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ABSTRACT

With the increasing performance of parallel supercomputers full waveform tomography (FWT) ap-
proaches can reduce the misfit between recorded and modelled data, to deduce a very detailed physical
model of the underground. In recent years acoustic waveform tomography became a very popular tool
to image the underground structures. However, acoustic waveform inversion has the disadvantage, that
only P waves can be inverted. It can not invert for S-waves or surface waves. Here we will present
the first inversion results of our elastic parallel time domain joint FWT code for two synthetic model
examples and discuss problems which occurred during the code development like preconditioning and
the choice of model parameters. Even though the problem is highly nonlinear and ill conditioned the
elastic FWT is able to resolve very detailed images of all three elastic model parameters.

INTRODUCTION

Full waveform tomography (FWT) is a state of the art imaging concept, which requires a massive amount of
computer resources. Therefore the first applications of FWT for moderate 2D problems were undertaken
in the late 1990s (Pratt (1999), Pratt and Shipp (1999)) for the acoustic case. The application of elastic
FWT is even more complicated, because 3 coupled elastic parameters have to be optimized at the same
time. In this paper we give a short overview of the first results we achieved with the elastic time domain
FWT code DENISE (subwavelength DEtail resolving NonlInear SEismic inversion) which was developed
by our working group at the TU Bergakademie Freiberg. As the name already states the FWT can only
image structures at or below the seismic wavelength. The long wavelength part of the model has to be
estimated by other methods like first arrival tomography. In the first section we give a short theoretical
overview. Afterwards the performance of the code will be shown using two synthetic geological examples.
A very simple 3 layer case and the more complex Marmousi model. We will discuss preconditioning and
the influence of model parameter choice on the inversion result.

THEORETICAL BACKGROUND

The aim of full waveform tomography is to minimize the data residuals δu = dmod − dobs between the
modelled data dmod and the field data dobs. The misfit can be measured by the objective function:

E =
1
2
δuTδu. (1)

The objective function can be minimized by updating the model parameters mn at iteration step n using a
steepest-descent gradient method:

mn+1 = mn − µnPδm, (2)

where δm denotes the steepest-descent direction of the objective function and µn the step length. To
increase the convergence speed of the FWT code the application of a preconditioning operator P is recom-
mended.
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How to estimate δm

To derive the steepest-descent direction a mapping from the data to the model space has to be found. A
small change in the model space δm, f.e. one model parameter at one point in space will result in a small
perturbation of the data space δd, f.e. one wiggle in the seismic section. If the Frechét derivative ∂d(D)

∂m(M)
is known, all the perturbations in the model space can be integrated to calculate the total change in the data
space:

δd(D) =
∫

M

dM
∂d(D)
∂m(M)

δm(M). (3)

where M and D indicate the model and data space. If a formulation like (3) can be found, one can identify
the Frechét kernel ∂d

∂m and then compute the adjoint operation - the mapping of perturbations from the data
to the model space as:

δm′(M) =
∫

D

dD

[
∂d(D)
∂m(M)

]∗
δd(D). (4)

For the elastic problem it can be shown, that the Frechét kernels are self-adjoint
[

∂d(D)
∂m(M)

]∗
=

[
∂d(D)
∂m(M)

]
(Tarantola (1988)). The seismic equivalent to (3) is of the form

δui(xs,xr, t) =
∫

V

dV (x)
∂ui(xs,xr, t)

∂m(x)
δm(x), (5)

where ui(xs,xr, t) represents the seismogram located at receiver location xr which records the ith com-
ponent of displacement of an elastic wavefield due to a shot at xs.

A similar expression as (5) can be derived from the equation of motion for an isotropic elastic medium:

ρ
∂2ui

∂t2
− ∂

∂xj
σij = fi,

σij − λεiiδij − 2µεij = Tij ,

εij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
+ boundary conditions,

(6)

where λ and µ denote the Lamé parameters, ρ the density, σij the stress tensor, εij the strain tensor, δij
the Kronecker Delta, fi the volume forces and Tij the surface forces. In the next step every parameter and
variable in the elastic wave equation is perturbated by a first order perturbation:

ui → ui + δui,

ρ→ ρ+ δρ,

σij → σij + δσij ,

λ→ λ+ δλ,

µ→ µ+ δµ,

εij → εij + δεij .

(7)

These substitutions yield a new elastic wave equation describing the displacement perturbation δui as a
function of new source terms ∆fi and ∆Tij

ρ
∂2δui

∂t2
− ∂

∂xj
σij = ∆fi,

δσij − λδεiiδij − 2µδεij = ∆Tij ,

δεij =
1
2

(
∂δui

∂xj
+
∂δuj

∂xi

)
+ perturbated boundary conditions,

(8)
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where the new source terms are

∆fi = −δρ∂
2ui

∂t2
+O(δρ)2 (9)

and

∆Tij = δλεiiδij + 2δµεij +O(δλ, δµ)2. (10)

Two points are important to notice here. Equation (8) states that every change of a material parameter will
act as a source ((9) and (10)), but the perturbated wavefield is propagating in the unperturbated medium.
The new wave equation given in (8) has the same form as the elastic wave equation, and hence its solution
can be obtained in terms of Green’s functions Gij of the elastic wave equation

δui(xr, t) =
∫

V

dV (x)Gij(xr, t, x, 0) ∗∆fj(x, t)

+
∫

S

dS(x)Gij(xr, t, x, 0) ∗∆Tij(x, t).
(11)

Substituting the force and traction terms given in equations (9) and (10) into equation (11), neglecting the
O2 terms (i.e., assume small perturbations in order to obtain the Frechét derivatives) gives

δui = −
∫

V

dV
∂Gij

∂t
∗ ∂uj

∂t
δρ−

∫
V

dV
∂Gij

∂xj
∗ ∂um

∂xm
δλ

−
∫

V

dV
∂Gij

∂xk
∗

(
∂uj

∂xk
+
∂uk

∂xj

)
δµ.

(12)

This equation has the form as the desired expression for the forward problem (5) and so it defines the
Frechét kernel ∂ui(xs,xr,t)

∂m(x) , from which one may obtain the adjoint expression:

δm′(x) =
∑
S

∫
dt

∑
R

∂ui(xs,xr, t)
∂m(x)

δui(xs,xr, t), (13)

i.e., the integral over the data space of the data residuals multiplied by the Frechét kernel. Use of (12)
to solve the forward problem is known as the Born approximation. In waveform tomography the Born
approximation is not used to solve the forward problem. Instead the full elastic wave equation is solved.
Integrating the Frechét kernel defined by (12) over the data space produces the adjoint operation

δm′ =
[
δλ′, δµ′, δρ′

]T

,

where

δλ′ = −
∫
dt

∑
R

∂Gij

∂xj
∗ ∂um

∂xm
δui,

δµ′ = −
∫
dt

∑
R

∂Gij

∂xk
∗

(
∂uj

∂xk
+
∂uk

∂xj

)
δui,

= −
∫
dt

∑
R

1√
2

(
∂Gij

∂xk
+
∂Gik

∂xj

)
∗ 1√

2

(
∂uj

∂xk
+
∂uk

∂xj

)
δui,

δρ′ = −
∫
dt

∑
R

∂Gij

∂t
∗ ∂uj

∂t
δui.

(14)
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According to Mora (1987) these expressions can be simplified to:

δλ′ = −
∑
S

∫
dt

(
∂ux

∂x
+
∂uy

∂y

)(
∂Ψx

∂x
+
∂Ψy

∂y

)
,

δµ′ = −2
∑
S

∫
dt

(
∂ux

∂y
+
∂uy

∂x

)(
∂Ψx

∂y
+
∂Ψy

∂x

)
+

(
∂ux

∂x

∂Ψx

∂x
− ∂uy

∂y

∂Ψy

∂y

)
,

δρ′ = −
∑
S

∫
dt

(
∂ux

∂t

∂Ψx

∂t
+
∂uy

∂t

∂Ψy

∂t

)
,

(15)

where the new wavefield

Ψj(x, t) = −
∑
R

Gij(x,−t;xr, 0) ∗ δui(xr, t) (16)

has been introduced. This wavefield is generated by propagating the residual data δui from the receiver
positions backwards in time.

In summary one iteration step of the FWT algorithm consists of the following steps:

1. For each shot solve the forward problem (6) for the actual model mn to generate a synthetic dataset
dmod and the wavefield u(x, t).

2. Calculate the residual seismograms δu = dmod − dobs.

3. Generate the wavefield Ψ(x, t) by backpropagating the residuals from the receiver positions.

4. Calculate the optimal perturbations δm of each material parameter according to (15).

5. Apply an appropriate preconditioning operator P.

6. Estimate the step length µn by a line search.

7. Update the material parameters using the gradient method mn+1 = mn − µnPδm.

In our FWT code the forward problem and backpropagation of the residual wavefield are solved using
a parallel time domain finite difference code (Bohlen (2002)). In the following sections two synthetic FWT
test problems will be presented to demonstrate the performance of the code.

A SIMPLE GEOLOGICAL TEST PROBLEM

For first parameter tests a simple geological model was used, which consists of a free surface, a water
column, two layers with undulating interfaces and a half space (Fig. 1, bottom). The S-wave velocity Vs

and density ρ are calculated from the P-wave distribution Vp using the following relationships:

Vs = Vp/
√

3,

ρ = 0.31 ∗ 1000.0 ∗ V 1/4
p .

(17)

Using an 8th order spatial FD operator the model could be discretized with 640 × 600 gridpoints in x-
and y-direction with a spatial gridpoint distance of 2.5 m. The time was discretized using DT = 0.54 ms,
thus for a recording time of T = 1.5 s 2777 time steps are needed. The acquisition geometry consists of
an Ocean Bottom Cable (OBC) on the sea floor with 93 two component receivers. 20 airgun shots were
recorded with a shot distance of 69 m. The source signature was a 30 Hz Ricker wavelet. The calculation
time using 64 CPUs on an ALTIX 4700 for one iteration step is roughly 3.5 minutes.

As mentioned above even very simple preconditioning operators can increase the convergence speed of
the FWT code significantly. To correct the amplitude loss at greater depth due to reflections and spherical
divergence in a reflection geometry a simple scaling of the gradient with depth P = depthn, where n is an
integer number, can be applied. For the synthetic tests n=3 works very well.
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Figure 1: Simple Geological Test Problem: P-wave velocity (left column), S-wave velocity (right column).
1D staring model (top), Inversion result after 110 iteration steps (center), true model (bottom).
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Figure 2: Density inversion results for the simple geological problem using the Lamé parameters (left) and
the impedances (right) as model parameters in the FWT.

For the isotropic elastic wave equation, the most obvious choice of model parameters m are the Lamé
parameters λ, µ and the density ρ. The inversion results for this parameter set are shown in Fig. 1 (center).
For better comparison the Lamé parameters are converted to seismic velocities. The interface locations
and velocities could be reconstructed very well from the 1D starting model (Fig.1 (top)). There are other
choices of model parameters which are more physically meaningful and better resolved (Tarantola (1986)),
but we think might not be optimal for a joint multiparameter inversion. To demonstrate that problem the
gradients are rewritten in terms of P-wave impedance Zp and S-wave impedance Zs (Mora (1987)):

δZp = 2Vpδλ
′,

δZs = −4Vsδλ
′ + 2Vsδµ

′,

δρ = (V 2
p − 2V 2

s )δλ′ + V 2
s δµ

′ + δρ′.

(18)

The comparison of the density update function in (18) and (15) shows that for the impedances the
density update depends on the gradients δλ′, δµ′ and the actual seismic velocities, while the density update
for the Lamé parameters is independent of all the other parameters. In Fig. 2 the inversion results for the
density are shown. While the Lamé parameters (left) can easily resolve the interfaces, the impedance result
(right) is not capable to resolve the correct density distribution and is dominated by artefacts.

A COMPLEX GEOLOGICAL TEST PROBLEM - THE ELASTIC MARMOUSI MODEL

A widely used test problem for seismic imaging techniques is the elastic Marmousi II model (Martin
et al. (2006)). The model consists of horizontal layers near the boundaries, while steep thrust faults are
disturbing the layers in the center of the model. These thrust faults are not easy to resolve by conventional
first arrival tomography, so it is an ideal test model for the FWT. Due to computational restrictions the
original Marmousi II model could not been used, because the very low S-wave velocities in the sediments
would require a too small spatial sampling of the model. Therefore new S-wave velocities and densities
were calculated from the P-wave velocities using the scaling relations (17).

Using an 8th order spatial FD operator the model could be discretized with 1000 × 580 gridpoints in
x- and y-direction with a spatial gridpoint distance of 5.0 m. The time was discretized using DT = 0.54
ms, thus for a recording time of T = 2.5 s 4630 time steps are needed. The acquisition geometry consists
of an OBC on the sea floor with 301 two component receivers. 41 airgun shots were recorded with a shot
distance of 112 m. The source signature was a 20 Hz Ricker wavelet. The calculation time using 50 CPUs
on an ALTIX 4700 for one iteration step is roughly 30 minutes.
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Due to the results of the last section, we choose the Lamé parameters as model parameters for the
inversion. The starting model, inversion result after 100 iterations and the true model are shown as P-wave
velocity, S-wave velocity and density in Fig. 3 - 5. The starting model is a Gauss filtered version of the true
model with a correlation length λc = 100.0 m. To achieve a smooth transition from the long wavelength
starting model to the inversion result with short wavelength structures the application of a frequency filter
with variable bandwidth on the data residuals δu is vital, to avoid the convergence into a local minimum.
In this case a low pass filter with the following characteristics was used during the first iteration: f1=0.0
Hz, f2=0.0 Hz, f3=5.0 Hz, f4=10.0 Hz, amps=1.,1.,1.,0.. Between f3 and f4 a Gaussian taper function is
applied. At all subsequent iteration steps the bandwidth was increased by 0.46 Hz/iteration step, so until
the 100th iteration the full spectral content was inverted.

Even though the coverage was not very high the inversion results are showing a lot of small details
and fine layers which are absent in the starting model. The thrust faults are also imaged very well. Even
the density, a parameter which can be hardly estimated from seismic data, is resolved well. In Fig. 6 the
seismic sections of shot 10 are plotted for the starting model (top), the inversion result (center) and the true
model (bottom). Notice the good fit of the first arrivals for the starting model, but the lack of small details
beyond the first arrivals. The inversion result fits the phases and amplitudes of the later small scale arrivals
very well.

CONCLUSIONS AND OUTLOOK

In this paper we have shown the potential of elastic FWT for imaging structures which are on the same scale
or smaller than the seismic wavelength. The success of FWT depends not only on the preconditioning of
the gradients, but also on the choice of model parameters. The chosen preconditioning was a very simple
scaling of the gradients. More sophisticated operators might improve the inversion result and increase the
convergence speed of the code. For a successful joint inversion of all three elastic parameters it is essential
to choose the Lamé parameters as model parameters, because other parameter sets can not be inverted
independently. Another problem, if not the biggest, is the estimation of the starting model. Currently
we are testing different methods for searching the long wavelength parameter space to estimate plausible
starting models for the FWT. If all this research is done we will start with the elastic inversion of ultrasonic
and real streamer/OBC data.
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Figure 3: P-wave velocity Marmousi model: (a) starting model, (b) inversion result, (c) true model.
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Figure 4: S-wave velocity Marmousi model: (a) starting model, (b) inversion result, (c) true model.
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Figure 5: Density Marmousi model: (a) starting model, (b) inversion result, (c) true model.
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Figure 6: Seismic sections for the Marmousi model (shot 10, y-component): The starting model (top), the
inversion result (center) and the true model (bottom).


