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ABSTRACT

This report describes an investigation about the sensitivity and ambiguity of the CRS stack operator
with respect to 4 parameters (v0, RNIP , RN , α0), and its resolution in terms of the statistical prop-
erties of the solution of a nonlinear multi-parametric optimization problem for curve fitting in the
least-square sense. The sensitivity method is borrowed from dynamic system analysis and synthesis,
and the definitions are based on the Miller-Murray model. One of the main major aim is to compare
the results on the sensitivity parameters to the strategy for the CRS attributes search.
As a result of a parallel investigation of optimization techniques is the combination of global and
local methods to reach the minimum, around which linearity is a better relation between the linear
and the non-linear counterpart of the optimization problem and its solution. A first search should look
a minimum with a method of controlled random type, followed by a second search to perform a last
iteration using a gradient method to obtain the data and parameter resolution and covariance matrices,
and further statistical properties.
The sensitivity functions are represented by the columns of the problem matrix, and they exhibit a
linear behavior of the operator instead of a concave form, and this linearity informs the necessity of a
good starting point for the search of the parameters.

INTRODUCTION

The motivations of the present work start from two aspects of the CRS (Common Reflection Surface)
stack: (1) the presence of noise in the recovered attributes; and (2) the strategy of the parameter search.
The analysis of the CRS stack results (sections: stack, coherence, migration, RNIP , RN , α0) show that
as the observed input data improves on the signal/noise ratio, the attribute sections show a structure that
resembles more the stack section that is used as reference. Sensitivity analysis can be used to determine
how sensitive the model is to changes in the value of the parameters of the model, and to changes in the
structure of the model.

This report is structured in three main parts related to curve fitting, between synthetic data and the
forward model represented by the CRS stack operator, as an optimization problem in the least-square
sense. The parts are: (1) Controlled random global search for the parameters; (2) second order gradient
method, resolution and ambiguity; and (3) sensitivity analysis and its relation to the CRS attributes search.

Sensitivity and ambiguity calculus is to be performed directly in the forward model as a first step in
the analysis of the data fitting problem, and it is independent of the object function and of the mathemat-
ical problem defined as optimization. This calculus is used for the purpose of analysis and synthesis of
mathematical models. In order to be able to give a unique formulation of the mathematical problem, the
mathematical model is usually considered to be known exactly, but this assumption is unrealistic since there
is always a certain discrepancy between the actual system (data) and its mathematical model (operator).
This discrepancy results from the following partial reasons:
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• A real system cannot be identified exactly because of the restricted accuracy of the measuring de-
vices;

• Mathematical models are often simplified or idealized intentionally in order to simplify the mathe-
matical problem or to make it solvable at all.

For these reasons, the results of mathematical synthesis need not necessarily be practicable, or they may
even be very poor, if there is considerable deviations between the real system and the mathematical model,
and the solution be very sensitivity to the parameters. Therefore, it should be part of the practical problem
to learn about parameter sensitivity prior to its implementation, or to reduce the sensitivity systematically
if this turns out to be necessary.

This is important if one is involved in optimization procedures, since a natural property of optimization
is to extremize the performance of a certain set of parameters that controls the operation. Example of this
are gradient methods, adaptive and self-learning systems.

Among the major aims the present study are: (1) to analyze the sensitivity of the CRS hyperbolic stack
operator to its parameters; and (2) to compare the results of the analysis of the parameter sensitivities with
the strategy for the CRS attribute search as described by Muller (1999) and Mann (2002).

The parameter search here discussed is organized as a nonlinear optimization problem, and statistical
properties in the optimization process shows up when derivative methods are applied, in particular when
the norm-2 is applied due to simplicity and elegance, as described by Tarantola (1984). Data and parameter
resolution matrices and unit covariance matrix are calculated and analyzed on the basis of the linearized
nonlinear problem based on Taylor series expansion to the first order.

The CRS parameter search strategies in the semblance domain is divided in two main parts: (1) the first
part is a search to determine initial parameter values to start the optimization iterations; (2) a second part
is a simultaneous search for all parameters starting from the initial values. The searches are performed in
the CMP (Common Mid Point) families of the data cube.

The forward model is represented by the CRS stack operator in terms of t(xm, h; m), and the optimiza-
tion problem as a fitting between the predictive surface tpre(xm, h; m) and the observed data tobs(xm, h).
The least-square fitting was chosen as the object function of optimization, and the problem is classified
as nonlinear, multi-parametric, overdetermined, and to avoid local minima it is proposed a solution by the
combination of Controlled Random Search Global method (CRSG), and of a gradient method (GM) that al-
lows for the statistical analysis of the solution. The combination of these methods follows the principle that
CRSG defines a region around the global minimum, theoretically well defined, followed by a last iteration
around a minimum with linear properties in order to construct the correlation and resolution matrices. The
numerical experiments were realized for randomly chosen points P0(x0, t0); so, neither to extend along
the traces, (t0 = 0, ttotal), nor along the mid-points (x0 = 0, xtotal). As established, the solution by the
CRSG method is used as input to the GM method, but in the present work these experiments were realized
separately.

The structure of the sensitivity analysis is based on the polynomial function of the CRS operator repre-
sented by t(xm, h; v0, RNIP , RN , α0), where the quantitative properties of this system with respect to its
parameters (v0, RNIP , RN , α0), are shown as functions of the independent variables xm e h.

The original seismic problem is presented in the following form: Given an observed seismic section
tobs(xm, h) in the data space D, one wishes to find a model m in the parameter space M such that the
forward model tpre(xm, h) fits the observed data in the least-square sense.

The methodology for sensitivity analysis has been borrowed from the analysis and design of dynamic
systems, as described, e.g., by Frank (1978) for engineering applications, and by many others for partial
differential equations, e.g., Saltelli et al. (2004). Among the several methods for uncertainty and sensitivity
analysis, the method adopted here is the local method which is based on a derivative.

The basic definitions to quantify the parameter sensitivity of a system is summarized in the sequel, but
we start adjusting the classical nomenclature to our model; therefore, we start defining the direct model.

DIRECT MODEL

The direct model is the CRS stack operator that describes the impulse traveltime for curved reflectors based
on the paraxial ray theory, and takes into account only primary reflection trajectories (Mann (2002)). The
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equation, represented physically by Figure 1, is given by:

t(xm, h; m) =

√[
t0 +

2 sinα0(xm − x0)
v0

]2

+
2t0 cos2 α0

v0

[
(xm − x0)2

RN
+

h2

RNIP

]
. (1)

In the above equation (1), the independent variables are xm e h, respectively, the mid-point and the half-
offset in the CMP configuration, as is shown in Figure 2, and the parameters to be analyzed are m =(
v0, RNIP , RN and α0) related to the reference point P0(x0, t0). v0 is the velocity of the upper layer
and, in practical work defined as a fixed value around P0(x0, t0), but here taken as a parameter to be
analyzed. α0 is the vertical emergence angle of the wave front. The quantities RNIP and RN are the
wave front curvature related, respectively, to the Normal Incident Wave (NIP-wave) and to the Normal
wave (N-wave). To satisfy the paraxial ray theory, a central ray of reference must established, and in this
case it is taken the zero offset ray between the surface observation point and the normal incidence point in
subsurface. The central ray satisfies Snell’s law through the interfaces, and the wave front curvatures of the
NIP and N waves change according to the refraction and transmission laws.

Figure 1: Physical illustration of the CRS model formed by one layer over a half-space separated by a
curved interface.

Figure 2: 3-D perspective representing the CRS operator in green [equation (1)] and the observed data in
blue.
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Bernabini et al. (1987) describe functionals to be evaluated quantitatively on a given CMP gather for
the goodness of fit between data and a model function, particularly for a stacking velocity value of the hy-
perbolic reflection response. The most common functionals measure the likeness of the corrected gather’s
amplitude traces (u) based on correlation of traces, and choices of normalization. The normalized 2D
(xm, h) measure semblance Sen(t0; m) is composed by averages, and it is given by:

Sen(t0; m) =

1
Nt

t=t0+δt∑
t=t0−δt

1
Nxm

xm=xL∑
xm=xF

[
1
Nh

h=hL∑
h=hF

u(xm, h; t0)

]2

1
Nt

t=t0+δt∑
t=t0−δt

1
Nxm

xm=xL∑
xm=xF

1
Nh

h=hL∑
h=hF

u2(xm, h; t0)

, (where 0 ≤ Sen ≤ 1); (2)

where the set of parameters m are related to the trajectory of the summation defined by equation (1),
from a near first h = hF to a last h = hL offset with Nh points, from a near first xm = xF to a last
xm = xL mid-point with Nx points, and in a time window specified by some δt around t0. Sen(t0; m)
takes values in the interval (0,1) regardless of the signal amplitude, and it quantifies the uniformity of the
signal polarity across the NMO (Normal Moveout) corrected gather amplitude u(t0). This equation does
not carry implicitly information about the model tpre(xm, h); therefore, cannot be used directly as a curve
fitting measure.

Figure 3 serves to represent the semblance function (2), where the aim of the optimization is to search
for the global minimum represented in red. Local minima can also be seen by yellow spots. As Muller
(1999) addresses to the CRS stack objective function, he shows plots of equation (2) in form of cube
perspectives and slices as maps of RNIP versus RN , RNIP versus α, RNIP versus RN , RN versus α,
where the global minimum present very clearly elongated forms that we call valleys. Figure 4 represents the
forward model without noise, and Figure 5 represents the synthetic data. Both informations were calculated

Figure 3: Perspective of the coherence values given by equation (2) as function of the wavefield attributes
α0, RN and RNIP .
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Figure 4: 3-D perspective that represents the forward model calculated by equation (1) showing the hyper-
bolic aspect.
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Figure 5: 3-D perspective that represents the synthetic data calculated by equation (1) with random noise
added showing the hyperbolic aspect.

by equation (1), where random noise from a normal distribution has been added and controlled visually.
Therefore, this study does not have picked events, inclusive in the semblance sense.

SENSITIVITY MODEL

The system function is denoted by t = t(m), dependent on the parameter vector m = [m1,m2, . . .mM ]T ,
and in our problem we have that m is specifically given by m = [v0, RNIP , RN , α0]T . The nominal
parameters and system function are denoted with the lower script 0: m0 and t0. Considering continuity
conditions, the following definitions for the sensitivity function, S, are applied.

• Absolute sensitivity function:

Sj ,
∂t(m)
∂mj

∣∣∣∣
m0

= Sj(m0), (j = 1, 2, ...M). (3)
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The parameter-induced error of the system function is written by:

∆t ,
j=M∑
j=1

Sj∆mj ; (4)

and the maximum error by

|∆t| ,
j=M∑
j=1

|Sj ||∆mj |, (5)

where the vertical bars stand for the absolute values of the elements of the corresponding vector m or Sj.

• Relative logarithmic sensitivity function:

Sj ,
∂ ln t(m)
∂ ln mj

∣∣∣∣
m0

= Sj(m0), (j = 1, 2, ...M). (6)

The ln m means the vector of the logarithms of the elements of m, therefore ∂ ln m = [∂ m1/m1 m2/m2 . . .mM/mM ]T t.
The ith element of Sj is expressed by:

Sij =
∂ ti/ti
∂ mj/mj

∣∣∣∣
m0

= Sij
mj0

ti0
, (i = 1, 2, ...N ; j = 1, 2, ...M). (7)

where Sij is the ijth element of absolute sensitivity function Sj . The ith element of the relative error of the
system function is expressed as:

∆ti
ti0

,
j=M∑
j=1

Sij
∆mj

mj0
, (i = 1, 2, . . . , N); (8)

and the maximum relative error of the system function is given by

|∆ti
ti0
| ,

j=M∑
j=1

|Sij ||
∆mj

mj0
|, (i = 1, 2, . . . , N). (9)

There are also two ways to define a semi-relative sensitivity function as follows.

• Upper-semi-relative logarithmic sensitivity function:

Šj ,
∂ ln t(m)

∂mj

∣∣∣∣
m0

, (j = 1, 2, ...M). (10)

The components Šij are given by:

Šij =
∂ ti/ti
∂mj

∣∣∣∣
m0

=
1
ti0
Sij , (i = 1, 2, ...N), (j = 1, 2, ...M). (11)

• Lower-semi-relative logarithmic sensitivity function:

Ŝj ,
∂ t(m)
∂ ln mj

∣∣∣∣
m0

, (j = 1, 2, ...M). (12)

The components Ŝij are given by:

Ŝij =
∂ ti

∂mj/mj

∣∣∣∣
m0

= m0jSij , (i = 1, 2, ...N), (j = 1, 2, ...M). (13)
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INVERSE MODEL

The short description to follow is to present a relation between the optimization technique and the sensi-
bility analysis for completeness. In this way, Vieira and Leite (2009) and Santos et al. (2009) presented
strategies with two optimization methods combined to investigate the convergence and resolution of the
CRS operator aiming at practical applications. The concepts involved: (1) Random Controlled Search
(known also as Price method) and Gradient Method (known also as Gauss-Newton, or Second Order Gra-
dient). The misfit measure used for reference, φ(m), is expressed as:

φ(m) =

√√√√√√
N∑
i=1

[tobsi − tprei (m)]2

N
. (14)

This measure is not to be confused with the semblance function, and Figure 6 show the layout of the
inversion process.

Figure 6: Canonic representation of optimization principle.

Controlled Random Search Global Method

The formalism applied was described by Price (1983) to solve the global optimization problem (Brachetti
et al. (1997)), and a common characteristic to the global methods is that they attack two distinct problems
at the same time:

1. The global search problem that is the exam of all region of interest aiming at to localize “more
promising” sub-regions that contains the global minimum (m∗∗);

2. The local search problem that is the determination of the global minimum (m∗∗) using a local strat-
egy, once a rather small neighborhood has been detected around the minimum.

As a simple description, it is desired with the Price method a solution of the global non-constrained
optimization problem, structured in the following form: min φ(m), m ∈ RM , where φ : RM → R is a
continuous function; that is, a minimum φ(m) of the continuous function is searched, where the parameter
vector m (dimension M) to be determined is defined in the RM space. In this form, m represents point-
coordinates mi, (i = 1,M) in the continuous parameter space. The function object of minimizations is
multi-modal.

To initiate the process, a V search domain is defined through the specification of explicit constraints to
each parameter. Next, it is defined a predetermined quantity, N , of test points randomly chosen in V and
consistent with the constraints (in case they are imposed) forming the set:

Sk1 =
{

m(k)
1 ,m(k)

2 ,m(k)
3 , ...,m(k)

N

}
. (15)



Annual WIT report 2009 235

The functional φ(m) is evaluated at each point N , and the position and value of the function φ(m) are
saved in a matrix:

A[Nx(N + 1)]. (16)

At each iteration a new test point P , m̂(k), is calculated using a random sub-set S(k)
2 of S(k) described

in the form:

m̂(k) = c(k) − (m(k)
20 − c(k)), (17)

being c the centroid defined by:

c
(k)
j =

1
M

M∑
i=1

m
(k)
2i (j = 1,M). (18)

Next, a test is made if the point P satisfies the constraints, and if

φ(m̂(k)) < φ(m̂(k)
máx). (19)

In case these conditions are not satisfied, the process returns for new definitions. The probability that the
points converge to the global minimum depends on the distribution, on the value ofN , on the complexity of
the functional, in the nature of constraints and in the choice of the test points. Figure 7 serves to exemplify
the randomness of the misfit function φ(m) as a result of the automatic random selection of m.
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Figure 7: Price initial random non-fit function.

Gradient Method

This method is based on the multivariate Taylor series expansion of a function used to represent the ob-
served data, that in this case is a seismic section. This series linearizes the problem to allow for an iterative
solution based on the linear form Gm = t, where G 6= G(m). The quantity m is the parameter vec-
tor to be resolved iteratively, and G the problem matrix. The data is represented by t(xm, h; m2), and
the Taylor series expansion of the function t(xm, h; m2) in the neighborhood of m1 to the first order is
mathematically written as:

ti(xm, h; m)|m=m2 u ti(xm, h; m1) +
M∑
j=1

∂ti
∂mj

(xm, h; m)∆mj |m=m1 . (i = 1, N). (20)

From this expression, the observed time vector is defined representing the random variable,

ti(xm, h; m2) = tobsi (xm, h; m2 = true) = tobsi (xm, h), (21)
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and the predictive time vector representing the theoretical model,

ti(xm, h; m1) = tprei (xm, h; m1 = model) = tprei (xm, h; m). (22)

From these definitions, with m1 = m

tobsi (xm, h)− tprei (xm, h; m) =
M∑
j=1

∂tprei

∂mj
(xm, h; m)∆mj , (23)

that is conveniently rewritten in the matrix form,

∆t(xm, h; m) = G(xm, h; m)∆m. (24)

This equation represents a linearized form to obtain a solution to the nonlinear problem. In this equation,
∆t(xm, h; m) is a column vector, (Nx1), that represents the data deviations; ∆m is a column vector,
(Mx1), that represents the parameter deviations; and G(xm, h; m) is the problem matrix, (NxM), that
has the data information along the columns, the parameter information along the lines, and is given by the
partial derivatives in the form:

Gi,j =
∂tprei

∂mj
(xmi , hi; m), (i = 1, N ; j = 1,M) (25)

These partial derivatives are rather long, and they are used to represent the sensibility functions with respect
to the parameters. The continuous partial derivative with respect to v0, and shown in Figure 9, is given by:

∂t

∂v0
(xm, h) =

−
2t0

„
h2

RNIP
+

(xm−x0)2

RN

«
cos2 α0

v20
−

4(xm−x0)2 sinα0

„
t0+

2(xm−x0)2 sinα0
v0

«
v20

2

√
2t0

“
h2

RNIP
+

(xm−x0)2

RN

”
cos2 α0

v0
+
(
t0 + 2(xm−x0)2 sinα

v0

)2
(26)

The continuous partial derivative with respect to RNIP , and shown in Figure 10, is given by:

∂t

∂RNIP
(xm, h) = − h2t0 cos2 α0

R2
NIP v0

√
2t0

“
h2

RNIP
+

(xm−x0)2

RN

”
cos2 α0

v0
+
(
t0 + 2(xm−x0)2 sinα0

v0

)2
(27)

The continuous partial derivative with respect to RN , and shown in Figure 11, is given by:

∂t

∂RN
(xm, h) = − t0(xm − x0)2 cos2 α0

R2
Nv0

√
2t0

“
h2

RNIP
+

(xm−x0)2

RN

”
cos2 α0

v0
+
(
t0 + 2(xm−x0)2 sinα0

v0

)2
(28)

The continuous partial derivative with respect to α0, and shown in Figure 12, is given by:

∂t

∂α0
(xm, h) =

4(xm−x0)2 cosα0

„
t0+

2(xm−x0)2 sinα0
v0

«
v0

+
2t0

„
h2

RNIP
+

(xm−x0)2

RN

«
(cos2)′α0

v0

2

√
2t0

“
h2

RNIP
+

(xm−x0)2

RN

”
cos2 α0

v0
+
(
t0 + 2(xm−x0)2 sinα0

v0

)2
(29)

From these partial derivatives, the quantities Sij = ∂ ln ti(m0)
∂ ln m0j

∣∣∣∣
m0

= Sij(m0) = m0j
t0i

Sij(m0), are

calculated, as in equation (6). From their plots, these functions present a general linear trend behavior in
the t−x window, which means that they do not show a specific form that could better define the resolution.
In this case, the operator presents low resolution being necessary good starting point for the optimization,
and even the possibility of a priori constraints.
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In the least-square sense, the optimization problem is defined as over-determined (pure), the number of
data greater then the number of parameters to be resolved for, (N > M), and all parameters considered to
have the same sampling. The minimization method starts with the principle that ∂φ(m)/∂mj = 0, what
establishes a local minimum. The linearization of the optimization problem is represented by equation
G∆m = ∆t, where G = G(m). The iterative solution of the nonlinear problem is represented by the
equation:

∆m = [GTG]−1GT∆t. (30)

The parameter update during the iterations is given by:

m(k+1) = m(k) + γ∆m (31)

where γ is an attenuation/amplification factor for the found solution ∆m, and k is the iteration number in
the optimization process cycle.

Resolution

A statistical analysis for the method is made by the Data and Parameter Resolutions Matrices, and by
the Unitary Covariance Matrix (Menke (2002)). These matrices are attributes of the method involving
the derivative matrix, G, and its generalized inverse G−g , that in the present case has the form G−g =
[GTG]−1GT . The parameter resolution matrix is given by:

Rp = G−gG, (32)

and the data resolution matrix is given by:

Rd = GG−g. (33)

The unitary covariance matrix is given by:

covu(m) = σ−2G−g [cov t] G−gT = G−gG−gT . (34)

Flow Diagram

The flow diagram description of the computer program developed by Vieira and Leite (2009) and Santos
et al. (2009) is resumed as follows:

01- Start
02- Input: (1) Control parameters; (2) Model parameters; (3) Initial model parameters; (4) Inversion
parameters.
03- Start iterations: Controlled Random Search.
04- End iterations: Controlled Random Search.
05- Start iterations: Least-squares.
06- Calculation: Forward model.
07- Calculation: Curve fit and test for ending the iterations.
08- Calculation: Derivatives of the predictive operator.
09- Calculation: Matrices.
10- Calculation: Parameter update.
11- Calculation: Convergence test.
12- Returns to 05.
13- Calculation: Parameter Resolution Matrix.
14- Calculation: Data Resolution Matrix.
15- Calculation: Unit Covariance Unitary matrix.
16- Calculation: Quantity of Solution matrix.
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Figure 8: Evolution of the objective minimization function calculated in 20 iterations showing the stabi-
lization of the process around the tenth iteration.

The CRSG method showed to be a strong allied in the strategy for the 4 parameters search of the forward
model. The values obtained by the application of the CRSG and GM methods are presented in the table
below, and it shows agreement between the results.

Parameters Real CRSG GM
v0 (m/s) 1500 1459,0 1445,8
RNIP (m) 5000 5012,8 5112,3
RN (m) -5000 -4910,2 -4800,3

α0 (radians) 0,2094 0,2019 0,2186

The following table represents the Normalized Parameter Resolution matrix(4X4) (32) that, should
ideally have a unitary diagonal form, shows a weak scatter.

Rp v0 RNIP RN α0

v0 1 0.287 -0.173 0.000
RNIP 0.287 1 0.893 0.000
RN -0.173 0.893 1 0.000
α0 0.000 0.000 0.000 1

The table below represents the Normalized Unitary Parameter Covariance matrix (4X4) (34), that
should ideally have a diagonal unitary diagonal form, but shows a strong scatter, what corresponds to a
non-desirable strong correlation between the parameters, and it says that by changing one parameter the
others are also altered.

covu(m) v0 RNIP RN α0

v0 1 -0.832 -0.855 -0.362
RNIP -0.832 1 0.999 0.772
RN -0.855 0.999 1 0.750
α0 -0.362 0.772 0.750 1.0

The maximum number of iterations allowed in the GM method was 20, and the evolution of the min-
imization object function is given by Figure 8. It was established that the solution strategy by the CRSG
method was to be used as input to the GM method. But, the solutions in the above tables did not follow
this strategy, and they were obtained in independent experiments for analysis.
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CRS ATTRIBUTES SEARCH STRATEGY

In the practical applications of the CRS stack, the number of the attributes depends on the dimension
of the problem (if 2-D or 3-D), and on the observation topography. For the flat observation surface, the
applications considered only the search for the triplet RNIP , RN and α, with v0 fixed, and to emphasize
the present investigation, we follow the descriptions of Muller (1999) and Mann (2002), but not from the
point of view of stack algorithm implementation. Their descriptions follows the criteria that the triplet
search is a nonlinear optimization problem, that to be solved needs a starting point obtained in three major
steps, with a last step as the final simultaneous triplet search. The searches are performed in the CMP bin,
and the picking associated with the maximum coherency to simulate the corresponding ZO point.

• First step. This is one-parameter search for the combined vstack performed to obtain a ZO section
with xm = x0 in equation (1) that reduces it to:

t(xm, h)|xm=x0 =

√
t20 + 2

t0
v0

cos2 α0
h2

RNIP
; (35)

that, compared with t(h) =

√
t20 +

4h2

v2
NMO

, the stacking velocity can be expressed in terms of α0

and RNIP , for vNMO = vstack, as

v2
stack =

2v0RNIP
t0 cos2 α0

. (36)

We call this step Automatic NMO stack (CMP stack), and it represents a non-iterative velocity anal-
ysis.

• Second step. This is one-parameter search for non-combined α0 performed to obtain a ZO section
with h = 0 and RN =∞ in equation (1) that reduces it to:

t(xm, h)|(h=0,RN=∞) = t0 +
2
v0

(xm − x0) sinα0, (37)

This first-order approximation can be regarded as a plane wave approximation, and this step is called
Automatic Plane Wave stack, from where the emergence angle α0 is obtained based on a small
aperture. Inserting this angle into equation (36), a solution for RNIP is found.

• Third step. This is one-parameter search for the non-combined RN performed to obtain a ZO
section with h = 0 in equation (1) that reduces it to:

t(xm, h)|(h=0) =

√[
t0 +

2
v0

(xm − x0) sinα0

]2

+
2
v0
t0 cos2 α0

(xm − x0)2

RN
. (38)

The values of α0 and RNIP would already be known from a previous step. This search is called
Automatic Hyperbolic stack for RN .

• Fourth step. This is one-parameter search for the non-combined RNIP performed to obtain a ZO
section with RN =∞ in equation (1) that reduces it to:

t(xm, h)|(RN=∞) =

√[
t0 +

2
v0

(xm − x0) sinα0

]2

+
2
v0
t0 cos2 α0

(h)2

RNIP
. (39)

The values of α0 and RN would already be known from a previous search step. This search is called
Automatic Hyperbolic stack for RNIP .

• Fifth step. In the practical applications (with v0 fixed), with the parameters obtained from the
previous steps, and in form of time sections, the traveltime surfaces can be calculated with equation
(1). This subsequent stack can be performed to obtain a ZO stack that is called Initial CRS stack.
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• Sixth step. In the practical applications (with v0 fixed), with the parameters obtained in form of
time sections as initial values, equation (1) is used for the simultaneous search which provides the
Optimized CRS stack.

RESULTS

Several experiments were performed to analyze the behavior of the chosen sensibility function Sij =
∂ ln ti(m0)
∂ ln m0j

∣∣∣∣
m0

= Sij(m0) = m0j
t0i

Sij(m0), as given by equation (6). The selected examples are pre-

sented in Figures 9, 10, 11 and 12, where the nominal values were: v0 = 1500m/s, RNIP = 5000m,
RN = −5000m and α0 = +(π/15)rad. The values chosen for t0i, (i = 1, 2, 3, 4, 5) were: t0 =
(0.25, 0.50, 1.00, 2.00, 2.50, 3.00, 4.00, 5.00) in seconds.

The map for the derivative (v0/t0)∗∂t(xm, h; m)/∂v0 of equation (26), plotted in Figure 9, is presented
for four values of t0i = (0.5, 2.00, 4.0, 5.00s). The variation is still smooth, but faster than for the other
three parameters. The maps indicate the nonlinear dependency with respect to the coordinates xm and h.
Therefore, has no ideal direction for its initial evaluation, and would be totally dependent on t0i. Therefore,
fixing the value of v0 is consistent with this analysis over Sij .

As can be seen in Figures 10, 11 and 12 only two values for t0i = (0.25, 5.00s) were necessary to show
because the variation is very smooth.

The map for the derivative (RNIP /t0) ∗ ∂t(xm, h; m)/∂Rnip of equation (27), plotted in Figure 10,
indicates the linear dependency with respect to the coordinates xm, and constant with respect to h; there-
fore, this parameter would be better determined in sections where h =constant. In the attributes search
strategies, a combination of the first and second steps would have to solve for RN . Equation (39), with
independent variable h, has the form of equation (38), with independent variable xm. Figure 12 suggests
consistency in the search for RNIP , but not in accordance with Figure 10 and equation (39).

The map for the derivative (RN/t0) ∗ ∂t(xm, h; m)/∂Rn indicates also a strong linear dependency
with respect to the coordinates h, and almost constant with respect to the coordinate xm, therefore this
parameter would be better determined in sections where xm =constant.

The map for the derivative (α0/t0) ∗ ∂t(xm, h; m)/∂α0 indicates a strong linear dependency with
respect to the coordinates h, and a weak linear dependence with respect to the xm coordinate, therefore
this parameter would be better determined in sections with xm =constant.

In the first step for the CRS attributes search strategy, the combined one-parameter search for vstack =√
2v0RNIP
t0 cos2 α0

takes xm = x0 in equation (1) to have it in the form of equation (35), and has h as inde-

pendent variable. This is consistent with the analysis with Sij shown in Figure 12, and consistent with
∂t(xm,h)

∂h |xm=x0 of equation (35).

In the second step, the non-combined one-parameter search for α0 takes h = 0 and RN = ∞ in
equation (1) to have it in the form of equation (35), which is linear along the xm coordinate, admits small
values of xm, and is consistent with Figure 12, and with ∂t(xm,h)

∂α0
|h=0,RN=∞ of equation (37).

In the third step, the search for the non-combined RN takes h = 0 in equation (1) to have it in the
form of equation (38), which is hyperbolic along the xm coordinate. This result is consistent with Figures
12 and 11.

In the fourth step, the search for the combined parameterRNIP takesRN =∞ in equation (1) to have
it in the form of equation (39), which is hyperbolic along the h coordinate.
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Figure 9: Contour maps of the normalized derivative (v0/t0) ∗ ∂t(xm, h; m)/∂v0 of the forward model
indicating the linear dependency with respect to the coordinates xm and h. Consequently, the parameter v0

has no special sections for its determination. (Top left: t0 = 0.50s), (Top right: t0 = 2.00s), (Bottom left:
t0 = 4.00s), (Bottom right: t0 = 5.00s).
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2D Contour Map Representing the Derivative (Rnip/t0)*dt/dRnip of the CRS Operator (t0=0.25)
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Figure 10: Contour maps of the normalized derivative (RNIP /t0) ∗ ∂t(xm, h; m)/∂Rnip of the forward
model indicating the linear dependency with respect to the coordinates xm, and constant with respect
to h. Consequently, the parameter RNIP is better determined in sections of h =constant (CO). (Left:
t0 = 0.25s), (Right: t0 = 5.00s).
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2D Contour Map Representing the Derivative (Rn/t0)*dt/dRn of the CRS Operator (t0=0.25)
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Figure 11: Contour maps of the normalized derivative (RN/t0)∗∂t(xm, h; m)/∂Rn of the forward model
indicating a strong linear dependency with respect to the coordinates h, and almost constant with respect
to the coordinate xm. Consequently, the parameter RN is better determined in sections of xm =constant
(CMP). (Left: t0 = 0.25s), (Right: t0 = 5.00s).
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2D Contour Map Representing the Derivative (alpha/t0)*dt/dalpha of the CRS Operator (t0=0.25)
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Figure 12: Contour maps of the normalized derivative (α0/t0) ∗ ∂t(xm, h; m)/∂α0 of the forward model
indicating a strong linear dependency with respect to the coordinates h, and a weak linear dependence
with respect to the xm coordinate. Consequently, the parameter α0 is better determined in sections of
xm =constant (CMP). (Left: t0 = 0.25s), (Right: t0 = 5.00s).

CONCLUSIONS

We investigate the relationship between sensitivity analysis, S, of the CRS operator with respect to the
parameters v0, RNIP , RN and α0, and comparing with the attributes search strategies that is based on
physical-mathematical considerations of the stack operator.

In the CRS stack method, the velocity v0 is admitted as fixed, but it has a physical representation as
shown by the model of Figure 2, and, in practical terms, it represents an average taken along the observation
geophone spread window, and represents a sampling over the upper layers under the dominant wavelength
of the source-effective pulse. This strategy is fully consistent with the S analysis.

Even though there is a strong linear behavior of the derivatives in the spatial window (xm, h), a different
strategy for the parameter search was not here provided.

For the parameter resolution, it would be desirable a concave form of the object function of opti-
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mization. Even though, we concluded that the CRS operator under such measures present low resolution
capacity. of resolution. In this way, it is necessary a good start point for the optimization that searches for
the three parameters (v0 =fixed,RNIP ,RN e α0) simultaneously. From the point of view of the sensitivity
function, it would be necessary to employ constraints as a priori conditions for the simultaneous parameter
optimization.

The tests were performed for a fixed point P0(x0, t0), and a next step would be for points randomly
chosen along a trace, (t0 = 0, ttotal), and next for a any point along the CMP.

Once established a form to represent the resolution and sensibility of the t(xm, h; v0, RNIP , RN , α0)
function to its parameters, a next step would be to repeat the experiment based on a form of modified
semblance.
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