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ABSTRACT

A partial Common Reflection Surface (CRS) stacking method is developed to enhance the quality
of sparse low fold seismic data. Kinematic wavefield attributes computed during the automatic CRS
stack are used to enhance the prestack data. A multi-parameter CRS traveltime formula is used to
compute partial stacked CRS supergathers. We developed an algorithm, which allows to generate
NMO-uncorrected gathers without the application of inverse NMO/DMO. Gathers obtained by this
new approach are regularised and have better signal-to-noise ratio compared to original common-
midpoint gathers. Instead of the original data, these improved prestack data can be used in many
conventional processing steps, e.g., velocity analysis or prestack depth migration, providing enhanced
images and better quality control. We verified the method on 2D synthetic data and applied it to low
fold land data from Northern Germany. The synthetic examples show the robustness of the partial
CRS stack in the presence of noise. Sparse land data were regularised, and the signal-to-noise ratio
of the seismograms was increased as a result of the partial CRS stack. Prestack depth migration of
the generated partially stacked CRS supergathers produced significantly improved common-image
gathers as well as depth migrated sections.

INTRODUCTION

The quality of reflection seismic data is very important for seismic processing. It depends on a number of
factors, e.g., the topography of the Earth surface, the complexity of the subsurface, and the technical equip-
ment used in the acquisition stage. The presence of natural and anthropogenic factors can also affect land
seismic measurements (see, e.g., Stolt, 2002; Spitzer et al., 2003; Chandola et al., 2004). Inhomogeneities
in the subsurface, the presence of fault structures and strong velocity contrasts like in the areas of salt plugs
lead to a decrease of the signal-to-noise ratio (S/N) of the data.

Quite often the quality of old seismic reflection data, which needs to be reprocessed, is comparably low,
because of the short maximum offsets, irregular acquisition, and low CMP fold. All these factors lead to
a more complicated workflow to precondition the data for velocity analysis, velocity model building and
other processes. The quality of time and depth migrated stacked sections is consequently poor. The prestack
common midpoint (CMP) gathers of real land data may contain sparse seismograms located irregularly over
the short offset range. Regularisation of seismograms and filling the gaps in case of missing data is usually
performed using different binning and interpolation techniques (see, e.g., Brune et al., 1994; Yilmaz, 2001;
Stolt, 2002; Fomel, 2003; Spitzer et al., 2003; Chandola et al., 2004; Herrmann et al., 2008).

The Common Reflection Surface (CRS) stack technology based on multi-parameter stacking (see, e.g.,
Müller, 1999; Jäger et al., 2001; Mann, 2002) was already successfully applied by Yoon et al. (2008) and
Baykulov et al. (2008) to enhance the time sections of old low fold seismic reflection data from Northern
Germany. In this paper we show the possibility of the CRS stack method to improve the quality of 2D
prestack data. The CRS traveltime formula, where the dip of the reflector element is incorporated, is used
to compute new partially stacked CRS supergathers, where each trace is a result of summation of data
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along the CRS stacking surface. The number and location of traces in the produced supergathers can be
defined, e.g., to fill areas of missing offsets. Since no interpolation, but a summation of data is performed,
the method is very robust in the presence of non-coherent noise. Moreover, the regularisation of traces
can be performed with the partial CRS stack. The CRS stacking surface approximates the traveltimes of
seismic reflection data more precisely than the NMO/DMO stack (see, e.g., Müller, 1999; Jäger et al.,
2001). Therefore, the application of the CRS stacking surface to produce regularised data can be superior
to the methods based on the conventional NMO/DMO and binning/interpolation techniques described by
Brune et al. (1994).

THEORY

CRS stacking surface

The CRS stack is a multi-parameter stacking technique. The CRS stacking surface (see Figure 1) results
from approximating the true subsurface reflector by a reflector element that locally has the same curvature
as the true reflector. The traveltime t of reflection events is described by three parameters α, Rn and Rnip

in a hyperbolic formula:

t2(m,h) =
(
t0 +
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V0

m
)2

+
2t0cos2α
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(m2
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+

h2

Rnip

)
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where h is half source-receiver offset, m is the midpoint displacement with respect to the considered
CMP position, and t0 corresponds to the zero offset (ZO) two-way traveltime (TWT). In equation 1 α is
the angle of emergence of the ZO ray, V0 is the near surface velocity, Rn and Rnip are radii of curvature
of the normal (N) wave and normal-incidence-point (NIP) wave, respectively. The N- and NIP-waves
are generated by two hypothetical one-way experiments (see Hubral, 1983). Rnip can be associated with
the distance from the reflector element to the observation surface, and Rn is a measure for the CRS’s
curvature. However, the exact position of the reflector element can be defined only after performing a
seismic inversion procedure, e.g. the NIP-wave tomography, as implemented by Duveneck (2004). In the
following the parameter triplets (α, Rn and Rnip) are referred to as the CRS parameters.

Depending on the maximum CMP displacement m, the CRS stacking surface (green grid in Figure 1)
contains a number of traces larger than the number used during the conventional CMP stack (magenta line
in Figure 1). The choice of the maximum midpoint displacement m is important for the resulting lateral
resolution of the following processing results. The size of the first projected Fresnel zone is a good guidance
for this parameter which can be interpreted as the lateral extension of the stacking operator. However, the
CMP stack can be considered as a special case of the CRS stack with the maximum midpoint displacement
m = 0. In that case, the equation 1 transforms into the classical CMP stacking formula:

t2(h) = t20 +
4h2

V 2
nmo

, (2)

where Vnmo =
√

2V oRnip
t0cos2α is the stacking velocity.

Partial CRS stack

Partial CRS stack calculates a stacking surface around a specified point defined by its offset and traveltime
coordinates in a chosen CMP location, and performs the summation of data along that surface. The result
of summation is assigned to a new sample with the same CMP, offset, and time coordinates. Repeating this
procedure for all desired points generates a new gather that is called (partially stacked) CRS supergather
in the following. In Figure 1 the partial CRS stack surface is shown as a red grid around the specified event
(red point) in a chosen CMP gather. That surface coincides locally with the CRS stack surface shown as a
green grid, but the size of the partial CRS stacking surface is smaller than that of the CRS stack surface.

The partial CRS stacking surface is defined by the zero-offset (t0) time of the considered point and
the corresponding CRS parameters. The size of the surface may vary from the size of the CRS stack
surface described in the previous section. Although it may be a good choice to use the same size of the
surface as it is used for the CRS stack, the maximum offset or midpoint displacement from the chosen point
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Figure 1: CRS stacking surface for a constant velocity medium. The CRS stack sums the data along the
green surface and assigns the result to the point P0. The stacking surface results from approximating the
true subsurface reflector by a reflector segment that locally has the same curvature as the true reflector.
The partial CRS stack performs the summation of data around the specified point on a CMP traveltime
curve (magenta line), and assigns the result to that point in a new generated CRS supergather. The partial
CRS stacking surface shown with a red colour coincides locally with the CRS stacking surface, but may
be limited in size (in this case only five neighbouring offsets and full midpoint range are considered to
generate one trace in the CRS supergather)

may be smaller than that defined for the CRS stack surface. The measurements of the partial CRS stack
surface in offset and midpoint dimensions are called partial CRS stack apertures in the following. These
apertures should be adjusted according to the aim of processing, and may enclose only some traces on the
CRS stacking surface around the chosen point. Stacking more traces may be necessary to fill large data
gaps present in the CMP gathers. In that case the information from the neighbouring CMPs or from the
neighbouring offsets is used to generate a new trace in the CRS supergather.

Since the partial CRS stack performs the summation of data to generate one sample in the CRS su-
pergather, it enhances the quality of the seismograms by increasing their S/N ratio. Moreover, taking
information from the neighbouring traces into account allows to fill data gaps. Finally, the CRS stacking
surface can be calculated for every desired offset, which means that the data regularisation within each
gather can be performed. The incorporation of the midpoint displacement m into the calculation of the
partial CRS stacking surface results in the construction of CRS supergathers, where the dip of reflectors is
taken into account. Due to this the partial CRS stack method is superior to the conventional CMP binning
technique (see, e.g., Yilmaz, 2001), where the dip of the structure is not considered. As it is shown in
Müller (1999) and Jäger et al. (2001), the CRS stacking surface better describes the reflection response
compared to the NMO/DMO stack. Therefore, the partial CRS stack should produce better results than
the existing NMO/DMO interpolation schemes as described by Brune et al. (1994). Only for the rare case
when the shape of the true subsurface reflector is identical to the shape of the specific ZO isochrone, the
NMO/DMO stacking surface describes the data identical to the partial CRS stacking surface (see, e.g.,
Jäger et al., 2001).

Since the partial CRS stacking surface is calculated not only for the zero-offset trace, but for every
specified source-receiver offset, and the result of partial stacking is assigned to the trace with the specified
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offset, the output gathers are not NMO-corrected. Therefore, the partial CRS stack supergathers may
further be used in many standard precessing steps like velocity analysis, stacking, or migration.

Calculation of partial CRS stacking surface

The partial CRS stacking surface is calculated in a chosen CMP location for every specified sample
A(tA, hA), where tA is two-way traveltime, and hA is half source-receiver offset. The accurate zero-
offset time, and the corresponding CRS parameters (α,Rn, Rnip), describing this event, need be found.
We developed a search algorithm optimized to find at offset hA zero-offset traveltime of the partial CRS
stacking surface that exactly fits the sample A. The CRS parameters for each CMP location in the stacked
volume must be known. These CRS parameters are determined by the automatic search described by
Müller (1999), Jäger et al. (2001) and Mann (2002).

The zero-offset traveltime search is performed for every CMP location of the data independently. Since
the CMP traveltime curve is a special case of the CRS stack surface when the midpoint displacementm = 0
(see equation 2), this search is simplified to find the CMP hyperbola that best fits the event in A. All zero-
offset traveltimes within the range [0; tA] and the corresponding CRS parameters are tested to determine
the hyperbola that has the minimum time deviation from tA at the offset hA. Following from the equation
2 the traveltime of best-fitting CMP curve is described as

t2(h) = t′20 +
2t′0cos

2α

V0

h2

Rnip
, (3)

where t′0 is the tested zero-offset traveltime, and α and Rnip are CRS parameters corresponding to that t′0.
However, the defined hyperbola does not fit the event A(tA, hA) exactly, because only discrete values

of zero-offset traveltimes may be tested. The determined t′0, therefore, may not be used to describe the
partial CRS stacking surface, because the events would not be stacked coherently in that case. Therefore,
the CMP hyperbola has to be corrected to exactly fit the point A. Assuming that α and Rnip are changing
smoothly around the considered eventA, these parameters are fixed in the equation 3. Setting the traveltime
tA and the offset hA of the event A into equation 3 yields

t2A = t20 +
2t0cos2α

V0

h2
A

Rnip
, (4)

where t0 is a zero-offset traveltime of a CMP traveltime curve that fits the event A exactly. Solving this
quadratic equation w.r.t. t0 and neglecting the negative solution results in

t0 = −h
2
Acos

2α

V0Rnip
+

√(h2
Acos

2α

V0Rnip

)2

+ t2A, (5)

where α and Rnip are defined for the traveltime t′0. Here we assume the Rnip, which is a measurement
of a reflector depth, to be positive. Considering the negative values of Rnip, which may be useful for some
special cases, it will be necessary to take the second solution of the equation 4 into account. The such
defined t0 is now used in the equation 1 to construct the partial CRS stacking surface that exactly fits the
considered event A. This surface is used to sum up the data coherently.
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RESULTS

In order to demonstrate the potential and advantages of the partial CRS stack method, we have applied it
to the Sigsbee 2A synthetic dataset and a field dataset.

Noise free synthetic data

Sigsbee 2A is a constant density acoustic synthetic dataset released in 2001 by the "SMAART JV" consor-
tium. Only a part of the dataset without the salt structure was used in this study. The data do not contain
free surface multiples and almost no internal multiples due to very low acoustic impedance contrasts. Sigs-
bee 2A models the geologic setting found in the Sigsbee escarpment in the deep water Gulf of Mexico. A
number of normal and thrust faults are present in the data. The source interval is 45.72 m. 348 channels
per shot were used with a receiver spacing of 22.86 m. Therefore the resulting CMP interval is 11.43 m,
and the maximum CMP fold is 87. The data were sampled every 8 ms with a total recording time of 12 s.
In Figure 2(a) a typical CMP gather up to 3500 m offset and TWT=10 s is shown.

In total 500 CMP gathers were processed with the CRS stack method. First, the CRS parameters
were found. The parameter estimation process is the most crucial part of the CRS stack processing. The
simultaneous 3-parameter search would be computationally very expensive. We used three individual one-
parametric search processes (automatic CMP stack, the angle scan, and the Rn scan) described in Müller
(1999) and Jäger et al. (2001).

The CRS parameters were used to compute partial stacked CRS supergathers. The maximum midpoint
displacement m was set up to 260 m at TWT=2.3 s and 900 m at TWT=11 s and interpolated linearly
for intermediate values. The offset range of 914 m at TWT=2.3 s and 3810 m at TWT=11s was used
and again interpolated linearly. The partial CRS stack aperture in offset dimension was limited to contain
only one offset, which corresponds to the central common-offset red curve in Figure 1. The resulting CRS
supergather is shown in Figure 2(b).

Although the source and receiver intervals of the Sigsbee 2A dataset are constant, the acquisition leads
to a different sets of source-receiver offset in different CMP gathers. For example, only CMPs that are
located directly in the positions of the sources contain zero-offset traces. As a result, only every fourth
CMP has the same sets of offsets. Although it is not necessary to apply data regularisation for synthetic
data, we adjusted the partial CRS stack such that the identical source-receiver offsets are present in the
CRS supergathers. As a result, the CRS supergather has 4 times more traces than the CMP gather. The
gathers are muted according to the defined offset aperture used during the CRS parameters search. Because
of the larger number of traces, reflections in the CRS supergathers appear sharper and could be better
distinguished in comparison to the CMP gather (see enlarged images in Figure 3).

CMP gathers and CRS supergathers were stacked with the same stacking velocity model obtained by
the automatic CMP stack. Although it is possible to use the partial CRS stacked supergathers during the
automatic CMP search to define a more reliable stacking velocity model, this is not shown in this paper in
order to emphasize the improvement of the data quality only. Resulting ZO stacked sections are shown in
Figure 4. The ZO CMP stack section (Figure 4(a)) displays a lower quality in the areas of fault structures
and steep dipping layers. The CRS supergather stack (Figure 4(b)) shows better continuity of horizons at
all time levels and produced a better image of conflicting dip areas. It is mentioned that conflicting dips
areas are a problem to the CRS stack method. In case of crossing reflections only one dip is considered
during the automatic parameter search with preference to the most coherent, i.e., strongest event. However,
it is possible to analyse conflicting dips separately, which will result in a number of different CRS stack
parameters (α,Rn, Rnip) for every point t0 in conflicting dip areas. Although the partial CRS stack method
takes the information about different conflicting dips into account, the automatic parameter search for
Sigsbee 2A data was adjusted to consider only one dip. Therefore, the primary events were preferred, but
the diffractions were attenuated as it is seen by comparing Figures 4(a) and 4(b). Nevertheless, we believe
the stacked section of the CRS supergathers is clear, and is better suited for interpretation than the CMP
stack section.
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(a) (b)

Figure 2: Noise free Sigsbee 2A data. Partially stacked CRS supergather (b) has 4 times more traces than
the original CMP gather (a), providing better images of reflection events. The red rectangles are enlarged
in Figure 3.

(a) (b)

Figure 3: Enlargement of the noise free Sigsbee 2A data presented in Figure 2. The CMP gather (a)
contains less traces than the partial stacked CRS supergather (b).
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(a) (b)

Figure 4: Noise free stacked Sigsbee 2A data. The conventional CMP stack (a) has lower quality in
conflicting dips areas. In the CRS supergather stack (b) reflections are more continuous, and for conflicting
dip areas appear clearer, and diffractions are attenuated.
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Synthetic data with noise

To show the advantages of applying the CRS supergather method to noisy data, the direct waves were
muted, and Gaussian noise with S/N=20 was added to the synthetic seismograms. The S/N ratio was
computed w.r.t a signal with the maximum amplitude. As a result, only the strongest events like the
reflection from the water bottom (4 s TWT) and the bottom of the model (9 s TWT) are visible in the CMP
gather (Figure 5(a)). Since the amplitudes of all other reflections are lower, they are almost not visible. An
automatic CRS parameter search was carried out for the noisy seismograms. Three one-parameter searches
were performed in the same way as for the noise free dataset. The obtained CRS parameters were used to
build the partial stacked CRS supergathers. The result is shown in Figure 5(b). Enlarged areas are shown
in Figure 6. Compared to the CMP gather the reflections in the CRS supergather are clearly visible at all
times. The noise is still present, but the S/N ratio is significantly increased.

Figure 7 demonstrates the advantage of CRS supergathers. Whereas the CMP stack of the noisy seis-
mograms (Figure 7(a)) shows a lower S/N than the CMP stack in Figure 4(a), the stacked CRS supergathers
(Figure 7(b)) have almost no visible differences compared to the stacked supergathers without noise (Fig-
ure 4(b)). This means, that the partial CRS stack is very stable to the presence of non-coherent noise. This
advantage, however, requires a reliable determination of CRS parameters (α, Rn, Rnip).

Real land data

The CRS stack method was also applied to real data from Northern Germany. A part of a seismic reflection
profile located north of the river Elbe and crossing the Jurassic salt plug in the Glückstadt Graben area was
processed. The data were acquired in the 1980s using explosive sources with an average shot spacing of
120 m. For every shot gather 120 channels with a receiver spacing of 40 m were used. Irregular shooting
geometry leads to a varying CMP fold with an average of 20. A typical example of a preprocessed CMP
gather is shown in Figure 8(a). About 20 traces are located irregularly over the full offset range. Irregularity
of traces accompanied by the low S/N leads to difficulties in identifying reflections both in the prestack
gathers and in sections. Conventional binning of neighbouring CMP gathers into a new gather does not
yield the desirable quality enhancement of the prestack data, because merging of data without the correction
for the dip of the layers leads to smearing. Figure 8(b) shows a binned gather obtained by combining 10
CMP gathers, corresponding to a bin size of 200 m. The resulting CMP bin provides a better coherency of
the reflection events in the upper part of the seismogram, but does not completely fill the gaps of data at
certain offsets (around 2000 m and 3700 m). Combining 20 CMPs together (bin size 400 m) as shown in
Figure 8(c) fills these gaps, but decreases the energy of reflection events. Combining more CMPs would
further decrease the reflection coherency.

The automatic search of CRS parameters was performed to the dataset. We used the same approach
as for the synthetic data, which is based on three one-parameter search processes. However, the stacking
velocity model provided with the dataset was used as a guide to limit the range of estimated parameters.
After the CRS parameters were estimated, partial stacked CRS supergathers were built. The maximum
midpoint displacement during the partial CRS stack m was set up to 400 m at the surface and 2000 m at 5
s TWT and interpolated linearly for intermediate values. The offset range of 20 m at the surface and 4945
m at 5 s TWT was used and again interpolated linearly. Regularisation of traces was applied to the dataset
with the partial CRS stack aperture in offset dimension adjusted to 100 m.

An example of a CRS supergather is shown in Figure 8(d). A significantly larger number of traces
is present in the CRS supergather compared to the original CMP gather. The traces are well distributed,
filling the gaps of the original CMP gather shown in Figure 8(a). Reflections are clearly visible at all times
down to 4 s TWT. Also some events at TWT = 4.5-5 s, offset = 1000-2000 m are observed. Compared to
the binned CMP gathers (Figure 8(b), Figure 8(c)), the CRS supergather provides a better S/N and a better
continuity of reflections at all time levels. Partially CRS stacked data can be used in further conventional
processing, e.g., for velocity analysis as well as for stacking and time or depth migration. Based on the
depth migrated CRS supergathers residual moveout analysis and velocity model update can be performed.

Prestack Kirchhoff depth migration was applied to both CMP gathers and CRS supergathers. The mi-
gration velocity model was obtained by NIP-wave tomography inversion based on the CRS parameters
(for details see Duveneck, 2004). In order to demonstrate the benefits of the partial CRS stack only, the
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(a) (b)

Figure 5: Sigsbee 2A data with noise. Reflections in the CMP gather (a) are hardly visible. The CRS
supergather (b) displays a significantly increased S/N, and reflections are clearly visible from 4 to 9 s
TWT. The red rectangles are enlarged in Figure 6.

(a) (b)

Figure 6: Enlargement of the Sigsbee 2A data with noise as presented in Figure 5. The CMP gather (a)
contains less traces than the partial stacked CRS supergather (b). Reflections in the CMP gather can not be
identified. The CRS supergather shows a significantly increased S/N. Several reflections are clearly visible.
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(a) (b)

Figure 7: Stacked Sigsbee 2A data with noise. The conventional CMP stack has lower S/N compared to
the CMP stack section without noise (Figure 4(a)). The CRS supergather stack shows almost no visual
differences to the stacked section without noise (Figure 4(b)).
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(a) (b)

(c) (d)

Figure 8: Real land data from Northern Germany. The CMP gather (a) has about 20 traces spaced irregu-
larly. The CMP bins consisting of 10 CMPs (b) and 20 CMPs (c) increase the coherence of events, but does
not improve the S/N. The CRS supergather (d) provides significantly increased S/N and better reflection
continuity. The red rectangles are enlarged in Figure 9.
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(a) (b)

Figure 9: Enlargement of real land data from Northern Germany presented in Figure 8. The CMP gather (a)
contains only a few traces spaced irregularly. Reflections are not visible, the S/N is low. The partial stacked
CRS supergather (b) contains more traces with higher S/N than the CMP gather. The CRS supergather is
regularised, and the data gaps present in the CMP gather are filled. Reflections are clearly visible and can
be used for further processing steps like velocity analysis.

velocity model obtained for CRS parameters derived from the original CMP gathers was used to migrate
both sets of original and partial stacked data. The improvement of the migration velocity model using
the partial stacked CRS supergather for the NIP-wave tomography inversion may be the target of further
investigations. The prestack Kirchhoff depth migration as applied here operates on common-offset gath-
ers. Because of the irregular acquisition geometry, the original data were first preprocessed to build the
binned common-offset gathers. Offset bin spacing was adjusted to the partial CRS stack offset aperture of
100 m. Performing a prestack depth migration (PreSDM) with the original data yields a depth-migrated
section with low S/N shown in Figure 12. Prestack depth migrated common image gathers (CIG) shown
in Figures 10(a) and 10(b) are only partially suited for residual moveout analysis and quality control. Only
the strongest reflector at 1.2 km depth can be seen in Figure 10(a) and at 2, 4, 5, and 6 km depth in Figure
10(b).

PreSDM of the partially stacked CRS supergathers depicted in Figure 13 shows a significantly improved
depth migrated section (compare to Figure 12). Horizons are more continuous, and a higher S/N is obvious.
PreSDM of CRS supergathers provides better depth migrated gathers compared to the original CIGs (see
Figures 10 and 11). Reflectors in the improved gathers are clearly visible and can be easily identified.
The flat depth migrated CRS supergathers confirm the accuracy of the velocity model used for migration,
which is hardly possible using the conventional CIGs. New depth migrated images of improved quality
were used as a supplementary information for better interpretation, which provided an alternative view on
the structural settings of the Glückstadt Graben area (Baykulov et al., 2008).

DISCUSSION

The partial CRS stack based on the CRS traveltime formula assumes the hyperbolic approximation of
the reflection response. Therefore, the apertures of stacking in both offset and midpoint direction must be
chosen carefully with respect to the complexity of the subsurface. However, the described search algorithm
allows to find the best fit hyperbolic formula for the non-hyperbolic events as well. We suppose, that the
robust summation in the midpoint direction used to generate the supergather would, nevertheless, produce
reliable results also for non-hyperbolic. However, this point needs further investigations and may be the
aim of the future work.
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(a) (b)

(c) (d)

Figure 10: Prestack depth migrated CIGs of real land data located to the left and right of the salt plug (see
Figure 12 and Figure 13). Conventional CIGs display only the strongest reflectors at 1.2 km depth for CIG
3100 (a) and at 2 to 6 km depth for CIG 2140 (b). The corresponding depth migrated CRS supergathers
(c,d) have an increased S/N, and reflectors at levels down to 9-10 km depth are visible. The red rectangles
are enlarged in Figure 11.
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(a) (b)

Figure 11: Enlargement of prestack depth migrated CIGs of real land data shown in Figure 10. The
conventional CIG (a) is not suited to perform the residual velocity analysis and quality control, since the
reflectors are hardly visible. The PreSDM of the partial stacked CRS supergather (b) shows much more
continuous reflectors, which allows the further residual moveout analysis and quality control of the depth
velocity model used in migration.

Since the partial CRS stack method performs summation of data, the true amplitudes are not preserved.
However, by means of the CRS parameters it is possible to estimate the geometrical spreading factor
required in true amplitude imaging. The application of the CRS stack for improved AVO analysis has
already been presented by Pruessmann et al. (2004). Preservation of the true amplitudes in the partial
stacks will be addressed in our future work efforts.

Here the method was implemented for the 2D case only. The first application of the 3D CRS stack on
real 3D land data was presented by Bergler et al. (2002). They indicated some of the possible applications of
the kinematic wavefront attributes estimated during the 3D CRS stack. Beyond the outlined applications,
the partial CRS stacking surface can be computed for the 3D data as well, which is the aim of further
investigations.

The partial CRS stack takes the information from conflicting dips into account, but to use this option
the proper CRS parameters must be estimated. This results in a number of different stacking surfaces for
one sample. The separated search for conflicting dips is already implemented in the 2D case.

Compared to the conventional CMP stack, the CRS stack requires more CPU time. For example, the au-
tomatic CMP stack of real land data used in this work took about 10 min, whereas the CRS stacking needed
about 10 hours to complete where one CPU with 2.6 GHz and 1 GB RAM was used. More significant is
the CPU time needed to estimate the CRS parameters, which took more than 10 days. The computation
time, however, may vary depending on the apertures used by the CRS parameter search, the number of
conflicting dips, and other factors. Much more difficult is to estimate the time that a user needs for testing
the apertures, thresholds etc. Nevertheless, the CRS stack is an automatic approach that does not need
any human intervention, when the processing parameters are known for the dataset. In this case the total
time costs might be even less than the turnaround time of the conventional CMP processing. The partial
CRS stack of the land dataset took about 30 hours to come up, which is quite fast compared to the CRS
parameter search. It is important to mention that the CRS stack is an independent process for each sample
and is well suited for parallelization. Using a computer cluster with a group of processors the computation
time for the CRS parameter search and the partial CRS stack can be significantly reduced.

CONCLUSION

The presented partial CRS stack technique has shown the potential to enhance the quality of 2D prestack
seismic data. Partial CRS stack generated new regularised gathers of higher quality. As a result of sum-
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Figure 12: PreSDM section of CMP gathers. S/N is low. Reflectors are not continuous, the internal
structure of the salt plug and the reflectors below 7 km depth are hardly visible.

Figure 13: PreSDM section of CRS supergathers. The image quality is significantly enhanced compared
to Figure 12. Horizons are more continuous, the enhanced S/N is obvious. Internal salt reflectors between
3000 and 2500 CMP at 2-6 km depth are identified. Also the image of the deeper part of the section below
7 km is improved. The areas of improvement are indicated by arrows.
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mation, the S/N ratio of generated seismograms is higher compared to the original data. We successfully
implemented the partial CRS stack method for the 2D case and applied it to synthetic data and to low fold
land data from Northern Germany. Sparse land data were regularised, and the S/N of the seismograms was
increased. Prestack depth migrated CRS supergathers of real data allowed a reliable quality control of the
velocity model used for migration, which was not possible by conventional processing.

Our further work on this topic is the parallelization of the software and the application of the partial
CRS stack on 3D data. Interpolation of data in missing CMP locations might be useful in the 3D case. Also
the conflicting dip problem indicated in the discussion will be addressed in future work.

We recommend to use the partially stacked gathers instead of the conventional CMPs especially for
sparse data of low quality. Results of velocity analysis, stacking and depth migration might be improved
using the gathers generated by the new approach. Application to AVO analysis will be investigated, since
the true amplitudes must be reconstructed. The optimised CRS parameter search can be carried out using
the new gathers. The improved CRS parameter sets may further be used by the NIP-wave tomographic
inversion. The CRS supergathers may also contribute to improve multiple attenuation.
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