depend on the
velocity. Therefore, to understand how a velocity error ∆v affects the redatuming operation, we need to
evaluate how the product Wre

−iωTr behaves under variation in v.
To simplify the notation, we introduce the auxiliary variable Y defined as

Y (v) = Wre
−iωTr . (13)

The value Ỹ of this quantity for the erroneous velocity model can then be represented in a Taylor series as

Ỹ = Y (v + ∆v) = Y (v) + Y ′(v)∆v +
1
2!
Y ′′(v)∆v2 +O(∆v3), (14)
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where the prime denotes a derivative with respect to v. Substituting the first and second derivatives of Y in
equation (14) leads to

Y (v + ∆v) = Wre
−iωTr − iωWre

−iωTr dTr
dv

∆v + +
1
2!

(iω)2
Wre

−iωTr
(
dTr
dv

∆v
)2

+
dWr

dv
e−iωTr∆v − iω dWr

dv
e−iωTr

dTr
dv

∆v2

+
1
2!

[
d2Wr

dv2
e−iωTr − iωWre

−iωTr d
2Tr
dv2

]
∆v2 +O(∆v3), (15)

which, upon adequate grouping of terms, yields

Y (v + ∆v) ≈
[
Wr +

dWr

dv
∆v
]
e−iωTr

[
1− iω dTr

dv
∆v
]
. (16)

From expression (16), we can immediately identify the resulting perturbations of the stacking line and
weight function as a function of the velocity error, i.e.,

∆τ =
dTr
dv

∆v (17)

and

∆Wr =
dWr

dv
∆v . (18)

Interpreting the last term in equation (16) as a first-order approximation of an exponential expression,
we recast that equation into the form

Y (v + ∆v) ≈ [Wr + ∆dWr] e−iωTre−iω∆τ . (19)

Using equation (19), we can now set up the following expression for the perturbed redatumed data,

Ũo(η, ω) =
1√
2π

∫
A

dξ [Wr + ∆dWr] e−iω(Tr+∆τ)(iω)1/2Ui(ξ, ω), (20)

which, after an inverse Fourier transform, can be written as

Ũo(η, τ) =
1√
2π

∫
Y

dξW̃r(ξ; η, τ)D1/2 [Ui(ξ, t)] |t=T̃r(ξ;η,τ), (21)

where

W̃r(ξ; η, τ) = Wr(ξ; η, τ) + ∆Wr(ξ; η, τ) (22)

and

T̃r(ξ; η, τ) = Tr(ξ; η, τ) + ∆τ = Tr(ξ; η, τ −∆τ) (23)

describe the perturbed weight function and stacking line with a velocity error ∆v. The second equality
in equation (23) means that a redatuming with an erroneous velocity ṽ will position the event at the same
position as if redatumed with the true velocity v at a different output time τ−∆τ , with ∆τ given in equation
(17). Since the stationary value of integral (21) is the one that determines the output Ũo, this shifted event
will have its amplitude perturbed by ∆W as given by equation (18). In other words, if an estimate of the
velocity error ∆v is available, it is possible to correct the redatumed data directly. The correction term for
the phase is directly given by equation (17). The correction term for the amplitude combines equation (18)
with additional corrections for the different traveltime Hessians and the dislocation of the stationary point.
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Quantitative analysis

For the special cases discussed earlier, we can perform a more quantitative analysis of the perturbations.
We start with the weight function (10), which can be rewritten as

Wr(ξ; η, τ) =

√
2
v

(
vτ + 2`
vτ

)
z0

`3/2
, (24)

where we have used that R0 = vτ
2 , with τ being the fixed output time. Thus, we find

d

dv
(Wr(ξ; η, τ)) =

d

dv

(√
2
v

(
1 +

2`
vτ

)
z0

`3/2

)

= −1
2
v−3/2

√
2
(

1 +
2`
vτ

)
z0

`3/2
−
√

2
v

2`
v2τ

z0

`3/2
, (25)

which yields

∆Wr(ξ; η, τ) = −∆v
2v

Wr −
√

2
v

(
`

R0

)
z0

`3/2
∆v
v
. (26)

This equation shows that we must expect an amplitude reduction if the redatuming is carried out with a too
high velocity (∆v > 0) and vice versa. If ` � R0, i.e., the datum is close to the acquisition surface, the
second term in equation (26) can be neglected. Then, the relative amplitude error can be estimated from

∆Wr(ξ; η, τ)
Wr

≈ −1
2

∆v
v
, (27)

i.e., the amount of the relative amplitude error is about half the amount of the relative velocity error. On
the other hand, if ` � R0, i.e., if the datum is close to the reflector, then R0 + ` ≈ ` in equation (24). In
that case, the relative amplitude error is approximately given by

∆Wr(ξ; η, τ)
Wr

≈ −3
2

∆v
v
, (28)

i.e., the amount of the relative amplitude error is about one-and-a-half times the amount of the relative
velocity error. Finally, if ` ≈ R0, i.e., the datum is about half way down to the reflector, the relative
amplitude error can be approximated by

∆Wr(ξ; η, τ)
Wr

≈ −∆v
v
, (29)

i.e., the relative amplitude error is of about the same size as the relative velocity error.
The inclusion of topography, which requires the modification of the weight function as indicated in

equation (11), does not alter the analysis above.
To estimate the phase error, we start from equation (9). Taking its v derivative yieds

d

dv
(Tr) =

d

dv

(
τ +

2`
v

)
=
−2`
v2

. (30)

Thus, the phase error is given by

∆Tr =
−2`
v2

∆v. (31)

We observe that the phase shift for a positive velocity error is negative. In other words, the redatumed event
will appear later in the redatumed section than with the correct velocity. In the case of ` � R0, equation
(31) can be approximated as

∆Tr
Tr
≈ −∆v

v
, (32)
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Figure 2: Model for the first numerical experiment: A zero- offset experiment was simulated at z = 0 above
set of plain reflectors. Also shown is the datum level (blue line) at z = 100 m.

i.e., the size of the relative phase error corresponds to that of the relative velocity error. For ` ≈ R0, we
find

∆Tr
Tr
≈ −1

2
∆v
v
, (33)

i.e., the relative phase error amounts to half the relative velocity error. Finally, for ` � R0, we observe
from equation (9) that Tr � 2`/v, which implies that∣∣∣∣∆TrTr

∣∣∣∣� ∣∣∣∣∆vv
∣∣∣∣ . (34)

From this analysis, we conclude that the relative phase error should be very small for a datum close to the
acquisition surface and should never exceed the size of the relative velocity error.

NUMERICAL EXPERIMENTS

Inhomogeneous models

The validity of the theory was confirmed by Pila et al. (2007b) by numerical tests using homogeneous
models. In this work, we investigate the velocity dependence of the redatuming operation by applying it to
slightly more complicated models.

First model In the first synthetic experiment, we apply constant-velocity redatuming to a horizontally
layered model with five horizontal layers with acoustic wave velocitys of 1500 m/s, 1800 m/s, 2500 m/s,
3300 m/s, and 4000 m/s. Figure I shows the geometry of the reflectors together with the ray family of
the zero-offset configuration. The source-receiver pairs are positioned at z = 0 m at every 20 m between
ξ = −1000 m and ξ = 1000 m. Also show in Figure I is the new datum level at z = 100 m (blue line). We
generated the synthetic data using Kirchhoff modelling in the RMS velocity model (see Figure I). These
data have then been used as input for redatuming operation (1), with stacking line (9) and weight function
(10) using the correct RMS velocity model. The output configuration also consists of source-receiver pairs
at every 20 m between η = −1000 m and η = 1000 m. The resulting redatumed data are depicted in
Figure 4. For comparison, Figure 5 shows the ideal result of this redatuming operation, i.e., the section
obtained by direct Kirchhoff modelling at the datum level. Comparing Figures 4 and 5, we recognize that
the kinematic transformation was very good. The structure of the redatumed reflection data looks identical
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Figure 3: Modeled seismic zero-offset section as in-
put to redatuming.
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Figure 4: Section resulting from redatuming opera-
tion (1) to z = 100 m.
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Figure 5: Section resulting from Kirchhoff mod-
elling at z = 100 m. Note that the redatumed section
in Figure 4 looks almost identical to this reference
section.
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Figure 6: Comparison of the central traces of Fig-
ures 4 and 5. Notice the good coincidence between
the redatumed (dashed line) and modelled (continu-
ous line) traces.

to the one of the modelled data. Also, the amplitudes of the five events are correctly recovered. Some
operator noise is visible after the events. For a more detailed appreciation of the quality of the redatumed
data, Figure 6 shows a comparison of the central traces of Figures 4 and 5. We see that the five events are
well recovered.

Second model In the second synthetic test, the acquisition surface and datum have different sinusoidal
topographies (see Figure 7). The model consists of two homogeneous and isotropic flat layers with acoustic
wave velocitys of 1500 m/s and 1800 m/s. Figure 7 shows the geometry of the reflector together with the
ray family of the zero-offset configuration. The source-receiver pairs are positioned at every 20 m between
ξ = −1000 m and ξ = 1000 m. Also show in Figure 7 is the new datum surface at z = zr(η) (blue line).

The synthetic Kirchhoff data for the model in Figure 7 are depicted in Figure 8. They have then
been used as an input for single-stack redatuming according to operation (1). The output configuration
also consists of source-receiver pairs at every 20 m between η = −1000 m and η = 1000 m. The data
resulting from redatuming are depicted in Figure 9. For comparison, Figure 10 shows the ideal result of this
redatuming operation. The section in Figure 10 was obtained by direct Kirchhoff modelling at the datum
level. Comparing Figures 9 and 10, we recognize that the kinematic transformation was very good. The
structure of the redatumed reflection data looks identical to the one of the modelled data. Some operator
noise is visible after the event. For a more quantitative comparison, Figure 11 compares the central traces
of the modelled and redatumed sections in Figures 8 and 9. We notice the almost perfect coincidence
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Figure 7: Model for the second numerical experiment: A zero-offset experiment was simulated at zi =
zi(ξ) above a flat reflector. Also shown is the datum level (dotted line) at zr = zr(η) m.
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Figure 8: Modeled seismic zero-offset section.
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Figure 9: Section resulting from redatuming to zr.
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Figure 10: Section resulting from Kirchhoff mod-
elling at zr(η). Note that the redatumed section in
Figure 9 looks almost identical to this reference sec-
tion.
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Figure 13: Modeled seismic zero-offset section.

between the redatumed (dashed line) and modelled (continuous line) traces.

Model with lateral velocity variations The third model consists of four smoothly curved interfaces
separating homogeneous layers with velocities 1508 m/s, 1581 m/s, 1690 m/s, 1826 m/s, and 2000 m/s
(Figure 12). We modelled synthetic zero-offset data by Gaussian beams at the planar surface with source-
receiver pairs at every 50 m between ξ = 0 m and ξ = 4000 m (Figure 13). Then, we redatumed these
data to a depth of zr = 100 m (Figure 14) using the velocity of the topmost layer and compared them to
data modelled at the datum level (Figure 15). The two sections look almost identical. While the first three
events are virtually undistinguishable in the modelled and redatumed sections, some amplitude loss can be
observed at the deepest event.

Velocity error

To test the prediction of the theoretical analysis of the velocity dependence, we generated synthetic data
in the model depicted in Figure 16. It consists of a planar reflector below a homogeneous overbur-
den with velocity 5000 m/s. The source-receiver pairs cover a sinusoidal acquisition surface with zi =
50 sin(ξ/150) m at every 10 m. The datum is another sinusoidal surface at about 400 m depth with
zr = 30 sin(ξ/200 − 80) + 400 m. Figures 17, 18, and 19 show the input data, the redatumed data
and synthetic reference data modelled at the datum level.

The phase and amplitude error of the redatumed event are shown in Figures 20 and 21. Our next step
was to perturb the velocity used for the redatuming with a 15% error. After this perturbation, the phase and
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Figure 14: Section resulting from redatuming to z = 100 m
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Figure 15: Section resulting from modelling at z = 100 m

amplitude errors increase, as shown in Figures 22 and 23. However, a correction using formulas (17) and
(18) reduces these errors (Figures 24 and 25) to the same order as the ones obtained with the true model
velocity (Figures 20 and 21).

CONCLUSIONS

The redatuming operation can be thought of as being composed of a true-amplitude diffraction-stack mi-
gration and true-amplitude isochron-stack demigration, as described in the unified approach to seismic
reflection imaging (Hubral et al., 1996; Tygel et al., 1996). Based on this observation, Pila et al. (2007b)
derived analytic expressions for the stacking line and weight function of single-stack redatuming.

This particular way of deriving the single-stack redatuming operator points towards its potential depen-
dence on the velocity model. In this work, we have studied this velocity dependence. We have seen that
a velocity error causes amplitude and phase errors that are expected to be of approximately the same size
as the velocity errors. The phase of redatumed data turned out to be more robust than their amplitude. Our
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Figure 16: Model for the velocity error test. The
original acquisition surface and the datum (blue line)
are sinusoidal surfaces.
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Figure 17: Synthetic zero-offset section obtained
from Kirchhoff modelling at the original sinusoidal
acquisition surface of Figure 16.
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Figure 18: Redatumed section at the sinusoidal da-
tum of Figure 16.
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Figure 19: Modelled section at the sinusoidal datum
of Figure 16.

theoretical analysis led to amplitude and phase factors that allow for a direct correction of the redatumed
data, if an estimate of the velocity error is available.

Moreover, we have applied the redatuming operator of Pila et al. (2007b) to different synthetic data
for models with two or more layers and in models with lateral velocity variations. In these experiments,
we have seen that seismic data acquired at the measurement surface were repositioned correctly to a new
level, preserving attributes as amplitude and phase. The topography did not present a restriction to the
application of the method. Application with slightly wrong velocity models did not cause a significant
error in the redatumed data.

Further investigations are being carried to test the potential of the redatuming operator for applications
in models with stronger lateral velocity variations.
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Figure 20: Traveltime error of redatuming using the
correct velocity.

−1000 −500 0 500 1000
0

5

10

15

20

e
rr

o
r 

(%
)

distance (m)

amplitude error

Figure 21: Amplitude error of redatuming using the
correct velocity.
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Figure 22: Traveltime error of redatuming using a
15% too high velocity.
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Figure 23: Amplitude error of redatuming using a
15% too high velocity.
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Figure 24: Traveltime error after phase correction.
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Figure 25: Amplitude error after correction.
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