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ABSTRACT

Offset continuation (OCO) is a seismic configuration transform designed to simulate a seismic section
as if obtained with a certain source-receiver offset using the data measured with another offset. Since
OCO is dependent on the velocity model used in the process, comparison of the simulated section to
an acquired section allows for the extraction of velocity information. An algorithm for such a horizon-
oriented velocity analysis is based on so-called OCO rays. These OCO rays describe the output point
of an OCO as a function of the RMS velocity. The intersection point of an OCO ray with the picked
traveltime curve in the acquired data corresponding to the output half-offset defines the RMS velocity
at that position. We theoretically relate the OCO rays to the kinematic properties of OCO image waves
that describe the continuous transformation of the common-offset reflection event from one offset to
another. By applying the method of characteristics to the OCO image-wave equation, we obtain a ray-
tracing-like procedure that allows to construct OCO trajectories describing the position of the OCO
output point under varying offset. The endpoints of these OCO trajectories for a single input point and
different values of the RMS velocity form then the OCO rays. A numerical example demonstrates that
the developed ray-tracing procedure leads to reliable OCO rays, which in turn provide high-quality
RMS velocities.

INTRODUCTION

Operations like dip-moveout correction (DMO), common-shot (CS-)DMO, migration to zero-offset (MZO),
azimuth-moveout correction (AMO), as well as shot and offset continuation (SCO and OCO) are important
configuration transforms in exploration seismics. The objective of a configuration transform is to simulate
a seismic section as if obtained with a certain measurement configuration using the data measured with
another configuration (Hubral et al., 1996a; Tygel et al., 1996). Their applications are manifold, ranging
from improvement of the stack, i.e., for data reduction and signal-to-noise enhancement, to wave-equation-
based trace interpolation to reconstruct missing data and to velocity analysis. The use of configuration
transforms for these purposes has been demonstrated in a variety of papers, including the following ones
on MZO (Bleistein and Cohen, 1995; Tygel et al., 1998), OCO (Fomel and Bleistein, 1996; Santos et al.,
1997; Fomel, 2003), SCO (Bagaini and Spagnolini, 1996), AMO (Biondi et al., 1998), DMO (Canning and
Gardner, 1996; Collins, 1997), and CS-DMO (Schleicher and Bagaini, 2004).

Any configuration transform can be thought of as being composed of a migration and a subsequent
demigration after changing a configuration parameter (Hubral et al., 1996a; Tygel et al., 1996). This points
towards their dependence on the velocity model. A first attempt to make use of this dependence for ve-
locity estimation was undertaken by Filpo (2005). His idea was to use offset continuation (OCO) for
RMS velocity analysis. The objective of an OCO is to transform one common-offset section into another
common-offset section with a different offset.

Based on OCO, Filpo (2005) proposed an horizon-based velocity analysis method, where the RMS
velocity is determined along some chosen horizons. The idea is closely related to conventional normal-
moveout (NMO) velocity analysis. However, while after an NMO correction, simulated zero-offset traces,
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Figure 1: Synthetic common-offset section with h0 = 100 m for a single reflector below a homogeneous
overburden. Also shown is the picked arrival time (blue line) and one point P0(ξ0, t0) on it (green cross).
These are the input data to offset continuation.

determined with possibly wrong velocities, are compared to each other, an OCO enables to compare sim-
ulated common-offset traces or sections to actually acquired ones that do not depend on possibly wrong
assumptions.

The input data required for Filpo’s procedure are two sets of picked reflection traveltimes for one and
the same horizon, but observed in two different common offset sections. Using these data, Filpo (2005)
proposes to construct point-to-point OCO maps between the two sets of picks for many different RMS
velocities. The resulting variety of output points for a single input point is then called an OCO ray. For
each OCO ray, the velocity of the best fit between the mapped and data picks is chosen as the representative
of the RMS velocity field of that place. OCO rays are related to the velocity rays as defined by Iversen
(2006) and to the concept of image waves as presented by Hubral et al. (1996b).

In this work, we provide a theoretical basis for the OCO rays of Filpo (2005). We start from the OCO
eikonal equation of Fomel (1994) and Hubral et al. (1996b). Application of the Method of Characteristics
to this partial differential equation leads to a ray theory for the trajectory of a point in the above mentioned
map from one offset to another. When fixing the final offset and varying the velocity, the resulting endpoints
of these trajectories define an OCO ray in the sense of Filpo (2005).

OCO RAYS

The concept of OCO rays as introduced by Filpo (2005) can be understood from Figures 1 to (4). These are
examples of the OCO ray construction for a single reflector below a homogeneous overburden. Figure 1
shows a synthetic common-offset (CO) section for a small half-offset h0 = 100 m. Also shown is the
picked arrival time (blue line) and one point P0(ξ0, t0) on it. An OCO maps these picks into the corre-
sponding values for a different offset. Figure 2 shows the synthetic CO section for a larger half-offset of
h1 = 500 m. Also shown is the OCO result of transforming the picks in Figure 1 to this larger offset (red
line). Point P1(ξ1, t1) is the result of the point-to-point OCO map of point P0. Note the good coincidence
of the transform result with the true event.

Of course, this good coincidence is a consequence of having used the true medium velocity. If the
velocity used for the OCO map is incorrect, a result like the one shown in Figure 3 is obtained. The OCO
prediction of the reflection traveltime is incorrect and the point P0 is mapped to a wrong position P̃ . This
observation brings us to the idea of the OCO ray. When performing the OCO map with a set of possible



196 Annual WIT report 2009

−1000 −500 0 500 1000

0

200

400

600

800

1000

Reference data, true velocity
T

im
e

 (
m

s
)

MidPoint (m)

P(ξ
1
, t

1
, h

1
 = 300 m)

Figure 2: Synthetic common-offset section with h1 = 500 m. Also shown is the OCO map result (red
line) including point P1(ξ1, t1), which is the result of the point-to-point OCO map of point P0.

velocities, varying between Vmin and Vmax, the set of points P̃ will define a full line, the so-called OCO
ray (see Figure 4). The OCO ray crosses the event in the observed CO section at the correct point P1 for
the correct value of the velocity. In vertically inhomogeneous media, this OCO velocity is approximately
equal to the RMS velocity at that position.

A better name for the OCO ray would actually be “OCO velocity ray” in correspondence to the velocity
ray of Iversen (2006), reserving the word “OCO ray” for the trajectory that describes the output point of
the OCO map as a function of half-offset for a fixed velocity. To avoid confusion, we will refer to this
trajectory as the “OCO trajectory”.

OCO TRAJECTORIES

In this work, we develop an analytic procedure to construct the OCO trajectories and, as a consequence,
the OCO rays. It is based on a ray-tracing-like procedure to construct the OCO maps, i.e., the set of points
Pi for different half-offsets hi, which we call an OCO trajectory, as a function of velocity. We start from
the OCO image-wave equation derived by Fomel (1994) and Hubral et al. (1996b). This OCO image-wave
equation is the partial differential equation that describes the change of the primary-reflection event of a
subsurface reflector in one CO section to that in another one. It reads

ht

(
Phh +

4
V 2

Ptt

)
+
(
t2 +

4h2

V 2

)
Pht − ht Pξξ = 0, (1)

where h is half offset, ξ is the midpoint coordinate, t is time, and V is the medium velocity (for the deriva-
tion of this equation assumed to be constant). Equation (1) describes an artificial process that transforms
the seismic reflection event, P (ξ, t, h), in offset-time domain. Since this transformation is similar to wave
propagation, Hubral et al. (1996b) termed it an image wave. Fomel and Bleistein (1996) demonstrated that
equation (1) not only describes the kinematic transformation of the reflection event from one CO section
to another, but also treats the amplitude transformation correctly.

We use the OCO image-wave equation (1) to obtain the trajectory of a single point under this transfor-
mation. In other words, we describe the locations of a seismic reflection from the same reflection point in
different CO sections.

Since we are only interested in the kinematic description of OCO, we use the ansatz

P (ξ, t, h) = A (ξ, t)F (h−H (ξ, t)) (2)
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Figure 3: Result of the OCO map when using a wrong velocity (red line). The point P0 is mapped to a
wrong position P̃ (green cross).

in equation (1). Here, A is the dynamic part, which we are not interested in, F is the wavelet of the
reflection event, and H is the image eikonal that represents the kinematic part of the solution. To the
leading order, we obtain the image-eikonal equation associated with equation (1) as

(
1 +

4
V 2

H2
t

)
tH −

(
t2 +

4
V 2

H2

)
Ht − tHH2

ξ = 0. (3)

This equation kinematically describes the propagation of OCO image waves, i.e., the repositioning of the
seismic reflection event from one CO section to another.

Method of Characteristics

Equation (3) can be solved using the Method of Characteristics (Courant and Hilbert, 1989). This method
will provide us with the characteristic trajectories, along which propagation from one CO section to another
takes place.

We start by expressing the left side of equation (3) in terms of the new variables p = Hξ and q = Ht as

G(ξ, t,H, p, q) = tH

(
1 +

4
V 2

q2

)
−
(
t2 +

4H2

V 2

)
q − tHp2 . (4)

Then, on the characteristics, i.e., the desired OCO trajectories, of course, equation (3) requires that

G(ξ, t,H, p, q) = 0 . (5)

The method of characteristics consists of transforming equation (3) into the following system of ordinary
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Figure 4: Result of the OCO map when using a set of velocities between Vmin and Vmax. The green line
formed by all possible points P̃ crosses the event at the correct velocity.

differential equations in terms of the functional G:

dξ

dh
= λGp = −2λtHp ,

dt

dh
= λGq = − λ

V 2

(
4H2 − 8qHt+ t2V 2

)
,

dp

dh
= λ (Gppξ +Gqqξ) = −λ (Gξ + pGH)

= −λ
(
tp
(
1− p2

)
+

4
V 2

pq (tq − 2H)
)
,

dq

dh
= λ (Gppt +Gqqt) = −λ (Gt + qGH)

= −λ
[(

4
V 2
− 1
)
q2 (tq −H)− p2 (tq +H)

]
,

dH

dh
= λ (pGp + qGq) = 1 . (6)

In the first four equations of (6), h could, in principle, be any monotonously increasing variable along the
OCO trajectory. For convenience, we have required the independent variable to be the half-offset h. Since
on the image wavefront, we have h = H(ξ, t), this requirement leads to the last equation of system (6),
which fixes the scaling parameter λ as

λ = (pGp + qGq)
−1 =

(
−tHp2 +

4q2Ht

V 2
− tH

)−1

. (7)

System (6) describes the OCO trajectories as a function of h. In other words, all other variables involved
are parameterized as ξ = ξ(h), t = t(h), p = p(h), q = q(h), and H = H(h).

Since the trajectory starts for half-offset h0 at P0(ξ0, t0), we have the initial values ξ(h0) = ξ0, t(h0) =
t0 and H(h0) = h0. From these, we obtain the initial values p(h0) = p0 and q(h0) = q0. These values
satisfy equation (3) at h = h0, i.e.,

t0h0

(
1 +

4
V 2

q2
0

)
−
(
t20 +

4h2
0

V 2

)
q0 − t0h0p

2
0 = 0 , (8)
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Figure 5: Possible OCO trajectories for a singe point P0 (blue lines). Indicated in red is the OCO outplanat
for P0, i.e., the surface of all possible points P1 given by equation (14). In this example, V = 1700 m/s,
t0 = 0.5 s, ξ0 = 0 m, h0 = 100 m, and h1 = 300 m.

which is equivalent to the hyperbolic expression

(q0 −A)2 − V 2

4
p2

0 = B2 , (9)

where

A =
V 2t20 + 4h2

0

8t0h0
>

V

2
, (10)

B2 = A2 − V 2

4
=

(V 2t20 − 4h2
0)2

(8t0h0)2
> 0 . (11)

The fact that A > V/2 is a consequence of t0 > 2h0/V , i.e., any reflection time must be larger than the
direct traveltime from the source to the receiver.

The solution of equation (9) can be represented as

q0 = B cosh θ +A , (12)

p0 = C sinh θ , with C =
2B
V

, (13)

where θ is a parameter that selects a particular OCO trajectory. Figure 5 shows a set of possible OCO
trajectories for the given point P0. These trajectories were traced with system (6) using initial conditions
(12) and (13) with 40 values of θ ranging from −2 to 2. All trajectories end at the OCO outplanat for P0,
i.e., the surface of all possible points P1 for a fixed point P0. This surface has the analytical expression
(Santos et al., 1997)

t = τ(ξ1;P0) =
2h1

V

√
1 +

V 2t20 − 4h2
0

u2
, (14)

where
u =

√
(h0 + h1)2 − η2 +

√
(h0 − h1)2 − η2 (15)

and where η = ξ1 − ξ0 is the midpoint displacement. The coincidence of the enpoints of the set of OCO
trajectories with the OCO outplanat in Figure 5 demonstrates that the tracing of the OCO trajectories using
system (6) works correctly.
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Figure 6: The OCO trajectory for the correct choice of θ according to formula (17).

For a single point P0 in the initial CO section, there are many possible output points in the final CO
section, as described by the OCO outplanat (14). However, for a point P0 on a given reflection event, there
is only one point P1. The value of θ that describes the correct OCO trajectory ending at this P1 depends on
the slope of the traveltime curve at P0. Denoting this slope by φ, we can write

φ =
∂t

∂ξ
= −∂H

∂ξ

/
∂H

∂t
= −p0

q0
= − C sinh(θ)

B cosh(θ) +A
, (16)

where the second equality is a consequence of dH(ξ, t(ξ))/dξ = 0, which in turn follows fromH(ξ, t(ξ)) =
h = constant along the event. Note that |φ| < 2

V , i.e., the larger the velocity is, the smaller is the slope of
the traveltime curve.

Relationship (16) can be inverted to yield

θ = ln

[
−2Aφ+

√
V 2φ2 + 4C2

C (2 + V φ)

]
. (17)

Here, the positive sign before the square root has been chosen to guarantee that the argument of the log-
arithm remains positive for all −2/V < φ < 2/V . Equation (17) tells us which value of θ describes the
correct OCO trajectory for a given point P0 on a given refleciton event with dip φ. Figure 6 shows the
correct OCO trajectory for the point P0 on the reflection event of Figure 1.

OCO rays and velocity analysis

From formulas (6), (12), (13), and (17), we recognize that the whole process of tracing OCO trajectories
is strongly velocity dependent. Thus, repeating the process with a range of velocity values leads to a set of
OCO trajectories. Fixing their final half-offset at the same h1 yields then the set of all possible position of
P1 as a function of velocity. This set is the OCO ray of Filpo (2005). Figure 7 shows the construction of
the OCO ray (green line) using OCO trajectories (blue lines) for the same values of all involved parameters
as before and a variety of velocities. Also shown in Figure 7 is the picked traveltime curve of the reflection
event in the CO section with h1 (red line). The intersection point of the OCO ray with the picked traveltime
curve determines the estimate for the RMS velocity.
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Figure 7: Several OCO trajectories up to h1 = 300 m for different velocities (blue lines). The green line
indicates the OCO ray, i.e., the set of all possible OCO map points P̃ . Its intersection with the picked
traveltime curve for h1 = 300 m (red line) determines the RMS velocity.

Figure 8: Model for the numerical example.

NUMERICAL EXAMPLE

To demonstrate the velocity extraction procedure using OCO rays, we have applied the technique to syn-
thetic data from the inhomogeneous model of Figure 8. It consists of three constant-velocity layers be-
tween two homogeneous halfspaces. The velocities from top to bottom are 1508 m/s, 1581 m/s, 1690 m/s,
1826 m/s, and 2000 m/s. Figure 9 shows the synthetic CO reflection event with h0 = 100 m of the deep-
est reflector as modeled using Gaussian beams from the SU package (Cohen and Stockwell, 2006). Also
shown is the picked reflection traveltime (blue line).

We used these picks as input to the tracing of the OCO trajectories using system (6). Figure 10 shows the
endpoints of all OCO trajectories (red line) obtained using the approximate theoretical value of 1700 m/s
for the RMS velocity, superimposed to the synthetic CO section with h1 = 300 m. This demonstrates the
high accuracy of the OCO trajectory tracing procedure.

Next, we tested the RMS velocity extraction using OCO rays. We traced OCO trajectories for each point
along the blue line in Figure 9 for a set of velocities between Vmin = 1500 m/s and Vmax = 6000 m/s. The
slopes of the reflection event at each point ξ were estimated from the picked traveltimes in neighboring
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Figure 9: Synthetic CO reflection event with h0 = 100 m of the deepest reflector together with picked
reflection traveltime (blue line).
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Figure 10: Synthetic CO section with h1 = 300 m, together with the picked traveltime curve (red line).
The criterion for the velocity extraction is the crossing of the OCO rays with this traveltime curve.
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Figure 11: Selected OCO rays (green lines) intersecting the picked traveltime curve (red line) in the output
CO section.

traces. Figure 11 shows a subset of the obtained OCO rays for 48 values of ξ superimposed on the CO
section with h1 = 300 m. The intersection points of the OCO rays with the picked event (red line)
determine the extracted RMS velocities.

Figure 12 depicts the extracted velocities as a function of ξ and Figure 13 show their relative error. We
see that the method is highly reliable with an error almost everywhere below 2%. The main source of error
is the extraction of the traveltime slope φ. This was also observed by Pinheiro (2008). Future investigations
will need to be carried out using modern slope extraction techniques (see, e.g., Fomel, 2007; Schleicher
et al., 2008) instead of the simple traveltime-difference technique employed here.

CONCLUSIONS

Offset continuation (OCO) is a seismic configuration transform that maps a seismic common-offset (CO)
section for a fixed half-offset into a simulated CO section for another half-offset. The simulated CO section
can than be compared with the acquired section for the same half-offset, in this way evaluating the quality
of the velocity field used in the process. If the correct velocity is used, each point on the input reflection
traveltime curve is mapped to a point on the output reflection event. Incorrect velocities can be identified
because they lead to incorrect placement of the output point.

A way to quantify this procedure is based on the OCO rays proposed by Filpo (2005). OCO rays
describe the location of the point-to-point maps between the two CO sections as a function of velocity.
The intersection point of an OCO ray with the picked traveltime curve in the acquired data corresponding
to the output half-offset defines the RMS velocity at that position. In this way, OCO rays allow for the
construction of a horizon-based RMS velocity model.

In this work, we have related the OCO rays to image-wave propagation as described by Hubral et al.
(1996b). From the kinematic properties of OCO image waves, described by the OCO eikonal equation, we
have shown how to perform the construction of the OCO maps using a ray-tracing-like procedure, which
traces so-called OCO trajectories. An OCO trajectory describes, for a fixed input point, the positions of
the OCO output points as a function of output half-offset for a given velocity. The OCO trajectory tracing
allows for the construction of the OCO rays of Filpo (2005). Each OCO ray is built up by the endpoints of
the set of OCO trajectories for the same input point, input and output half-offsets, but different velocities.
A numerical example for a laterally inhomogeneous model demonstrated not only that the so-traced OCO
trajectories accurately describe the kinematic properties of the OCO transformation, but also that the OCO
rays constructed with the help of OCO trajectories allow to obtain reliable RMS velocities.
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