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ABSTRACT

In heterogeneous media, standard one-wave wave equations only describe the kinematic parts of one-
wave wave propagation correctly. For a correct description of amplitudes, the one-way wave equations
must be modified. In vertically inhomogeneous media, the resulting true-amplitude one-way wave
equations can be solved analytically. The corresponding amplitude modifications can be taken into
account in split-step and Fourier finite difference migrations in such a way that they use these true
amplitude one-way wave equations instead of the standard ones in order to implement a true amplitude
wave equation migration for zero-offset data. Synthetic data examples demonstrate that the technique
improves amplitude recovery in the migrated images.

INTRODUCTION

Many seismic migration methods, particularly those directly based on the wave equation, take only care
of the kinematic aspects of the imaging problem (i.e., the position and structure of the seismic reflectors),
while incorrectly treating the dynamics (amplitudes, related to the energy carried by the seismic wavefield).
However, as post-migration AVO and AVA studies are becoming more and more important, the correct
treatment of migration amplitudes becomes imperative.

In this work, we study wave-equation migration based on one-way wave equations. We are interested in
such one-way wave equations that correctly describe not only the traveltime but also the amplitude of the
resulting one-way waves. These one-way wave equations are referred to as true-amplitude one-way wave
equations.

In homogeneous media, the product of the two differential operators of the two one-way wave equations,
which are first-order differential equations, yields the differential operator of the full wave equation. The
one-wave wave operators allow to separate the full wavefield into its components traveling in different
directions. Generally, the factorization is used to split the wavefield into its up- and downgoing parts. In
this form, the one-way wave equations are useful in modeling and, principally, in migration.

In a homogeneous medium, traveltimes and amplitudes of the one-way waves, i.e., the solutions of the
so-obtained one-way wave equations are identical to those of the solution of the full wave equation. How-
ever, in inhomogeneous media, the use of the same one-way wave equation leads to different amplitudes
than those of the solution of the full wave equation.

Recently, Zhang et al. (2003) showed how to modify the differential operators of the one-way wave
equations such that, in zero-order ray approximation, the amplitudes are the same as those governed by the
full wave equation. They have shown how to use the modified one-way wave equations in finite-difference
true-amplitude common-shot wave-equation migration. Melo et al. (2006) transferred this idea to poststack
(zero-offset) phase-shift migration (Gazdag, 1978) using the true-amplitude one-way wave equations. They
solved these equations analytically and showed that amplitude correction can be achieved by a simple factor
to be applied at each depth step. Here, we generalize their ideas to poststack split-step (Stoffa et al., 1990)
and Fourier finite-difference (Ristow and Rühl, 1994) migration using the true-amplitude one-way wave
equations.
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METHOD

We consider the two-dimensional acoustic wave equation

Lu = ∇2u− 1
c2
∂2u

∂t2
= 0 , (1)

where u = u(x, z, t) is the seismic wave field, and where the propagation velocity c may be constant or
depend on one or two spatial coordinates.

Ray equations

Let us start with the simple case of a velocity that depends only on depth, i.e., c = c(z). In this case,
the solution of equation (1) can be found using its Fourier transform in time as well as in the horizontal
coordinate, viz.

∂2u

∂z2
+ ω2p2

zu = 0 , (2)

where
pz =

kz

ω
= ± 1

c(z)

√
1− (c(z)px)2 , (3)

where kx is the wavenumber component relative to coordinate x and

kz = ±
√
ω2

c2
− k2

x = ±ω
c

√
1− (ckx)2

ω2
. (4)

The representation in the rightmost part of equation (4) was chosen so that the upper sign describes down-
ward propagation while the lower sign describes upward propagation.

Substitution of the ray ansatz

u(z, ω) = A(z) exp{iωτ(z)} , (5)

where A is amplitude and τ is traveltime, in the Helmholtz equation (2) leads to the eikonal and transport
equations (

∂τ

∂z

)2

= p2
z :

∂τ

∂z
= ±pz , (6)

and

2
∂τ

∂z

∂A

∂z
+
∂2τ

∂z2
A = 0 . (7)

Taking the derivative of the eikonal equation (6) with respect to z using Snell’s law ∂px

∂z = 0, we find

∂2τ

∂z2
= ±∂pz

∂z
. (8)

Substitution of this result in the transport equation (7) yields

±
[
2pz

∂A

∂z
+
∂pz

∂z
A

]
= 0 . (9)

While the vertical derivative of pz can be determined from equation (3) as

∂pz

∂z
= − 1

pzc3
∂c

∂z
, (10)

it will be more convenient below to recognize that for pz 6= 0, equation (9) is equivalent to

∂A

∂z
+

1
2
∂ ln(pz)
∂z

A = 0 . (11)

In the above expressions, the upper and lower signs refer to the down- and upgoing waves, respectively.
Note that both waves, independently of their predominant propagation direction, must satisfy the same
transport equation.
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TRUE-AMPLITUDE ONE-WAY WAVE EQUATIONS

For a constant medium velocity, it is easy to verify that the Helmholtz equation (2) can be factorized as[
∂

∂z
± ikz

] [
∂

∂z
∓ ikz

]
u = L±0 L

∓
0 u =

∂2u

∂z2
+ k2

zu = 0 , (12)

where

L+
0 =

[
∂

∂z
+ ikz

]
, L−0 =

[
∂

∂z
− ikz

]
(13)

are the differential operators of the one-way wave equations. Once we fix the sign of kz according to

kz = sgn(ω)

√
ω2

c2
− k2

x =
ω

c

√
1− (ckx)2

ω2
, (14)

L+
0 and L−0 describe downgoing and upgoing waves, respectively. Therefore, any solution of

L+
0 u

+ = 0 or L−0 u− = 0 (15)

is also a solution of the Helmholtz equation (2). This motivates the use of one-wave wave equations in
migration, where only downward propagation is required.

Let us now look for solutions of the one-way wave equations (15) of the type

u±(z, ω) = A±(z) exp{iωτ±(z)} . (16)

The resulting eikonal and transport equations read

∂τ±

∂z
= ±pz , (17)

∂A±

∂z
= 0 . (18)

We see that the eikonal equations (6) and (17) are identical, which reflects the well-known fact that
even in homogeneous media, the kinematics of the up- and downgoing waves are correctly described by
the one-wave wave equations. However, comparing the transport equations (7) and (18), we see that they

are identical only in homogeneous media, where
∂c

∂z
= 0 and consequently

∂pz

∂z
= 0

Therefore, for the one-way wave equations to correctly describe the amplitudes of the up- and downgo-
ing waves, at least up to zero-order ray theory, they need to be modified (Zhang et al., 2003). The simplest
way to do so is by adding a new term α± to the one-way wave operators L±0 . Doing so results in the
modified equations [

∂

∂z
± ikz + α±

]
u = 0 . (19)

Searching for solutions of the ray type in equation (16), we find the eikonal and transport equations

∂τ±

∂z
= ±pz , (20)

∂A±

∂z
+ α±A± = 0 . (21)

Comparing these equations with those obtained for the full wave equation [equations (6) and (7)], it is easy
to recognize that the eikonal equations are still the same. For the transport equations to be identical, both
α± need to be chosen as

α± = −1
2

1
p2

zc
3

∂c

∂z
=

1
2
∂

∂z
ln(pz) . (22)

Thus, the true-amplitude one-way wave equations read (Zhang et al., 2003){
∂

∂z
∓ iωpz −

1
2

1
p2

zc
3

∂c

∂z

}
u = 0 , (23)
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or, more conveniently, {
∂

∂z
∓ iωpz +

1
2
∂

∂z
ln(pz)

}
u = 0 . (24)

By construction, these equations describe up- and downgoing waves that possess, in zero-order ray theory
approximation, the same amplitudes and traveltimes as those described by the full wave equation.

SPLIT-STEP MIGRATION

Split-step migration was developed by Stoffa et al. (1990) to migrate stacked seismic data in two or three
dimensions. This migration method is implemented in the ω− x and ω− k domain and allow us to use for
small lateral variations in velocity around the reference velocity in the jth layer, cj .

Using the notation of last section, we can deduce the split-step approximation from the relation

iω

c

√
1 +

c2

ω2

∂2

∂x
=
iω

cj

√
1 +

c2j
ω2

∂2

∂x
+

 iω
c

√
1 +

c2

ω2

∂2

∂x
− iω

cj

√
1 +

c2j
ω2

∂2

∂x

 , (25)

where now c = c(x, z).
Expanding the first of the square roots inside the brackets in a Taylor series up to first order in c around

cj , we obtain

iω

c

√
1 +

c2

ω2

∂2

∂x
≈ iω

cj

√
1 +

c2j
ω2

∂2

∂x
+
iω

cj

(cj
c
− 1

)
. (26)

Substituting this approximation in the one-way wave equation, we have an equation with lateral-variation
correction

∂U(kx, z, ω)
∂z

=
iω

cj

√
1−

k2
xc

2
j

ω2
+
cj
c
− 1

P (kx, z, ω) . (27)

The solution of equation (27) can be put in the form

U ′(kx, zj+1, ω) = U(kx, zj , ω) exp

 iω

cj

√
1−

(
kx cj
ω

)2

(zj+1 − zj)

 , (28)

U(x, zj+1, ω) = U ′(x, zj+1, ω) exp
{
iω

(
1
c
− 1
cj

)
(zj+1 − zj)

}
, (29)

where U ′(x, zj+1, ω) is the inverse Fourier transform of U ′(kx, zj+1, ω).

COMPLEX PADÉ FOURIER FINITE DIFFERENCE MIGRATION

Following the methodology proposed by Ristow and Rühl (1994), Amazonas et al. (2007) rederived the
FFD algorithm using the complex Padé approximation (Millinazzo et al., 1997).

Ristow and Rühl’s FFD method can be obtained by the real approximation of the square root in brackets
in equation (25) (Ristow and Rühl, 1994),√

ω2

c2
+

∂2

∂x2
≈

√
ω2

c2r
+

∂2

∂x2
+
ω

cr
(p− 1)

{
1 +

c2

ω2
∂2

∂x2

a1 + b1
c2

ω2
∂2

∂x2

+
c2

ω2
∂2

∂x2

a2 + b2
c2

ω2
∂2

∂x2

+ ...

}
, (30)

where cr ≤ c is a constant reference velocity, and where the coefficients an, bn, n = 1, 2, 3, ... depend on
p = cr/c and c = c(x, z). Equation (30) can be interpreted as a real Padé approximation.

Amazonas et al. (2007) showed that a more stable FFD method uses the corresponding complex Padé
approximation, represented by the following expression

p

√
1 +

c2

ω2

∂2

∂x2
1

≈

√
1 +

c2r
ω2

∂2

∂x2
1

+ C0(p− 1) +
N∑

n=1

Anp(1− p) c2

ω2
∂2

∂x2
1

1 + σBn

(
c
ω

)2 ∂2

∂x2
1

, (31)
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where C0, An, and Bn are the complex Padé coefficients determined from the real ones by a rotation
of the branch cut of the complex square root (Amazonas et al., 2007). While the correct approximation
requires that parameter σ should be σ = 1+ p+ p2, numerical experiments showed that the heuristic value
σ = 1 + p3 yields a more accurate slowness curve.

Using the complex Padé FFD approximation in the kinematic part of the one way wave equation, we
have an equation with lateral variation correction

∂U(kx, z, ω)
∂z

=
iω

cj

√
1−

k2
xc

2
j

ω2
+ C0(p− 1) +

N∑
n=1

Anp(1− p)X2

1 + σBnX2

P (kx, z, ω) . (32)

To find the FFD contribution we have to solve a finite-difference scheme.

TRUE-AMPLITUDE MIGRATION

We now use the true-amplitude one-way wave equations to introduce amplitude control into split-step
phase-shift plus interpolation (SSPSPI) and complex-Padé FFD migrations. Thus, we need to solve the
true-amplitude one-way wave equation{

∂

∂z
− iωpz −

1
2
d

dz
ln(pz)

}
u = 0 , (33)

where pz is still given by equation (3).
Following Melo et al. (2006), the differential equation (33) can be solved by separation of variables.

Integration from initial depth z0 to final depth zf yields the expression for the wavefield uf at depth level
zf ,

uf = u0 exp
{
iω

∫ zf

z0

pz dz +
∫ zf

z0

1
2
d

dz
ln(pz)dz

}
= u0 exp

{
iω

∫ zf

z0

pz dz

}
exp

{∫ zf

z0

1
2
d

dz
ln(pz)dz

}
. (34)

Note that the first exponential term in equation (34) is nothing else but the phase correction term of con-
ventional Gazdag migration. The second exponential term gives rise to the amplitude correction in in-
homogeneous media, resulting from the correction term α in the true-amplitude one-way wave equation
(33).

Let us now suppose that the medium has a vertically varying velocity, i.e., c = c(z). To solve the
integral in the first exponential term, we again divide the depth interval [0, z] in Nz subintervals Ij =
{z|zj < z < zj+1; j = 0, 1, 2, ..., Nz − 1}. We then apply the solution (34) to each single layer, i.e.,
z0 = zj and zf = zj+1. Denoting the the wavefield at depth zj as uj = u(kx, zj , ω), we may thus write

uj+1 = uj exp

{
iω

∫ zj+1

zj

pz dz +
∫ zj+1

zj

1
2
d

dz
ln(pz)dz

}

= uj

√
pzj+1

pzj

exp

{∫ zj+1

zj

(iωpz)dz

}
. (35)

Thus, the true-amplitude expression for wave-equation migration reads (Melo et al., 2006)

uj+1 = uj

√
pzj+1

pzj

exp {iωp̄z(zj+1 − zj)} , (36)

where pzj and pzj+1 denote the vertical slowness vector components at the top and bottom of the current
layer, while p̄z is the mean value of the function pz(z) in interval [zj , zj+1]. For practical purposes, p̄z

must be approximated by some reasonably chosen value based on the known values of pz . For example,
pure phase-shift migration uses the approximation p̄z = pzj .
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Peak SSPSPI amplitude gain (%) FFD amplitude gain (%)

1 38.46 18.66
2 46.17 28.08
3 42.49 18.60
4 53.35 24.71
5 48.16 25.89
6 28.66 12.77
7 44.15 26.98
8 37.01 20.59
9 61.50 26.72
10 22.24 11.05
11 44.15 17.88
12 63.31 36.47
13 48.01 18.99
14 50.60 25.11
15 53.84 26.94
16 72.60 28.79

Table 1: Relative gain of the peaks as numbered in Figures 2 and Figure 4.

Clearly, the first approximations to true-amplitude split-step and FFD migrations are obtained by using
the corresponding square-root approximations (26) and (31) for pz in the phase term while keeping the
amplitude correction unchanged. Future studies will include the use of these approximations also for the
amplitude correction factor.

NUMERICAL EXPERIMENTS

To test the numerical properties of the amplitude correction for SSPSPI and complex-Padé FFD migra-
tion, we applied the proposed algorithms with and without amplitude correction to synthetic data from the
SEG/EAGE salt model (Aminzadeh et al., 1995).

SSPSPI migration

For the SSPSPI migrations, we used a set of 20 reference velocities chosen between the minimum and
maximum velocity at the current depth level according to the entropy criterion of Bagaini et al. (1995).
Figure 1 shows the migrated sections obtained by the SSPSPI (top) and true-amplitude SSPSPI (bottom)
algorithms. We see that the true-amplitude algorithm produces a clearer image of the reflectors. Particularly
the bottom of the salt and subsalt reflectors have increased amplitudes. The colored lines indicate locations
for trace-to-trace comparisons.

To evaluate the result more quantitatively, we have extracted three traces from these sections, at the
horizontal positions of x = 3901.44 m (blue line in the sections), x = 7863.84 m (green line) and x =
11545.82 m (red line). These locations were chosen to represent three different areas of the model. The
leftmost position (blue line) is in the purely sedimentary region, the central position (green line) marks the
central part of the salt body, and the rightmost position (red line) cuts the right wedge of the salt body.

Figure 2 compares these three traces as obtained with the conventional (red) and true-amplitude (blue)
algorithm. The general amplitude enhancement is clearly visible. However, we note that not all reflectors
are enhanced by the same amount. The relative gain of the peaks as numbered in Figure 2 is quantified in
Table 1. These values corroborate our impression that the main amplitude enhancement is achieved for the
bottom-of-salt and subsalt reflectors.
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Figure 1: Migrated sections using SSPSPI depth migration. Top: Conventional algorithm; Bottom: true-
amplitude algorithm.
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Figure 2: Migrated traces using SSPSPI depth migration at the horizontal positions of x = 3901.44 m
(top), x = 7863.84 m (center) and x = 11545.82 m (bottom) as obtained with the conventional (red) and
true-amplitude (blue) algorithm.
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Figure 3: Migrated sections using complex-Padé FFD depth migration. Top: conventional algorithm;
Bottom: true-amplitude algorithm.
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Complex Padé FFD migration

Our FFD migration used the smallest model velocity at the present depth level as the reference velocity
vr. Figure 3 shows the migrated sections obtained by the conventional (top) and true-amplitude (bottom)
complex-Padé FFD migration algorithms. As expected, the FFD algorithms produce a better image than
the corresponding SSPSPI algorithms. The comparison between the conventional and true-amplitude FFD
algorithms provides a similar picture as that for the SSPSPI migration. We see enhanced reflector ampli-
tudes, particularly at the bottom-of-salt and subsalt reflectors.

As before, we extracted three traces from these sections for a trace-by-trace comparison at the horizontal
positions of x = 3901.44 m (blue line in the sections), x = 7863.84 m (green) and x = 11545.82 m (red).
These traces from the conventional (red) and true-amplitude algorithms (blue) are compared in Figure 4.
As in the SSPSPI case, we see a general enhancement of the amplitudes, however not uniform. The relative
amplitudes gains are also presented in Table 1. We note that the general distribution of which reflectors
experience the strongest enhancement is very similar to the one of SSPSPI migration. However, the overall
amplitude enhancement in the FFD algorithm is about 50% reduced.

The reason for this different amplitude behavior is the fact that the amplitude correction for the FFD
algorithm is done using the reference velocity, which is the lowest velocity at the current depth level, while
the SSPSPI algorithm effectively uses reference velocities much closer to the true velocity. Moreover,
by interpolating wavefields after the amplitude correction, the SSPSPI algorithm even carries information
about the lateral velocity variations over to the amplitudes.

CONCLUSION

For a correct description of amplitudes in wave-equation depth migration, the one-way wave equations
must be modified (Zhang et al., 2003). The modified true-amplitude one-way wave equations can be
solved exactly for vertically inhomogeneous media (Melo et al., 2006). In this work, we have implemented
the resulting amplitude correction factor in split-step phase-shift plus interpolation (SSPSPI) and complex
Padé Fourier finite difference (CPFFD) migration algorithms, so as to carry out a true-amplitude wave-
equation migration for poststack (zero-offset) data. Synthetic data examples demonstrate that the technique
improves amplitude recovery in the migrated images. In the SEG/EAGE salt model, the main amplitude
enhancement was achieved for the bottom-of-salt and subsalt reflectors. The relative gain in amplitudes
was significantly higher for SSPSPI than for CPFFD migration.

In this work, we investigated the most basic approximations to true-amplitude SSPSPI and CPFFD
migrations, obtained by using their respective square-root approximations only in the phase term while
keeping the simple v(z)-amplitude correction unchanged. This explains the better amplitude recovery in
SSPSPI migration, which involves a wavefield interpolation at each lateral position after the propagation
and amplitude correction. In this way, it takes lateral velocity variations into account even in the amplitudes.
On the other hand, in CPFFD migration the amplitude correction is simply carried out with the reference
velocity, thus ignoring lateral velocity variations. Future studies will include the use of the respective
SSPSPI and CPFFD square-root approximations also for the amplitude correction factor.

ACKNOWLEDGMENTS

This work was kindly supported by the Brazilian research agencies CNPq and FAPESP (proc. 06/04410-5),
as well as Petrobras and the sponsors of the Wave Inversion Technology (WIT) Consortium.

REFERENCES

Amazonas, D., Costa, J. C., Schleicher, J., and Pestana, R. (2007). Wide-angle FD and FFD migration
using complex Padé approximations. Geophysics, 72(6):S215–S220.

Aminzadeh, F., Burkhard, N., Kunz, T., Nicoletis, L., and Rocca, F. (1995). 3-D modeling project: 3rd
report. The Leading Edge, 14(2):125–128.

Bagaini, C., Bonomi, E., and Pieroni, E. (1995). Data parallel implementation of 3-D PSPI. In 65th Ann.
Internat. Mtg., SEG, Expanded Abstracts, pages 188–191.



40 Annual WIT report 2008

0 500 1000 1500 2000 2500 3000 3500 4000
−6

−4

−2

0

2

4

6

8

10
x 10

−3

Depth (m)

A
m

p
li

tu
d

e
 

Complex Pade FFD − x = 3901.44 m

1

2

3

4

5

0 500 1000 1500 2000 2500 3000 3500 4000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Depth (m)

A
m

p
li

tu
d

e
 

Complex Pade FFD − x = 7863.84 m

6

7

8

9

0 500 1000 1500 2000 2500 3000 3500 4000
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Depth (m)

A
m

p
li

tu
d

e
 

Complex Pade FFD − x = 11545.82 m

10

11

12

13

14 15
16

Figure 4: Migrated traces using complex Padé FFD depth migration at the horizontal positions of x =
3901.44 m (top), x = 7863.84 m (center) and x = 11545.82 m (bottom) as obtained with the conventional
(red) and true-amplitude (blue) algorithm.



Annual WIT report 2008 41

Gazdag, J. (1978). Wave equation migration with the phase-shift method. Geophysics, 43(07):1342–1351.

Melo, G., Schleicher, J., and Novais, A. (2006). Poststack true amplitude wave-equation migration. Annual
WIT Report, 10:145–158.

Millinazzo, F. A., Zala, C. A., and Brooke, G. H. (1997). Square-root approximations for parabolic equation
algorithms. J. Acoust. Soc. Am., 101(2):760–766.

Ristow, D. and Rühl, T. (1994). Fourier finite-difference migration. Geophysics, 59(12):1882–1893.

Stoffa, P. L., Fokkema, J. T., Freire, R. M., and Kissinger, W. P. (1990). Split-step Fourier migration.
Geophysics, 55(4):410–421.

Zhang, Y., Zhang, G., and Bleistein, N. (2003). True amplitude wave equation migration arising from true
amplitude one-way wave equations. Inverse Problems, 19:1113–1138.


