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ABSTRACT

In theory, model building techniques developed for PP surveys are equally applicable to obtain shear
velocities if SS data are available. In practice, however, if shear waves are acquired at all, they are most
often recorded as PS conversions. For these data, PP model-building techniques cannot be applied.
We suggest a new method to combine PP and PS data to obtain a shear velocity model. The method is
based on the NIP wave tomography and uses wave field attributes determined with common reflection
surface stacking of the data in combination with ray tracing.

INTRODUCTION

Ever since the introduction of ocean bottom acquisition converted waves have gained importance in ex-
ploration seismics (e.g. Tsvankin, 2001). Excitation of shear waves requires significantly more effort than
generation of P waves. It is not only difficult but also costly. Since shear information is also contained in
the data of PS converted waves, these have been the focus of shear wave exploration for quite some time
now.

There are many advantages of taking shear waves into consideration. For example, the presence of gas
clouds leads to high absorption for the P waves and makes imaging under such regions inadequate for PP
surveys. Shear waves, on the other hand, do not suffer from the absorption (Stewart et al., 2003). Another
example where converted waves are beneficial is imaging of targets with weak PP and strong PS impedance
contrasts, e.g., for certain types of shale-sand boundaries (Stewart et al., 2003). Due to the smaller velocity
of shear waves they can be used to enhance the seismic resolution. This is particularly interesting for the
investigation of steeply-inclined near-surface structures (Stewart et al., 2003). Finally, shear waves are
essential for the detection and quantification of seismic anisotropy (e.g. Tsvankin, 2001).

Shear waves are also important for reservoir characterisation because parameters like porosity and
permeability have strong influence on shear velocities (e.g. Nelson, 2001). Thus, the determination of shear
velocities provides a direct means for the prediction of reservoir parameters. For example, it is possible
to obtain information on the density and orientation of fractures from converted waves (e.g. Gaiser and
Van Dok, 2003) since these fractures lead to seismic anisotropy.

Despite their advantages, shear waves also exhibit serious disadvantages. As already pointed out, for
practical reasons the acquisition is usually restricted to converted waves. However, standard techniques for
the processing of PP data cannot always be applied to these data.

In contrast to monotypic (i.e. PP or SS) reflections, the ray paths of converted waves are asymmetric
with respect to interchanging sources and receivers. In particular in the presence of lateral inhomogeneities
or anisotropy, the move-out of a converted wave becomes asymmetric because it contains a linear term,
the so-called diodic move-out (Thomsen, 1999). This prevents the application of NMO correction in CMP
gathers, which is based on the assumption of symmetric ray paths.

This problem is closely-related to the conversion point dispersal. Although there is a similar phe-
nomenon for monotypic waves, the reflection point dispersal, that effect has a larger magnitude for con-
verted waves.

mailto:claudia.vanelle@zmaw.de


168 Annual WIT report 2008

NIP

β0

(a) Incidence/emergence angle

NIP

RNIP

(b) Curvature of the NIP-wavefront

RN

(c) Curvature of the N-wavefront

Figure 1: The meaning of the ZO-CRS parameters β0, KNIP , and KN . In (b) KNIP = 1/RNIP ; in (c)
KN = 1/RN .

For these reasons, PS data are sorted in common conversion point (CCP) gathers instead of CMP.
Unfortunately, the determination of the CCP itself can be rather complicated (e.g. Tessmer et al., 1990;
Thomsen, 1999). Also, it is by no means trivial to obtain a velocity model from the subsequent processing.
For example, neglecting the sign of the offset during the CCP binning can lead to a bimodal velocity
spectrum due to the diodic move-out (Thomsen, 1999).

Migration-based velocity model-building techniques (e.g. Al-Yahya, 1989) can be used for converted
waves. In these methods, residual move-out in the CRP gathers is evaluated for a model update. However,
one has to be cautious: due to the asymmetric ray paths in the case of converted waves, the gathers can
appear horizontal even though the velocity may be wrong (Menyoli, 2002).

In conclusion, velocity model building with converted waves is much more elaborate than in the mono-
typic case. Although the effort could be reduced by processing SS data instead of PS, the resulting simpli-
fications would be compensated with the problems arising during the acquisition.

One technique for the determination of P velocities was recently introduced by Duveneck (2004). It
evaluates wave field attributes obtained from a common reflection surface (CRS) stack of PP data in a
tomographic procedure. We suggest to extend the method such that we combine the wave field attributes
for PP and PS data in order to simulate SS wave field attributes.

After a brief summary of the CRS stack and NIP wave tomography, we introduce our method. Due
to the already mentioned properties of converted waves the combination of PP and PS parameters is not
straightforward. We will explain the specific problems in more detail and, following that section, present
solutions.

ZERO OFFSET CRS AND NIP WAVE TOMOGRAPHY

The CRS stacking technique was introduced by Mueller (1999) to obtain a simulated zero offset section.
The CRS stack can be considered as an extension of the classic CMP method, where stacking is carried
out over offsets, while in the CRS technique the stack is applied over offsets and midpoints. This leads to
a much larger number of contributing traces, and, thus, to a higher level of the signal to noise ratio.

Whereas the CMP operator is a hyperbola, the corresponding CRS operator is a surface of second order
that includes the CMP operator as subset. Written in midpoint (xm) and half-offset (h) coordinates, the
CRS operator in the two-dimensional zero offset case reads,

T 2
ZO(∆xm,∆h) =

[
T0 +

2 sinβ0

V0
∆xm

]2

+
2T0 cos2 β0

V0

[
KN ∆x2

m +KNIP ∆h2
]

. (1)

It contains three wave field attributes or parameters, namely, the incidence or emergence angle β0; the
curvature KNIP of a wave generated by a point source at the normal incidence point (NIP), the so-called
NIP wave; and the curvature KN of a wavefront generated by an exploding reflector element, the so-called
normal wave. Furthermore, the velocity V0 is that at the source and receiver. The meaning of the attributes
is also illustrated in Figure 1. The extension to 3D is straightforward (Müller, 2007).

The parameters are useful for a variety of applications (see, e.g. Mann, 2002) like attribute-based time
migration, determination of geometrical spreading, migration weights, Fresnel zones, and multiple sup-



Annual WIT report 2008 169

pression.
The application we will focus on in this work is the NIP wave tomography suggested by Duveneck

(2004). According to that work, ’in a correct model, all considered NIP waves when propagated back into
the Earth along the normal ray focus at zero traveltime’. The concept of focusing NIP waves was already
introduced by Hubral and Krey (1980), and cast into a tomographic inversion by Duveneck (2004).

With the traveltime, emergence angle, and NIP wave curvature given by the CRS stack, dynamic ray
tracing is performed in an initial model. Subsequent evaluation of the resulting NIP wave radius leads to
an update of the velocity model, which then serves as input for the next iteration step. The procedure is
repeated until convergence is achieved.

OFFSET CRS FORMULATION AND RAY BRANCH DECOMPOSITION

The physical interpretation of the attributes, e.g. KNIP , which is evaluated in the NIP wave tomography
is based on a one-way process. This is possible for monotypic waves because the up- and down-going ray
paths coincide in the zero offset case. This assumption is not valid if converted waves are considered. In
consequence, the corresponding expression for the CRS operator has five parameters now instead of three
for the monotypic zero offset case. Since it is formally identical with the common offset CRS formulation,
we will use this general form from now on.

In source (s) and receiver (g) coordinates, the common offset CRS formula reads,

T 2(s′, g′) = (T0 + q ∆g − p∆s)2 + T0 (G∆g2 − S ∆s2 − 2N ∆s∆g) , (2)

where the first-order derivatives,

p = −∂T
∂s

, and q =
∂T

∂g
, (3)

are the horizontal slownesses at the source and receiver, respectively. The second-order derivatives are
given by

S = −∂
2T

∂s2
, G =

∂2T

∂g2
, and N = − ∂2T

∂s ∂g
. (4)

In three dimensions, the first-order derivatives are vectors and the second-order derivatives are matrices
(see Vanelle, 2002).

Equation (2) is equal to the common offset CRS expression given by Bergler et al. (2002) (their equation
(1)). The first- and second-order derivatives can also be expressed by incidence and emergence angles βG

and βS , and the velocities VS and VG, where the indices S and G denote source and receiver; and the
scalar elements A,B,C,D of the surface-to-surface propagator matrix introduced by Bortfeld (1989). The
relations between these parameters are,

A = − S

N
, B =

1
N

, C = −N − SG

N
, and D =

G

N
, (5)

and
p =

sinβS

VS
, q =

sinβG

VG
, (6)

or,

S = −A
B

, G =
D

B
, N =

1
B

, (7)

and
sinβS = p VS , sinβG = q VG , (8)

respectively.
For zero offset and monotypic waves, it follows from the symmetry that p = −q and G = −S. With

g = xm + h, s = xm − h, equation (2) reduces to (1) in that case, and the zero offset attributes can be
expressed by

q = −p =
sinβ0

V0
, G = −S =

cos2 β0

2V0
(KNIP +KN ) , N =

cos2 β0

2V0
(KNIP −KN ) ,

(9)
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or

sinβ0 = q V0 , KN =
V0

cos2 β0
(G−N) , KNIP =

V0

cos2 β0
(G+N) , (10)

respectively.
Since there is no equivalent one-way process in the case of converted waves, we have to consider the

individual ray segments in order to find a way of combining the PP and PS wave field attributes. In the
following, we will use a parabolic variant of (2). It is valid for the traveltime of a reflected or converted
event as well as for each of the individual segments if a reflection point with the coordinate r is introduced.

A PP zero offset event consists of two identical P segments from s to r (or from r to g). Let SPP , GPP , NPP

denote the parameters of the reflected, i.e. PP, event, and SP 6= GP , NP those of the single P segment, i.e.,
the traveltime of the reflected event can be expressed by

TPP (s′, g′) = T0−PP + qPP ∆g − pPP ∆s+
1
2

(
GPP ∆g2 − SPP ∆s2 − 2NPP ∆s∆g

)
= 2 (T0 P + qr

P ∆r − pP ∆s) +GP ∆r2 − SP ∆s2 − 2NP ∆s∆r

= 2TP (s′, r′) , (11)

where qr
P is the slowness at the reflector. In (11), qPP = −pPP and GPP = −SPP due to the symmetry.

Similarly, a zero offset SS event with parameters SSS , GSS , NSS has two identical individual S seg-
ments with SS 6= GS , NS :

TSS(s′, g′) = T0−SS + qSS ∆g − pSS ∆s+
1
2

(
GSS ∆g2 − SSS ∆s2 − 2NSS ∆s∆g

)
= 2 (T0 S + qS ∆g − pr

S ∆r) +GS ∆g2 − SS ∆r2 − 2NS ∆r∆g

= 2TS(r′, g′) , (12)

where pr
S is the slowness at the reflector. In (12), qSS = −pSS and GSS = −SSS due to the symmetry.

Finally, a zero offset PS event described by SPS , GPS , NPS consists of two individual different seg-
ments, the P and S segments, with SP , GP , NP and SS , GS , NS , respectively:

TPS(s′, g′) = T0−PS + qPS ∆g − pPS ∆s+
1
2

(
GPS ∆g2 − SPS ∆s2 − 2NPS ∆s∆g

)
= T0 P + qr

P ∆r − pP ∆s+
1
2

(
GP ∆r2 − SP ∆s2 − 2NP ∆s∆r

)
+ T0 S + qS ∆g − pr

S ∆r +
1
2

(
GS ∆g2 − SS ∆r2 − 2NS ∆r∆g

)
= TP (s′, r′) + TS(r′, g′) (13)

Elimination of the reflector coordinate in Equations (11), (12), and (13) by evaluating Snell’s law leads
to relationships between the coefficients of the single and reflected rays. For the PP case, we find

pPP = pP = −qPP , SPP = SP +
N2

P

2GP
= −GPP , NPP =

N2
P

2GP
. (14)

Correspondingly, for the SS case it follows that

qSS = qS = −pSS , SSS = SS +
N2

S

2GS
= −GSS , NSS =

N2
S

2GS
. (15)

Finally, for the converted wave,
pPS = pP , qPS = qS ,

SPS = SP +
N2

P

GP +GS
, GPS = −SS −

N2
S

GP +GS
, NPS =

NP NS

GP +GS
. (16)



Annual WIT report 2008 171

VP1, VS1

VP2, VS2

(a) PP ray path

VP1, VS1

VP2, VS2

(b) SS ray path

VP1, VS1

VP2, VS2

(c) PS ray path

Figure 2: Zero-offset ray paths for (a) PP, (b) SS, and (c) PS reflections, where VP1/VS1 6= VP2/VS2.
Solid lines indicate P-waves; dashed lines correspond to S-waves.

The same result can be obtained with the propagator formalism (Bortfeld, 1989). Combining Equations (9)
and (15), we find that the NIP wave curvature corresponding to the zero-offset SS reflection is given by

KNIP−SS = − V0 S

cos2 β0 S
SS . (17)

According to (15), the angle β0 S is the incidence angle at the receiver for the PS case, i.e., sinβ0 S = qPS VS 0.
With (16), we can now express SS in Equation (17) by

SS = −GPS −
N2

PS

SPS − SP
, (18)

where SP follows from Equations (9) and (14) as

SP = − cos2 β0 P

V0 P KNIP−PP
. (19)

Equations (17) to (19) provide the NIP wave curvature of a simulated SS wave. To perform NIP wave
tomography, we also require the emergence angle for the ray tracing, β0 S , which is given by qPS , and the
traveltime, which can be obtained from the difference between TPS and TPP /2.

In conclusion, by combining the parameters from the PP and PS zero-offset CRS stacks, we can now,
in theory, apply NIP wave tomography to obtain the shear velocity model. In practice, however, the de-
termination of KNIP−SS is not as straight-forward as described here. We discuss the reasons and other
practical issues in the following section.

PRACTICAL CONSIDERATIONS

For the derivation of the relationship between KNIP−SS and the CRS parameters of the PP and PS data
we have implicitly assumed that the ray paths for PP, PS, and SS coincide. Whereas in the monotypic case,
the up- and down-going ray segments coincide and are normal to the reflector, this is not generally true for
the zero offset converted wave, as demonstrated by Figure 2. The P and S ray path segments are only then
identical when the ratio of P and S velocities remains constant throughout the medium. If that were the
case, however, we could simply compute our shear velocity model by applying a scale factor to the P model.

To address this problem, we assume that the distance ∆r between the reflection point of the zero-offset
PP reflection and the conversion point of the zero-offset PS reflection lies within a paraxial vicinity. In that
case, ∆r can be expressed by

∆r =
pPS − pPP

NP
. (20)
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In (20), the one-way parameter NP for the P wave is not directly available from the PP CRS parameters,
but it can be easily computed with dynamic ray tracing (DRT). In fact, computingNP does not even require
an additional effort as DRT is performed within the NIP wave tomography. Considering the traveltime of
the P wave to the conversion point, with

T 2
P (s, r′) =

(
T0−PP

2
+ qr

P ∆r

)2

+GP ∆r2 , (21)

where qr
P and GP are also known from the DRT for the NIP wave tomography, we can now carry out DRT

with the take-off angle corresponding to the PS wave and compute the value of SP for this ray path to be
combined with the PS parameters and obtain KNIP−SS . Although this step requires additional DRT, the
effort is negligible since only a single ray needs to be traced. Furthermore, the ray end point gives us a
measure of the accuracy as it should coincide with r′ = r +∆r, and therefore provides a means for quality
control.

Combining parameters from PP and PS CRS stacks requires that the events under consideration need to
be identified in both sections. The technique that springs to mind for solving this issue is slope matching,
i.e., comparing the slowness vectors of the P segments of the PP and PS rays, pPP and PPS . However,
as we have seen above, the ray paths do not coincide for media where the VP /VS ratio is not constant. In
conclusion, the slownesses do not coincide either. In contrast to the ’PP+PS=SS’ method (Grechka and
Tsvankin, 2002), where slope matching in the pre-stack domain is performed to obtain SS traveltimes from
combining PP and PS measurements, we are working in the post-stack domain, where their algorithm can-
not be applied.

Although it is possible to manually identify key events in the sections and use these to assign weaker
events, such a procedure would countermand one of the major advantages of NIP wave tomography, namely
that user intervention, e.g., picking, is kept to a minimum. We recognise that this challenging step needs
further investigation if it is intended to be carried out in a fully-automatic fashion.

There are additional issues related to the CRS stacking of converted waves that also occur in CCP
stacking, like the polarity reversal of the shear wave or wave field separation prior to the stacking. Since
the emphasis of this work is on the combination of the PP and PS parameters to obtain SS parameters, we
refer the reader to the literature suggested in the introduction.

CONCLUSIONS

We have introduced a new method to obtain the NIP wave curvature of an SS reflection from CRS stacking
of PP and PS data. Knowledge of the NIP wave curvature allows to perform NIP wave tomography for
shear waves. Since the necessary parameters are available from the PP and PS sections, the shear model
can now be determined without acquiring SS data.

As soon as the VP /VS ratio is not constant throughout the medium, an additional ray tracing step is
required to account for the difference in the PP and PS emergence angles. Since only single rays need to
be traced in the P model, this step does not degrade the numerical efficiency. Furthermore, dynamic ray
tracing is already embedded in the NIP wave tomography.
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