
230

SS TRAVELTIME PARAMETERS AND GEOMETRIC
SPREADING FROM PP AND PS REFLECTIONS

B. Ursin, M. Tygel and E. Iversen

email: mtygel@gmail.com
keywords: PP, PS, SS, seismic processing, geometrical spreading, amplitudes

ABSTRACT

Reliable P- and S-wave information is needed for imaging and inversion of seismic data in geologi-
cally complex areas. Under current acquisition conditions, shear-wave velocities can only be derived
from converted PS-waves included in the data. Because processing of converted waves is much more
complicated than for non-converted waves, attempts have been done to use PP- and PS-waves to sim-
ulate SS-waves and process these as new data. This has been successfully achieved for the simulation
of SS-traveltimes and their slopes and is referred to as the “PP+PS=SS” method. More specifically,
the SS-traveltimes and slopes of a target reflector can be obtained from the corresponding PP- and
PS-traveltimes and slopes of the same reflector, required that all source an receiver points are located
on a common acquisition surface. By using the concept and properties of surface-to-surface propaga-
tor matrices, also the second-order traveltimes of the SS-waves are obtained. In fact, the propagator
matrix of the SS-wave of a target reflector is explicitly obtained from the propagators of the PP- and
PS-wave of the same reflector. Given that the elastic parameters describing S-wave velocities are
known along the acquisition surface, this permits to determine the relative geometric spreading of
the SS-wave, leading to a better reconstruction of the amplitude of the simulated SS-wave. Under
isotropic conditions, the second-order derivatives of the SS-traveltime can, in the same way as for
PP-waves, be applied to a tomographic estimation of the S-wave velocity model.

INTRODUCTION

Combined use of P- and S-wave information is widely recognized as crucial for reliable imaging and
inversion of seismic data in most situations of reservoir exploration and monitoring interest. Conventional
processing of PP waves alone is unable to assess structural properties such as anisotropy, as well as to
account to lithology complications, such as gas clouds in reservoir overburden.

In principle, processing of SS waves, if available in the seismic data, would parallel the one routinely
carried out for PP waves to provide the corresponding S-wave information. Such a simple and direct proce-
dure is precluded, however, as present-day seismic data, e.g., as acquired using ocean-bottom technology,
include PP and PS waves, but not SS waves as reliable energy. In this way, extraction of S-wave seismic
parameters has to come from the PS waves in the data.

As described in, e.g., Thomsen (1999), processing of P-to-S converted data poses a number of diffi-
culties, due to its asymmetric traveltime. Namely, as reciprocity of PS is SP (and not PS), traveltime is a
function of offset, but not of offset squared, a property Thomsen refers to as “diodic”. As a consequence,
the familiar velocity analysis based on the hyperbolic normal-moveout (NMO) traveltimes or their non-
hyperbolic extensions do not apply. In spite of several attempts to overcome its difficulties and actually
process PS-waves directly from the data (see, e.g., Tessmer and Behle, 1988; Tsvankin and Grechka, 2000),
no simple satisfactory procedure has up to now been offered.

To overcome the above-indicated difficulties, Grechka and Tsvankin (2002) introduced a method to
(kinematically) simulate SS reflections by means of a suitable combination of PP- and PS-reflections. More
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specifically, the method, referred to as “PP+PS=SS” method, selects identified traveltimes and slopes of
PP and PS reflections of the same reflector to produce the corresponding SS reflection from that reflector.
The sources and receivers of the PP and PS events must be located on a common acquisition surface. Upon
the application of such procedure, the obtained SS reflections can be incorporated to the original seismic
volume as SS-reflection data. As such, they can, in principle, be processed by velocity-analysis methods
designed in the same way as for PP waves.

So far, the “PP+PS=SS” method uses the traveltimes and slopes of the PP and PS waves to provide the
corresponding traveltimes and slopes of the simulated SS-reflections. A natural questions arises, namely,
whether the knowledge of the second-order traveltime derivatives of PP and PS waves, as provided by their
ray-propagator matrices, lead to the ray-propagator matrix of the corresponding SS wave. In this paper, we
show that the answer of that question is affirmative. By using the “algebra” of ray-propagator matrices, as
introduced by Bortfeld (1989) and further developed by Iversen (2006), an explicit relationship between
the involved PP-, PS- and SS-ray-propagator matrices is achieved.

By examining the relationships that exist between the coefficients of the second-order Taylor expansion
of traveltime (see, e.g., Ursin, 1982) and the submatrix components of the PP, PS and SS ray-propagator
matrices, we see that the new results provide the second-order derivatives of SS traveltime, thus extending
the counterpart zero- and first-order derivatives provided by the “PP+PS=SS” method. Given in addition
that the elastic parameters that determine the S-wave velocities are known along the acquisition surface, this
enables the estimation of the relative geometric spreading of the SS wave, the inverse of which constitutes
the “geometric amplitude” of that wave.

In the zero-offset situation, the second-order derivatives of non-converted traveltimes, namely PP and
SS, yield NMO-velocities or NIP-wave curvatures (Hubral, 1983). In this way, one avoids traveltime
processing to obtain these velocities. Together with the traveltimes and slopes, the NIP-wave curvatures
can be applied to tomographic inversion in isotropic models for the corresponding P- and S-wave velocity
fields (see, e.g., Iversen and Gjøystdal, 1984; Duveneck, 2004). For depth-consistent tomography of PP
and PS reflections it is necessary that key reflectors are imaged at the same depth. Foss et al. (2005) used
the zero-offset PP and PS traveltimes to estimate the SS reflection times. These were then used together
with the PP traveltimes for reflector co-depthing.

We finally observe that a full simulation of the SS wave, which should include the reflection and
transmission coefficients, is not possible. In fact, the SS reflection/transmission coefficients cannot be
determined from the amplitudes of PP- and PS-reflected waves. For a better assessment on the reflec-
tion/transmission coefficients expressions for the various wavemodes PP, PS and SS, the reader is referred
to Chapman (1994) and Stovas and Ursin (2003).

TAYLOR SERIES TRAVELTIME APPROXIMATIONS

We consider a group of sources located at xs +∆xs near a central source point xs and a group of receivers
located at xr + ∆xr near a central receiver point xr. For a multiple transmitted and reflected wave the
traveltime may be expanded in a Taylor series series (Ursin, 1982; Červený et al., 1984)

T (xr + ∆xr,xs + ∆xs) = T (xr,xs) + (pr)T ∆xr − (ps)T ∆xs

+ (∆xr)T Mrs∆xs +
1
2
(∆xr)T Mrr∆xr +

1
2
(∆xs)T Mss∆xs. (1)

Here, all vectors are column vectors of size three, and superscript T denotes transpose. Also, pr and ps

denote the slowness vectors at xr and xs, respectively, and the 3× 3 matrices Mrr, Mrs and Mss contain
the second-order derivatives of traveltime with respect to xr and xs as denoted in the superscript. The
symmetric matrix Mrr is related to the wavefront curvatures at xr for a source at xs, while the symmetric
matrix Mss is related to the wavefront curvatures at xs for a source at xr. The matrix Mrs of second-order
mixed derivatives is related to the relative geometric spreading, see the Appendix A.

By squaring equation 1 and retaining the terms up to second order only, we obtain the more commonly
used Taylor series for traveltime squared

T (xr + ∆xr,xs + ∆xs)2 = [T (xr,xs) + (pr)T ∆xr − (ps)T ∆xs]2

+ T (xr,xs)[2(∆xr)T Mrs∆xs + (∆xr)T Mrr∆xr + (∆xs)T Mss∆xs]. (2)
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We shall assume that all sources and receivers are located on a common acquisition surface. For simplicity,
we let this surface be the plane x3 = 0. As a consequence, we will in the following consider the vectors
and matrices in equations 1 and 2 to have dimensions two and 2 × 2, respectively. The traveltimes ap-
proximations in equations 1 and 2 are valid for a single traveltime branch in a heterogeneous anisotropic
medium. As shown in numerical examples by Gjøystdal et al. (1984), there are cases where equation 1 is
more accurate than equation 2 and other cases where the opposite is true. The range of validity of these
equations may, however, be very small or even non-existent. This was shown by Tygel et al. (2007) for qSV
reflections in a horizontally layered VTI medium (transversely isotropic medium with a vertical symmetry
axis). In this case there can be a traveltime triplication on the vertical axis, which strongly limits the range
of validity of the power series expansion. In the following, we shall assume that the traveltime Taylor series
expansions are valid, and that the traveltime parameters, T (xr,xs), pr, ps, Mrr, Mrs and Mss, can be
estimated from the seismic data.

In the following derivations, we shall use the 4× 4 surface-to-surface ray propagator matrix (Bortfeld,
1989; Iversen, 2006)

Σ(xr,xs) =
(

A B
C D

)
, (3)

where A, B, C, and D are 2× 2 constant submatrices, which incorporate the dynamic quantities (second-
order derivatives of traveltime) of the central ray, as well as the properties of the anterior surface (where
the central ray starts) and the posterior surface (where the central ray emerges). The submatrix elements of
the surface-to-surface propagator matrix satisfy the following relationships:

[Σ(xr,xs)]−1 =
(

DT −BT

−CT AT

)
, (4)

and

Σ(xs,xr) = [Σ(xr,xs)]rev =
(

DT BT

CT AT

)
. (5)

In equation 5 the operation signified by the superscript rev implies that the resulting propagator matrix on
the left-hand side corresponds to the reverse ray direction, i.e., the direction from xr to xs rather than from
xs to xr. From equations 3 and 4 we obtain

C = (DAT − I)B−T , (6)

where I is the 2× 2 identity matrix and the superscript −T denotes the transpose of the inverse matrix.
The second-order traveltime derivative matrices are related to the elements of the surface-to-surface ray

propagator by the equations (Červený, 2001)

Mrr = DB−1, Mss = B−1A and Mrs = −B−1 . (7)

From these, we obtain

B = −(Mrs)−1, A = −(Mrs)−1Mss, and D = −Mrr(Mrs)−1 , (8)

so that, from equation 6,
C = (Mrs)T −Mrr(Mrs)−1Mss . (9)

SS TRAVELTIME PARAMETERS

We consider one PP and two PS reflection waves as shown in Figure 1. The points xa, xb, xc and xd lie
on the common acquisition surface for sources and receivers, while the slowness vectors and the normal
vector, n, of the reflecting interface at the reflection point, y, all lie in a common plane (Snell’s law). In
order to find the points xb and xc on the acquisition surface, a PP reflection is first identified for the couple
(xa, xd) and its traveltime parameters estimated. Next, the PS waves from xa to xc and from xd to xb

are identified such that the slowness vectors of the P waves at xa and xd are parallel to the corresponding
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Figure 1: Geometry of a common-offset image gather.

PP-wave slowness vectors at the same points (Grechka et al., 2002; Grechka and Tsvankin, 2002). The
traveltime parameters for the two PS waves are also estimated. Then the traveltime for the SS wave is

TSS(xc,xb) = TSP (xc,xa) + TSP (xb,xd)− TPP (xd,xa) . (10)

Using the multiplicative rule for the surface-to-surface ray propagators, these are given, for the PP and two
PS reflections, by

ΣPP (xd,xa) = ΣP (xd,y)ΣP (y,xa),
ΣSP (xc,xa) = ΣS(xc,y)ΣP (y,xa),
ΣSP (xb,xd) = ΣS(xb,y)ΣP (y,xd) .

(11)

Here, the superscript denotes the wavetype and the indexing is from right to left (as in equation 10). For
further use, we also note that

[ΣSP (xb,xd)]rev = ΣPS(xd,xb) = ΣP (xd,y)ΣS(y,xb) . (12)

It follows that the ray propagator for the SS wave from xb to xc is given by

ΣSS(xc,xb) = ΣSP (xc,xa)[ΣPP (xd,xa)]−1[ΣSP (xb,xd)]rev , (13)

where the inverse and reverse matrices are given in equations 4 and 5, respectively. The above important
result is seen from

ΣSS(xc,xb) = ΣS(xc,y)ΣS(y,xb)

= ΣS(xc,y)
{
ΣP (y,xa)[ΣP (y,xa)]−1

}{
[ΣP (xd,y)]−1ΣP (xd,y)

}
ΣS(y,xb)

=
{
ΣS(xc,y)ΣP (y,xa)

}{
[ΣP (y,xa)]−1[ΣP (xd,y)]−1

}{
ΣP (xd,y)ΣS(y,xb)

}
=

{
ΣS(xc,y)ΣP (y,xa)

}{
ΣP (xd,y)ΣP (y,xa)

}−1 {
ΣP (xd,y)ΣS(y,xb)

}
. (14)

The desired result 13 now follows from the first two equations 11 and equation 12.
From the surface-to-surface ray propagator matrix for the SS wave, we can compute the second-order

traveltime parameters using equation 7.
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Figure 2: Normal-incidence PP and SS reflections.

NORMAL-INCIDENCE REFLECTIONS

It is common to estimate traveltime parameters in midpoint, half-offset coordinates

xm =
1
2
(xr + xs) and h =

1
2
(xr − xs) . (15)

For a normal-incidence ray, which is reflected at an interface so that the slowness vector is parallel to
the interface normal, and the ray code up is equal to the ray code down, the source and receiver points
coincide. The Taylor series for traveltime then becomes (Ursin, 1982)

T (xm + ∆xm,h) = T (xm,0) + (px)T ∆xm +
1
2
(∆xm)T Mxx∆xm +

1
2
hT Mhhh , (16)

where the two-component vector px and 2 × 2 matrix Mxx constitute, respectively, the first- and second-
order traveltime derivatives for a given event in the zero-offset data cube, and the 2×2 matrix Mhh defines
the NMO velocities (the NMO ellipse, see Grechka and Tsvankin (2002). Traveltime squared is given,
always in second-order approximation, by

T (xm + ∆xm,h)2 = [T (xm,0) + (px)T ∆xm]2 + T (xm,0)[(∆xm)T Mxx∆xm + hT Mhhh] . (17)

In this case (Ursin, 1982)

Mrr =
1
4
[Mxx + Mhh] = Mss and Mrs =

1
4
[Mxx −Mhh] = [Mrs]T . (18)

For the surface-to-surface ray propagator, we have (Iversen, 2006)

A = DT, B = BT and C = CT . (19)

Using equations 8, 9, and 18 and applying some elementary matrix algebra, we obtain

B = 4(Mhh −Mxx)−1,
A = (Mhh −Mxx)−1(Mhh + Mxx) = DT,
C = Mhh(Mhh −Mxx)−1Mxx .

(20)



Annual WIT report 2008 235

This also means that matrix C satisfies the relation

C−1 = (Mxx)−1 − (Mhh)−1 . (21)

Figure 2 shows a PP and an SS reflection with the same normal-incidence reflection point, y. First we
identify the normal-incidence reflection at the surface point, x, and estimate its traveltime parameters.
Next we identify the PS reflection with the receiver point at x′ and with the same slopes at the source
at x as the normal-incidence PP reflection. The traveltime parameters for the PS-reflected wave are also
estimated. Then the traveltime for the normal-incidence SS reflection is (Foss et al., 2005)

TSS(x′) = 2TSP (x′,x)− TPP (x) . (22)

The slope vector for the SS reflection is

px(x′) = 2pr(x′) , (23)

where pr(x′) is the corresponding slope vector at the receiver for the PS-reflected wave. The surface-to-
surface ray propagator for the normal-incidence SS wave is given by equation 13 with xa = xd = x and
xb = xc = x′, namely

ΣSS(x′,x′) = ΣSP (x′,x)[ΣPP (x,x)]−1[ΣSP (x′,x)]rev . (24)

In equation 24 the surface-to-surface ray propagator for the PS wave must be computed with the general
traveltime approximations 1 or 2 and with equation 20. The surface-to-surface ray propagator for the
normal-incidence PP wave can be computed from the simplified traveltime approximations 16 or 17 and
using equation 20.

SLOPE MATCHING BASED ON SECOND-ORDER TRAVELTIME DERIVATIVES

The extended “PP+PS=SS” method described above makes use of computed second derivatives of PP- and
PS-wave traveltimes. This offers the possibility of utilizing such derivatives in the required matching of
slopes belonging to the two wavefields.

Consider the problem of finding a root x of the nonlinear vector equation f(x) = 0 using an itera-
tion technique of the Newton-Raphson type. The inherent linearization of each iteration step yields the
following update of x with respect to the current solution x0,

x = x0 −
[
∂f
∂xT

(x0)
]−1

f(x0) . (25)

The slope matching consists of two independent steps, which collectively make use of equation 25. In
the first step we consider a PS wave for which the source point is located at xa. The function f then has the
definition

f(x) =
∂TPP

∂xa
(xd,xa)− ∂TSP

∂xa
(x,xa) , (26)

with the first derivatives given by

∂f
∂xT

(x) =
∂2TSP

∂x ∂xaT
(x,xa) = −Mrs(x,xa) . (27)

The matrix Mrs in equation 27 belongs to the PS wave. In the second step we consider another PS wave,
having xd as its source point. The function f and its derivatives can now be specified by

f(x) =
∂TPP

∂xd
(xa,xd)− ∂TSP

∂xd
(x,xd) , (28)

∂f
∂xT

(x) =
∂2TSP

∂x ∂xdT
(x,xd) = −Mrs(x,xd) . (29)

Again, the matrix Mrs belongs to the PS wave.



236 Annual WIT report 2008

PP rays for common receiver at x = 0.5 km in similar model 
as in “PP+PS=SS”
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PS rays for common receiver at x = 0.5 km in similar model 
as in “PP+PS=SS”
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Figure 3: (a) PP-wave rays and (b) PS-wave rays for a common receiver at x = 0.5 km in a model similar
to the one used by Grechka and Tsvankin (2002)

NUMERICAL EXAMPLE

In this section we present a numerical example demonstrating the extended “PP+PS=SS” method. Our
experiment is conducted with a model similar to the one used by Grechka and Tsvankin (2002). The
model is two-dimensional and consists of three homogeneous layers containing anisotropy of the VTI type.
The layers are separated by smoothly curved interfaces, which were generated by digitizing the interfaces
plotted in Grechka and Tsvankin’s (2002) paper. For the latter reason, the models used by Grechka and
Tsvankin (2002) and us are not exactly the same; however, for practical purposes they can be considered
equal. The waves under consideration in the experiment are of P and SV types; hence, in each layer the
wave propagation is described in terms of four parameters, specified using Thomsen (1999) representation:

• Top layer: VP0 = 2.0 km/s, VS0 = 0.8 km/s, ε = 0.20, δ =0.10

• Middle layer: VP0 = 2.5 km/s, VS0 = 1.25 km/s, ε = 0.25, δ =0.05

• Bottom layer: VP0 = 3.0 km/s, VS0 = 1.8 km/s, ε = 0.15, δ =0.10

Traveltime “observations” corresponding to PP and PS reflections from the lower interface of the bottom
layer were generated using ray tracing. Figure 3 shows PP rays (a) and PS rays (b) for a common receiver
at the horizontal coordinate x = 0.5 km. The corresponding traveltime observations for all source and
receiver locations are shown, respectively, in Figures 4(a) and 4(b). The simulated “true” traveltimes for
the SS reflections are displayed in Figure 4(c). Comparing to Figures 5 and 8 in Grechka and Tsvankin
(2002) one finds a convincing consistency between the PP-, PS-, and SS-traveltimes computed using their
and our model.

The (a), (b), and (c) subfigures constituting Figure 5 show the PP-, PS-, and SS-wave relative geometric
spreading computed using the traveltime data in the corresponding subfigures of Figure 5. The simulated
“true” SS-wave relative geometric spreading in Figure 5(c) is used below for comparison with the estimated
results obtained using the extended “PP+PS=SS” method. The simulated relative geometric spreading for
the PP- and PS-waves [Figures 5(a) and 5(b)] are not used in this method, but the two plots nevertheless
serve to indicate the stability of the second-derivatives of the observed PP and PS traveltime functions.

In Figure 6, we have plotted the reconstructed SS-wave source-receiver pairs that form the basis of the
estimation of SS-wave traveltimes and relative geometric spreading factors. This plot is to be compared
with Figure 6 in Grechka and Tsvankin (2002), and again, one finds very similar results. Figure 7(a)
shows the SS-wave traveltimes estimated using the previously published “PP+PS=SS” method, which is to
be compared with Figure 4(c). The discrepancy between the two results is displayed in Figure 7(b). We
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Figure 4: Simulated traveltime data for waves reflected at the lowermost model interface: (a) PP-wave, (b)
PS-wave, and (c) SS-wave.
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Simulated PP relative geometric spreading (km2/s)
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Figure 5: Simulated relative geometric spreading data for waves reflected at the lowermost model interface:
(a) PP-wave, (b) PS-wave, and (c) SS-wave.
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Figure 6: Reconstructed SS-wave source-receiver pairs for traveltime and relative geometric spreading
estimations.

observe that the traveltime error introduced by the “PP+PS=SS” method, using noise-free input traveltimes,
has a mean value of -0.002% and a standard deviation of 0.003%. Figure 8 shows results for the extended
“PP+PS=SS” method. The (a) part shows the estimated SS-wave relative geometric spreading and is to
be compared with Figure 5(a). The (b) part of Figure 8 shows the errors, which have a mean value of
0.1% and a standard deviation of 0.7%. We find the rise of the error level, compared to the errors of the
estimated SS-wave traveltimes, quite natural in view of the fact that second derivatives of PP- and PS-wave
traveltimes have been used to estimate the SS-wave relative geometric spreading.

CONCLUSIONS

For a given target reflector, the full surface-to-surface propagator matrix of an SS-wave can be obtained
from the corresponding surface-to-surface propagator matrices of the PP- and PS-waves of the same re-
flector. This new result, which captures both the second-order derivatives of traveltime of the SS-wave,
extends the counterpart scheme of retrieving the SS-wave traveltime and slope, known in the literature as
the “PP+PS=SS” method. An interesting feature of the propagator matrix is that it allows for the computa-
tion of the relative geometric spreading, given that the elastic parameters determining the S-wave velocities
along the acquisition surface are known. In this way, the geometric part of the amplitude of the SS-wave,
namely the inverse relative geometric spreading factor, can be reconstructed. The reflection/transmission
coefficients, which constitute the lithological (non-geometric) part of the amplitude, cannot be recovered
from the amplitudes of the PP and PS waves.

The knowledge of the second-order derivatives of the SS traveltime permits to determine, besides the
relative geometric spreading, also the common-source and common-receiver traveltime curvatures of the
SS wave. In the same way as for PP waves, these quantities are very useful in setting up further constraints
for the construction of a seismic velocity model by means of tomographic methods.
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Figure 7: (a) Estimated SS-wave traveltime (s). (b) Error in estimated SS-wave traveltime (10−3 %). Mean
value of the errors: -0.002 %. Standard deviation of the errors: 0.003 % .
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Figure 8: (a) Estimated SS-wave relative geometric spreading (km2/s). (b) Error in estimated SS-wave
relative geometric spreading (%). Mean value of the errors: 0.1 %. Standard deviation of the errors: 0.7 %
.
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APPENDIX A

Relative geometric spreading
The relative geometric spreading is given by Červený (2001)

L(xr,xs) = |detQ2(xr,xs)|1/2 = |cosϕ(xr) cosϕ(xs)|1/2 |detB(xr,xs)|1/2 , (30)

where ϕ(xr) and ϕ(xs) are the phase angles of incidence and departure upon the acquisition surface at
the source and receiver, respectively. These phase angles can not be readily extracted from the traveltime
observations, hence they need to be estimated under the assumption that the elastic parameters determining
the phase velocities at the points xs and xr are known.

For simplicity and without loss of generality, assume that the acquisition surface is a plane x3 = 0
and consider a projection (p1, p2) of the slowness vector (p1, p2, p3) onto this surface. At the source
and the receiver, the projections (p1, p2)s and (p1, p2)r are known from the corresponding slopes of the
observed traveltime function T (xr

1, x
r
2, x

s
1, x

s
2). The components ps

3 and pr
3 are, however, not known from

this traveltime function, but they are needed in order to obtain the phase angles in equation 30 for the
relative geometric spreading. Along the acquisition surface, the component p3 for a given wavetype is
a function of the four variables (x1, x2, p1, p2). Furthermore, the complexity of the computation of the
component p3 at the points xs or xr depends on the nature of the velocity model. For example, in the
case of arbitrary anisotropy the component p3 appears as a root of a sixth-order polynomial equation with
coefficients constituted by all the 21 elastic moduli. For an isotropic medium, the component p3 results
from the relation

[p3(x1, x2, p1, p2)]
2 = V −2(x1, x2)− (p1)2 − (p2)2 , (31)

where V denotes the velocity of theP - or S-wave under consideration. Having computed p3(x1, x2, p1, p2),
the corresponding cosine factor for the phase angle of incidence/departure required in equation 30 is given
by

| cosϕ| = |p3(x1, x2, p1, p2)|√
(p1)2 + (p2)2 + [p3(x1, x2, p1, p2)]

2
. (32)

Applying equation 32 at the source as well as at the receiver and using in addition equation 20 in equa-
tion 30, one can compute the relative geometric spreading from the relation

L(xr,xs) = |detQ2(xr,xs)|1/2 = |cosϕ(xr) cosϕ(xs)|1/2 |detMrs|−1/2 . (33)

Finally, for a normal-incidence reflected wave at the point x, we use equation 18 to obtain (Hubral, 1983)

L(x,x) = 4 |cosϕ(x)| | det(Mhh −Mxx)|−1/2 . (34)


