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ABSTRACT

For modern long-offset acquisition geometries, a hyperbolic traveltime approximation is no longer
sufficient to flatten the CMP gather because of medium inhomogeneity or anisotropy. For transversely
isotropic media with a vertical symmetry axis (VTI media), just two traveltime parameters are suf-
ficient for performing all time-related processing. Using an estimate of the NMO velocity from a
hyperbolic velocity analysis, one can estimate the anisotropic parameter from a more general travel-
time approximation. We extend this two-step procedure using a more accurate nonhyperbolicity term
in the traveltime approximation. The used traveltime approximations allow to predict the bias in the
NMO velocity estimate, thus providing a means of correcting both the estimated NMO velocity and
the resulting anisotropy parameter value. By means of a numerical example, we demonstrate that the
estimation of both traveltime parameters is improved considerably.

INTRODUCTION

In the seismic reflection method, knowledge of a high-quality velocity model is indispensible, because it
plays a key role in the processing and migration of seismic reflection data. Conventional velocity analysis
(Dix, 1955; Yilmaz, 1987) by the common-midpoint (CMP) method fits a hyperbolic traveltime approx-
imation to a seismic reflection event in a CMP section. In this procedure, a single traveltime parameter,
usually expressed as the normal-moveout (NMO) velocity, is estimated using a measure of the quality of
the fit. However, for modern long-offset acquisition geometries, a hyperbolic traveltime approximation is
no longer sufficient to flatten the CMP gather because of medium inhomogeneity or anisotropy (Alkhali-
fah et al., 1996; Toldi et al., 1999). Many authors proposed alternative ideas of how to extract information
about the seismic velocities from the data under these conditions. Most of these ideas resort to the migrated
domain for velocity extraction, for example using the focusing properties of seismic diffractions (Harlan
et al., 1984; Landa and Keydar, 1998; Fomel et al., 2007; Novais et al., 2008) or horizontalization of the
common-image gather (Al-Yahya, 1989; Liu and Bleistein, 1995). Based on the latter approach, Schle-
icher et al. (2008) used image-wave propagation to determine the subsurface velocity model. Even for
anisotropic media, there are several methods to obtain information about the velocity model (Tsvankin and
Thomsen, 1994; Al-Dajani and Tsvankin, 1998; Sarkar and Tsvankin, 2004; Behera and Tsvankin, 2007).

A particularly important work in this respect is that of Alkhalifah and Tsvankin (1995). They demon-
strated that for transversely isotropic media with a vertical symmetry axis (VTI media), just two travel-
time parameters are sufficient for performing all time-related processing such as NMO and dip-moveout
(DMO) corrections. The two traveltime parameters are usually expressed as the NMO velocity vnmo and
the nonhyperbolicity parameter η, a combination of the well-known weak anisotropy parameters ε and δ
of Thomsen (1986). Using on these parameters, Alkhalifah and Tsvankin (1995) derived a new traveltime
approximation based on continued fractions that describes nonhyperbolic traveltimes for larger offsets.

Alkhalifah (1997) showed that using an estimate of vnmo after a hyperbolic velocity analysis, one can
estimate the anisotropic parameter η from the more general traveltime approximation of Alkhalifah and
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Tsvankin (1995). He proposes a two-step procedure. The first step uses conventional velocity analysis in
the CMP gather up to a short offset to estimate vnmo. In the next step, assuming that the estimative of
vnmo is sufficiently accurate, he proposes to use farther offsets to estimate the anisotropy parameter η. As
a drawback of his method, he noted the strong sensitivity of the η estimates on the quality of the estimated
NMO velocity which, in turn, depends on η.

In this paper, we apply the two-step procedure of Alkhalifah (1997) using the new nonhyperbolic trav-
eltime approximations of Schleicher and Aleixo (2008; see also Aleixo and Schleicher, 2009), based on
anelliptic approximations (Fomel, 2004) of the VTI traveltime. These traveltime approximations allow to
predict the bias in the NMO velocity estimate, thus providing a means of correcting both the estimated
NMO velocity and the resulting η value. In this way, the extraction procedure leads to more reliable esti-
mates of vnmo and η.

METHOD

For a homogeneous VTI medium the hyperbolic traveltime approximation is only valid for small offsets,
and the velocity coefficient is an NMO velocity that differs from the vertical velocity (Thomsen, 1986).
Extending the Taylor series of the traveltime approximation up to fourth order does not extend the validity
range significantly (Tsvankin and Thomsen, 1994). However, other types of traveltime approximation
can be found that are valid for longer offsets the most famous one being (Tsvankin and Thomsen, 1994;
Alkhalifah and Tsvankin, 1995)

t2(x) = 1 + x2 − 2ηx4

1 + (1 + 2η)x2
. (1)

Here, we use the normalised half-offset, x = h/τ0vnmo, and the normalised traveltime t(x) = τ(x)/τ0,
where h is half-offset and τ0 is the zero-offset traveltime. Moreover, the anisotropy parameter is

η =
ε− δ

1 + 2δ
(2)

and the normal-moveout (NMO) velocity

Vnmo = Vp0
√

1 + 2δ, (3)

where ε and δ are Thomsen’s (1986) parameters, and Vp0 is the vertical P-wave velocity.
Alkhalifah (1997) proposed to use a hyperbolic approximation

t2(x) = 1 + x2 (4)

to estimate vnmo by a short-offset conventional velocity analysis. Thereafter, assuming that the esti-
mate of vnmo is sufficiently accurate, the traveltime correction of equation (1) can be used to estimate
the anisotropic parameter η. Introducing the notation

∆t2 = (1 + x2)− t2(x) =
2ηx4

1 + (1 + 2η)x2
(5)

for the traveltime correction of equation (1), η can be obtained at a given normalised half-offset x from

η =
∆t2(1 + x2)

2x2(x2 −∆t2)
. (6)

To measure ∆t2 in the data, Alkhalifah (1997) suggests to apply an NMO correction using vnmo from
the first step and then compute ∆t2 = 1− (t2(x)−x2) = 1− t2cor, where tcor corresponds to the moveout
traveltime after NMO correction. In other words, ∆t2 measures the residual moveout after a conventional
NMO correction. The second quantity needed in equation (6) is the normalised half-offset x. Alkhalifah
(1997) showed that the reliability of the estimate increases with increasing offset. Thus, equation (6) should
be applied at the farthest offsets available or as a mean over a number of the farthest offsets.
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Recently, Aleixo and Schleicher (2009) derived a set of new more accurate traveltime approximations
in VTI media. These approximations are based on the anelliptic approximation of Fomel (2004) and have
the form

t2(x) = 1 +
x2

Q
+Bi(η)

x2

1 + x2/Q
, (7)

where Q = 1 + 2η. For the factor Bi(η), they derived five different forms, depending on the actual
approximation procedure applied to Fomel’s VTI traveltime approximation. These forms are

B1(η) = 2η/Q, (8)
B2(η) = 2η/(1 + η)Q, (9)
B3(η) = 2η/(1 + η)2, (10)
B4(η) = 2η/Q2, (11)
B5(η) = 8η(1 + η)/5Q. (12)

Aleixo and Schleicher (2009) demonstrated that while exhibiting a much simpler algebraic form, all these
approximations are of similar quality as the original approximation of Fomel (2004).

The aim of this work is to use the traveltime approximations (7) in the two-step procedure of Alkhalifah
(1997) to obtain a more accurate estimative for parameter η. The first step of estimating vnmo remains the
same as before. The second step needs to be slightly altered due to the different traveltime approximation.
To simplify the expressions, we introduce a new traveltime misfit parameter y defined as

y =
x2 −∆t2

x2
. (13)

Here, ∆t2 is determined from the data as described in connection with equation (6). Note that for perfect
NMO correction, ∆t2 = 0 and thus y = 1.

Manipulating equation (7), we can write

y =
Q+ x2 +BiQ

2

Q2 +Qx2
. (14)

Since y depends on η, we can use equation (14) to extract η from measured values of y. Although more
sophisticated methods can be thought of, our first approach was to try and invert equation (14) for a direct
equation η(y). However, since equation (14) is strongly nonlinear in η, direct inversion is impossible.
Therefore, we chose to linearise numerator and denominator separately in η before inverting the expression.
For B1 to B4 this procedure leads to

y =
1 + 2η + x2 + 2η

1 + 4η + (1 + 2η)x2
, (15)

which leads to the following extraction formula for η:

η =
(1 + x2)(1− y)
4y + 2x2y − 4

. (16)

Correspondingly, we obtain for B5

y =
5 + 10η + 5x2 + 8η

5 + 20η + (5 + 10η)x2
, (17)

which results in the following expression for η:

η =
5(1 + x2)(1− y)
20y + 10x2y − 18

. (18)

Using formulas (16) and (18), we can estimate η from the picked traveltime at any chosen offset x using
the value of y extracted from the data according to expression (13).
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If the estimate of vnmo is precise, these estimates for η are generally of higher accuracy than the ones
obtained with equation (6). However, they suffer from the same sensitivity problems already reported
by Alkhalifah (1997). This is a severe drawback, since the estimate of vnmo in the first step is already
influenced by anisotropy. However, while traveltime approximation (1) does not predict such a behaviour,
approximations (7) do. Rewriting equation (7) as

t2(x) = 1 +
x2

Q
+Bi

x2 + x4/Q− x4/Q

1 + x2/Q

= 1 +
(
Bi +

1
Q

)
x2 − Bi

Q

x4

1 + x2/Q
, (19)

we see that in this description, the short-offset term is already influenced by the presence of η, resulting in
an apparent NMO velocity

vapnmo = vnmo/
√
Bi + 1/Q . (20)

Only B1 does not predict a dependence of the NMO velocity on the medium nonhyperbolicity η, since
we have B1 + 1/Q = 1. However, all other choices of Bi predict such a dependence. Once η is known,
equation (20) permits to calculate the true NMO velocity from the apparent one by

vnmo = Civ
ap
nmo =

√
Bi + 1/Qvapnmo . (21)

Note that for B1 to B4, the correction factor satisfies

Ci =
vnmo
vapnmo

=
√
Bi + 1/Q < 1 . (22)

We thus expect apparent NMO velocities with vapnmo > vnmo.
Equation (21) has an important consequence. Once η has been estimated, this equation allows to correct

the observed NMO velocity. The corrected value of vnmo can then be used to recalculate y and η according
to formulas (14) and (16) or (18). This procedure can then be applied iteratively to correct both the estimates
of vnmo and η until both values are consistent.

Procedure

The iterative procedure can be summarised in the following steps:

(1) Use hyperbolic velocity analysis for the shortest offset to determine a first estimate for the apparent
NMO velocity vapnmo.

(2) Use this NMO velocity estimate together with equation (16) or equation (18) to obtain an estimate
for η from the traveltime misfit at the farthest offsets.

(3) Use the η estimate to correct the apparent NMO velocity for an improved estimate vnmo according
to equation (21).

(4) While the ratioR between the NMO velocities of subsequent iterations still significantly differs from
1, for instance |1−R| > ε, go to step (2) using the new vnmo estimate.

After convergence of this iterative procedure, the estimated parameters are the final estimates for η and
vnmo.

NUMERICAL EXAMPLES

In this section we present some numerical examples for the proposed procedure for the η extraction. We
consider a single-layer homogeneous VTI medium with vnmo = 2.5 km/s. Figure 1 shows a synthetic
seismogram in such a medium for η = 0.3409, which represents the Greenhorn shale (Jones and Wang,
1981), with random noise with a signal-to-noise ratio of 10. The objective of the test is to flatten this event.
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Figure 1: Synthetic seismogram for horizontal reflector at 1 km depth below a homogeneous VTI layer
with η = 0.3409 and vnmo = 2.5 km/s. Signal-to-noise ratio is 3.

However, to put our numerical tests on a broader basis, we carried out the extraction procedure for a set
of models with a single homogeneous VTI layer with the same parameters of the Greenhorn Shale except
for a varying η. The value of η varies from 0.01 to 0.5, which covers the range of η observed in practice.

Our first experiment was to extract η using equations (16) and (18) under the assumption that vnmo is
known exactly. Of course, for this constant-velocity layer, vnmo = v = 2.5 km/s. We have tested the
extraction for 50 different values of η between η = 0.01 and η = 0.5. Figure 2 shows the results of the η
extraction and Figure 3 compares the relative error of the estimates for η with formulas (6) (Tsvankin and
Thomsen, 1994), (16), and (18). We see that the extraction using formula (16) is the most accurate one,
with a relative error below 1% for the complete range of η. Formula (18) is slightly less accurate, with a
error of about 0.25% even for the smallest η and with a maximum error of about 1.25%. The results of
the extractions using B2 to B4 are not shown here. The fall in the range between B1 and B5. The error
of Tsvankin and Thomsen’s formula has an error close to zero at the smallest η, but increases much faster
with η than the two Bi estimates, reaching a maximum of 3% at η = 0.5.

The improved values of η in this extraction are a consequence of the better approximation that travel-
times (7) achieve as compared to equation (1). However, this kind of comparison suffers from an important
lack of practicality. In practice, the exact value of the NMO velocity is not known a priori. It is necessary
to estimate η using the value for vnmo as obtained from a short-offset conventional velocity analysis. Thus,
we repeated the above experiment using the estimated apparent NMO velocities. We carried out a con-
ventional hyperbolic velocity analysis in an offset range of 0.1 ≤ x ≤ 0.5. Figure 4 shows the estimated
apparent NMO velocity as a function of η. We observe a visible dependence of the estimated NMO velocity
on η, varying between 2.5 km/s for very small η and 2.7 km/s for η = 0.5.

We then used these estimated values of vnmo in the estimation of η. The incorrect estimation of vnmo
strongly deteriorates the quality of the η estimates. Figures 5 and 6 show the extracted values and the
relative error of the η estimates obtained with formulas (6) (Tsvankin and Thomsen, 1994), (16) (B1), and
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Figure 2: Extraction of η with formulas (6) (Tsvankin and Thomsen, 1994), (16) (i.e., B1), and (18) (i.e.,
B5) using the exact NMO velocity.
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Figure 3: Relative error of η extraction with formulas (6) (Tsvankin and Thomsen, 1994), (16) (i.e., B1),
and (18) (i.e., B5) using the exact NMO velocity.
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Figure 4: Apparent NMO velocity, estimated from a short-offset conventional hyperbolic velocity analy-
sis, as a function of η.

(18) (B5), using the estimated NMO velocities. We see that the error of the three estimates is of comparable
size, reaching about 30%, much larger than the velocity error of less than 10%. This confirms the sensitivity
problems of this technique reported by Alkhalifah (1997). We conclude that the error in the estimate of
vnmo affects the η estimates much stronger than the choice of the traveltime approximation.

Thus, it turns out that the most important feature of the new traveltime approximations (7) is not their
slightly improved quality over equation (1), but their prediction of an η dependence of the apparent NMO
velocity. This feature allows for a correction of the NMO velocity value as obtained in a short-offset
hyperbolic velocity analysis. Figure 7 shows the values of the apparent NMO velocity vapnmo as a function
of η as predicted using the four values ofBi (i = 1, 2, 3, 4) that describe such an η-dependence. Also shown
is the observed trend of Figure 4 (black curve). We observe that the different approximations predict the
apparent NMO velocity with different quality. The best approximation for η below 0.1 is the one using B5.
Up to about 0.2, the B4 approximation remains closest. The approximation that most closely resembles
the observed curve over the full range of tested values of η is the one using B2. The B3 approximation
underestimates the η dependence of the NMO velocity.

Using the estimate of η, we can correct the estimate for vnmo according to equation (21). This in turn
gives a new estimate for η. We continue this process iteratively until both values are consistent, i.e., until
the ratio R between the values of the NMO velocity in two subsequent iterations differs from one by less
than ε = 10−4. In principle, and depending on the actual value of η, this should be possible with all four
possible choices of Bi for which the correction factor is different from one. Because of the fact that B2

best predicts the bias in the estimation of vnmo for the full range of tested η (see Figure 4), we use only
this approximation for the correction procedure.

Figure 8 shows the final corrected values of vnmo after this iterative procedure. We see that the final
estimates for vnmo are improved quite considerably as compared to those of Figure 4. Of course, because
of the strongly nonlinear behaviour of the apparent NMO velocity, complete correction is impossible. The
deviation from the true value of 2.5 km/s is largest at an η of about 0.2, with a relative error of about 3%.
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Figure 5: Estimated values of η when using the estimated vnmo from a short-offset hyperbolic velocity
analysis. Also shown are the true η values (dashed line).
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Figure 6: Error of the estimated values of η when using the estimated vnmo from a short-offset hyperbolic
velocity analysis.
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Figure 7: Prediction of apparent vnmo according to equation (19) using four different choices ofBi. Also
shown is the observed trend of Figure 4 (black curve).

Correspondingly, Figures 9 and 10 show the extracted values and the relative error of the resulting
final η estimate after the iterative procedure. As we can see in these figures, the extracted values of η
have been considerably improved and the resulting error of the η estimates has been reduced significantly
in comparison to Figure 6, except in the range of very small values of η. The errors are below 20% for
all η values above 0.03 and below 10% almost everywhere except in the range around η = 0.2 where the
apparent NMO velocity has the most nonlinear behaviour. Around η = 0.4, the error becomes close to zero.
This confirms that the iterative procedure to correct vnmo and η based on the traveltime approximations
of Aleixo and Schleicher (2009) helps to reduce the sensitivity of the η extraction procedure of Alkhalifah
(1997).

Finally, let us see how the extracted traveltime parameters act when trying to apply a nonhyperbolic
NMO correction. Figure 11 depicts the synthetic data section of Figure 1 after nonhyperbolic NMO cor-
rection using the described iterative procedure for the extraction of vnmo and η. The extracted values for
these data where vnmo = 2.5162 km/s and η = 0.3285. We see that the nonhyperbolic reflection event has
been nicely flattened. Moreover, the extracted values of vnmo and η are quite close to the true values, with
acceptable errors of 0.5% and −3.6%, respectively.

CONCLUSIONS

In this work, we have refined the technique of Alkhalifah (1997) to compute the anisotropic parameter η.
The technique consists of a conventional velocity analysis for short offsets plus a calculation of η based on
the nonhyperbolicity term, assuming that an accurate value for the NMO velocity has been obtained. In our
refined version, we have replaced the nonhyperbolicity term from the traveltime approximation derived by
Tsvankin and Thomsen (1994) by those of the more accurate ones of Aleixo and Schleicher (2009).

We have seen that the new traveltime approximations make the η extraction more precise if the NMO
velocity is known exactly. However, the general problem of the technique is its high sensitivity to errors in
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Figure 8: Estimates of vnmo after correction according to equation (19) with B2 of equation (9).

the estimate of the NMO velocity (Alkhalifah, 1997). This generally leads to large errors of the η estimates.
The traveltime approximations of Aleixo and Schleicher (2009) pave the way to overcome this problem.
They allow to predict the bias in the NMO velocity estimate in dependence on η, thus providing a means of
correcting both the estimated NMO velocity and the resulting η value in an iterative procedure. By means
of a numerical example, we have demonstrated the improvement in the estimation of vnmo and η that can
be achieved in this way.
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