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ABSTRACT

Standard real-valued finite-difference (FD) and Fourier finite-difference (FFD) migrations cannot han-
dle evanescent waves correctly, which can lead to numerical instabilities in the presence of strong
velocity variations. A possible solution to these problems is the complex Padé approximation, which
avoids problems with evanescent waves by a rotation of the branch cut of the complex square root.
In this paper, we apply this approximation to the acoustic wave equation for vertical transversely
anisotropic (VTI) media to derive more stable FD and hybrid FD/FFD migrations for such media.
Our analysis of the dispersion relation of the new method indicates that it should provide more stable
migration results with less artifacts and higher accuracy at steep dips. These studies lead to the con-
clusion that the rotation angle of the branch cut that should yield the most stable image is 60◦. This
result is confirmed by the numerical impulse responses and synthetic data examples.

INTRODUCTION

Wave-equation migration algorithms have performed better than ray-based migration methods when the
velocity model has strong lateral velocity variations. One drawback of one-way wave-equation migra-
tions, though, is their general difficulty to image steep dips. However, recent advances, particularly for
finite-difference (FD) (Claerbout, 1971) and Fourier finite-difference (FFD) migrations (Ristow and Rühl,
1994) can provide wide-angle approximations for the one-way continuation operators, thus improving the
imaging of steep-dip reflectors.

However, standard real-valued FD and FFD migrations cannot handle evanescent waves correctly (Mil-
linazzo et al., 1997). As a consequence, FFD algorithms tend to become numerically unstable in the
presence of strong velocity variations (Biondi, 2002). To overcome this limitation, Biondi (2002) proposes
an unconditionally stable extension for the FFD algorithm. Earlier, Millinazzo et al. (1997) proposed a
different approach to treating these evanescent modes in ocean acoustic applications, introducing an ex-
tension of the Padé approximation called complex Padé. It consists of a rotation of the branch cut of the
square-root operator from the negative axis into the complex plane. The complex Padé expansion has been
used in applied geophysics. Zhang et al. (2003) use the method in finite-difference migration. However,
their implementation is not optimized for wide angles. Zhang et al. (2004) propose an FFD migration
based on a different realization of complex Padé. Recently, Amazonas et al. (2007) derived FD and FFD
algorithms using the complex Padé approximation for isotropic media to handle evanescent waves. They
demonstrated that this procedure stabilizes FD and FFD migration without requiring special treatment for
the migration domain boundaries and enables an accurate migration up to higher dips.

All these methods are based on approximations to the acoustic wave equation. However, the acoustic
wave equation can only be generalized to include elliptic anisotropy. More complex anisotropic phenomena
cannot be described by a physically meaningful scalar wave equation. Thus, Alkhalifah (1998) used the
dispersion relation for vertical transversely isotropic (VTI) elastic media to derive an approximate acoustic
wave equation for P-waves in VTI media. Based on his work, several authors have developed anisotropic
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FD and FFD migration methods (Ristow, 1999; Han and Wu, 2005; Nolte, 2005; Zhang et al., 2005).
Generally, FD migrations are cheaper but suffer from a pseudo S-wave artifact. To overcome this problem,
Fei and Liner (2008) proposed a hybrid FFD and FD algorithm for VTI media. In this paper, we combine
the ideas of these authors with the complex Padé approximation to derive a more stable FD algorithm for
VTI media.

METHOD

According to Alkhalifah (2000), the acoustic wave equation for VTI media is given by
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where P is the VTI-acoustic wavefield, vp0 is the vertical P-wave velocity of the medium, and vn is the
NMO velocity, given by

vn = vp0

√
1 + 2δ. (2)

Moreover, the anellipticity parameter η is given by

η =
ε− δ

1 + 2δ
, (3)

where ε and δ are Thomsen’s parameters (Thomsen, 1986). Alkhalifah and Tsvankin (1995) demonstrated
that a representation in terms of just two anisotropic parameters, vn and η, is sufficient to represent time-
related processing. Finally, F is the second integral in time of P , i.e.,
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Applying the Fourier transform in x, z and t to equation (1) leads to the following dispersion relation
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where kx is the horizontal wavenumber and ω is the angular frequency,
From Fei and Liner (2008), we use the following notation

u2 =
k2

x v
2
n

ω2
. (6)

Taking the square root of equation (5) using equation (6) yields

kz =
ω

vp0

√
1− u2

1− 2η u2
, (7)

where the sign for downward propagation has been chosen. For η = 0, equation (7) reduces to the ellip-
tically anisotropic one, which differs from the isotropic one only by a constant scale factor vn/vp0. Note
that the anisotropic denominator is smaller than one, which makes anisotropic migration generally more
unstable than isotropic migration.

In analogy to the small dip-angle approximation of the corresponding isotropic expression (Ristow and
Rühl, 1994), the square root in equation (7) can also be expanded into a Taylor series at point u = 0 (Fei
and Liner, 2008). This leads to√

1− u2

1− 2η u2
≈ 1− 1

2
u2 − g2

8
u4 − g3

16
u6, (8)

where

g2 = 1 + 8η, (9)
g3 = 1 + 8η + 32η2. (10)

Note that setting η = 0, i.e., g1 = g2 = 1 in equation (8) recovers the approximation of Ristow and Rühl
(1994), which is valid for isotropic or elliptically anisotropic media.
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Complex Padé FD approximation

In this section, we derive the complex Padé approximation for the above dispersion relation, because we
want a steep-dip approximation and improved stability by better handling of evanescent waves. For this
purpose, we have to represent the square-root in equation (7) using the complex Padé expansion.

Real Padé approximation A formal representation for square-root operator is based on the Padé expan-
sion (Bamberger et al., 1988): √

1−X2 ≈ 1−
N∑

n=1

anX
2

1− bnX2
, (11)

where for our anisotropic kz of equation (7),

X2 =
u2

1− 2η u2
. (12)

The number of terms N of the expansion should, in principle, be infinite, but in practice, generally two to
four terms suffice for a reasonable approximation. The coefficients an and bn are (Bamberger et al., 1988):

an =
2

2N + 1
sin2 nπ

2N + 1
, (13)

bn = cos2
nπ

2N + 1
. (14)

Equation (11) is known to provide an acceptable approximation up to a certain limiting dip angle. The
range of dip angles can be extended by using more terms in the series. However, if X2 > 1 in equation
(11), the left side is a purely imaginary number, while the right side remains a real-valued quantity. In other
words, the approximation breaks down. Physically, this means that approximation (11) cannot properly
handle evanescent modes. This causes numerical instabilities and is responsible for the unstable behavior
of the FFD algorithm in the presence of strong velocity variations (Biondi, 2002).

Complex Padé approximation To overcome these limitations, Millinazzo et al. (1997) proposed a com-
plex representation of the Padé expansion in equation (11). They achieve this goal by rotating the branch
cut of the square root into the complex plane. Their final expression is

√
1−X2 ≈ C0 −

N∑
n=1

AnX
2

1−BnX2
, (15)

where
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, (16)
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]
, (18)

where α is the rotation angle of the branch cut of the square root in the complex plane. The values An and
Bn are the complex Padé coefficients, with an and bn being the real ones as defined in equations (13) and
(14), respectively.

Thus, expanding kz of equation (7) into a complex Padé series, we find

kz =
ω

vp0

[
C0 −

N∑
n=1

AnX
2

1−BnX2

]
(19)
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Figure 1: Complex Padé FD approximation for the dispersion relation of the one-way wave equation,
computed with three terms and different rotation angles. First: α = 5◦, Second: α = 45◦, Third: α = 60◦,
Forth: α = 75◦, Fifth α = 90◦. Left: Real part. Right: Imaginary part.
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with X defined in equation (12). This is the 2D anisotropic complex-Padé finite-difference depth migration
operator in VTI media. Note that, as before, setting η = 0 in equation (12) leads to the corresponding
operator for isotropic and elliptically anisotropic media.

To evaluate the quality of the complex Padé FD approximation (19), Figure 1 shows its comparison with
the exact dispersion relation and its real Padé approximation for a homogeneous medium with ε = 0.21 and
δ = −0.032, i.e., η = 0.17. Corresponding tests with different values of η exhibit a similar behavior. The
FD approximation was calculated using three terms of the Padé series with five different rotation angles
of α = 5◦, α = 45◦, α = 60◦, α = 75◦, and α = 90◦. The improvement in the approximation of the
real part of the dispersion relation with increasing α is evident. The blessings are a bit more mixed for
the imaginary part. While the approximation in the evanescent region improves for increasing α, there is
a short interval of negative imaginary part immediately before the evanescent region, which increases with
α. Note that this negative imaginary part will cause the corresponding waves to increase exponentially,
thus causing instabilities.

For this reason, the best Padé FD approximation of the imaginary part is actually achieved for a rotation
angle of about 60◦, where the approximation of the real part is already quite good while there is still no
zone of negative imaginary part. Since the main numerical instabilities of an FD migration are caused by
incorrectly treated evanescent waves, it is to be expected that a rotation angle of about 60◦ will produce
the cleanest migrated image with the least artifacts. Note, however, that even a rotation by a small angle
improves the behavior of the FD approximation (see top part of Figure 1). Although it creates rather strong
fluctuation in the evanescent domain of the real part of kz , it already introduces a nonzero imaginary part,
meaning that the incorrect evanescent modes at least will be attenuated. In this respect, it is important to
note that the peaks in the imaginary part, representing the strongest damping, coincide with peaks in the
real part that indicate the most incorrect propagation behavior.

Complex Padé FFD approximation

Using the complex the Padé expansion, we can also derive a corresponding 2D anisotropic complex-Padé
Fourier finite-difference depth migration operator in VTI media (see Appendix A). It is given by

kz =
ω

c

{√
1− c2

v2
n

u2 + C0(p0 − 1)−
N∑

n=1

An u
2

(
p0 − p2

n

1− (Bn + 2η +Bn p2
n)u2

)}
, (20)

where c is the constant velocity of the isotropic reference medium, and where p0 = c/vp0 and pn = c/vn.
Note that, equation (20) has a phase-shift part, a split-step part and a finite-difference part, like in the case
of the real Padé approximation (Ristow and Rühl, 1994). Our implementation of the third part of equation
(20) uses a Crank-Nicholson FD scheme.

To evaluate the quality of the complex Padé FFD approximation (20), Figure 2 shows its comparison
with the exact dispersion relation and its real FFD approximation for a homogeneous medium with p0 =
0.5, ε = 0.21 and δ = −0.032. The FFD approximation was calculated using terms of the series with five
different rotation angles of α = 5◦, α = 45◦, α = 60◦, α = 75◦, and α = 90◦. We immediately recognize
the improvement in the approximation of the real part of the dispersion relation in comparison to the real
Padé approximation. Its dependence on α, however, is negligible. On the other hand, the approximation of
the imaginary part in the evanescent region improves for increasing α. While the approximation does not
recover the imaginary part correctly, the damping of the evanescent waves increases with α, thus stabilizing
the migration process.

For this reason, the best Padé FFD approximation of the imaginary part is actually achieved for a
rotation angle of 90◦. Note, however, that even a rotation of 45◦ improves the behavior of the FFD approx-
imation (see Figure 2).

Hybrid FFD/FD migration

It is important to recognize that the acoustic VTI wave equation (1) has two solutions (Alkhalifah, 2000).
One of these solutions is the desired result representing a wavefront coincident with the elastic compres-
sional wavefront. The other solution is an additional event, which has previously been observed in full
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Figure 2: Complex Padé FFD approximation for the dispersion relation of the one-way wave equation,
computed with three terms and different rotation angles. First: α = 5◦, Second: α = 45◦, Third: α = 60◦,
Forth: α = 75◦, Fifth α = 90◦. Left: Real part. Right: Imaginary part.
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Figure 3: Real Padé (α = 0◦) FD migration for an impulse response for a constant-velocity VTI medium.
The anisotropy parameters are vp0 = 2800 m/s, ε = 0.21 and δ = −0.032.

waveform modeling. However, apparently this additional event was not always understood as a second
solution to the acoustic VTI wave equation. Therefore, it has been labeled as numerical artifact (Grechka
et al., 2004), sometimes called the pseudo-S-wave artifact Fei and Liner (2008). Alkhalifah (2000) solved
equation (1) analytically and observed that the undesired solution can be eliminated with proper initial
conditions. However, such initial conditions would have to be medium dependent and are thus very hard to
find.

Since the FD algorithm calculates a numerical solution of the above acoustic VTI wave equation, it will
generally find a superposition of both theoretical solutions. Tests by Alkhalifah (2000) indicate that the
second solution does not develop if the source is located in an isotropic region. Thus, he suggests to place
the source in an isotropic layer to suppress it.

Instead, Fei and Liner (2008) seek a more general algorithm that does not include the additional solu-
tion, so that the source can be placed arbitrarily in an anisotropic medium. They demonstrated that the event
can be eliminated by a hybrid application of FFD and FD migrations. Since we already have studied the
complex Padé approximation for both FD and FFD migration, it is only natural to use the idea developed
by Fei and Liner (2008) to propose a complex-Padé hybrid FD/FFD depth migration.

NUMERICAL EXAMPLES

As a next step, we investigate the numerical behavior of the proposed complex-Padé VTI FD and FFD
migration methods.

Impulse Response Test

First, we investigate the impulse response of the acoustic VTI wave equation (1). As a reference, Figure 3
shows the impulse response at t = 0.5 s of a real Padé (α = 0◦) FD migration for a homogeneous (constant
velocity, constant η) VTI medium. The source pulse is a Ricker pulse with peak frequency of 25 Hz. The
migration was carried out using three terms in the Padé expansion. The most prominent features in Figure 3
are the two strong events that are the two solutions of the acoustic VTI wave equation, i.e., the desired qP
wavefront and the undesired pseudo-S wave (V-shaped second arrival). Additionally, we immediately note
some background noise resulting from instabilities. These instabilities appear everywhere in the Figure,
even causing noncausal events. They are the largest at near horizontal propagation where the influence of
incorrectly treated evanescent waves is the strongest.

Figure 4 depicts the same impulse response of the corresponding complex Padé FD migration in the
same medium, using a rotation angle of α = 05◦, α = 45◦, α = 60◦, α = 75◦ and α = 90◦, respectively.
While the complex Padé approximation cannot eliminate the pseudo S-wave, it greatly reduces the insta-
bilities in all panels of Figure 4. Note in particular that even the rotation angle of 5◦ almost eliminates most
of the noncausal events in spite of its rather poor approximation of the evanescent part of the dispersion
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Figure 4: Complex Padé FD migration for an impulse response for a constant-velocity VTI medium. The
anisotropy parameters are vp0 = 2800 m/s, ε = 0.21 and δ = −0.032. First: α = 5◦, Second: α = 45◦,
Third: α = 60◦, Forth: α = 75◦, Fifth α = 90◦.
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relation.
As a final, more subtle difference between Figures 3 and 4, we note that while all impulse responses

have energy up to high propagation angles, the real Padé approximation produces a slightly stronger distor-
tion of the shape of the desired event at steep dips, causing it to bend inwards at the top. The improvement
achieved by the complex Padé representation is a consequence of the better approximation of the dispersion
relation in the high-angle range.

Comparing the complex Padé FD impulse responses of Figure 4 to each other, we observe that the
image for α = 60◦ is the best one. At α = 5◦, we still see the near horizontal artifacts of the evanescent
waves. The impulse responses for α = 45◦ and α = 60◦ are equally clean. Their main difference lies in
the slightly stronger inward bending of the vertical part of the impulse response at α = 45◦. At higher
rotation angles, the noncausal artifacts become stronger again. This is in agreement with the previous study
of the dispersion relations, which also indicated that α = 60◦ should be the best rotation angle for complex
Padé FD migration.

Figure 5 depicts the same impulse response of the corresponding complex Padé FFD migration in the
same medium, using a rotation angle of α = 05◦, α = 45◦, α = 60◦, α = 75◦ and α = 90◦, respectively.
Note that in these figures, the pseudo-S-wave artifacts do not appear. On the other hand, this method does
not provide a good aperture of the impulse-response, i.e., steep dips are strongly reduced. Moreover, the
real or complex FFD algorithm is more expensive than its corresponding FD counterpart.

Because of these drawbacks of FFD migration, Fei and Liner (2008) proposed a hybrid algorithm. This
algorithm is a combination of the FD and FFD algorithms. As its real counterpart, our complex-Padé
FD/FFD hybrid migration algorithm uses an FFD implementation for a few steps in z, for example 5 steps,
and then carries over to the FD implementation. This algorithm is greatly advantageous, because the com-
putation cost and accuracy is almost the same as that of the FD algorithm and it does not generate the
pseudo-S-wave artifact. Figure 6 shows the impulse response of the hybrid complex-Padé migration. This
figure is much cleaner the the FFD one, has more more pronounced steep dips, and a strongly reduced
pseudo S-wave. To generate the impulse response of Figure 6, we used the underlying complex-Padé ap-
proximation with the optimum rotation angles, i.e., the FFD algorithm with α = 90◦ and the FD algorithm
with α = 60◦.

Synthetic data test

We tested the complex-Padé migration algorithms on a synthetic data set courtesy of HESS. Figure 7 shows
the vertical P-wave model and the distribution of Thomsen’s (1986) parameters ε and δ. All images were
constructed using a cross-correlation imaging condition.

Figure 8 shows the anisotropic (top) and isotropic (bottom) migrated sections with optimal rotation
angle of α = 60◦. There are some spurious events because no multiple suppression was applied. The
primary reflection events appear clearly. As expected, the anisotropic migration is much better than the
isotropic one.

Anisotropic complex-Padé FD migration correctly positions all reflectors, even below the salt. Isotropic
complex-Padé FD migration does not completely focus the reflectors and has some with steeply dipping
events. Overall, the amplitude is weaker than that of anisotropic migration.

Figure 9 shows the anisotropic complex-Padé hybrid depth migration. Actually, the images of anisotropic
complex-Padé FD depth migration and anisotropic complex-Padé hybrid depth migration look practically
identical. The reason is that the HESS synthetic data set has its sources in an isotropic water layer, so that
the pseudo-S-wave artifact is not generated by the FD algorithm.

For this model with strong lateral velocity variations, real FD migration is unstable. Therefore, we
cannot compare the complex-Padé FD algorithm with its real counterpart. To indicate the problems, Fig-
ure 10 shows the the anisotropic (top) and isotropic (bottom) migrated sections using FD algorithm with
a small rotation angle of α = 5◦. The anisotropic migration (top) is still suffering from instabilities due
to incorrect treatment of the evanescent waves. The isotropic algorithm is somewhat more stable, so that a
small rotation of the branch cut is already sufficient to completely eliminate the instabilities.
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Figure 5: Complex Padé FFD migration for an impulse response for a constant-velocity VTI medium. The
anisotropy parameters are vp0 = 2800 m/s, ε = 0.21 and δ = −0.032. First: α = 5◦, Second: α = 45◦,
Third: α = 60◦, Forth: α = 75◦, Fifth α = 90◦.
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Figure 6: Hybrid complex-Padé migration for an impulse response for a constant-velocity VTI medium.
The anisotropy parameters are vp0 = 2800 m/s, ε = 0.21 and δ = −0.032. For the hybrid migration, we
used the optimum rotation angle for each individual algorithm, i.e., α = 90◦ for the FFD part and α = 60◦

for the FD part.

CONCLUSIONS

In this work, we have combined the anisotropic migration for VTI media using the acoustic VTI wave
equation of Alkhalifah (2000) with the complex Padé FD approximation of Amazonas et al. (2007) to
derive a more stable VTI migration method. Our studies of the dispersion relation of the new method
indicate that it should provide more stable migration results with less artifacts and higher accuracy at steep
dips. The best rotation angle of the branch cut turns out to be 60◦. This result is confirmed by the numerical
impulse responses. A synthetic data example demonstrates the improved stability and reduced artifacts of
complex Padé FD and FD/FFD hybrid migrations.
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APPENDIX A

.1 FFD DISPERSION RELATION

In this appendix we derive the FFD dispersion relation for VTI media. Starting from equation (7), we can
write

kz =
ω

c

√
1− c2

v2
n

u2 +
ω

c

[
c

vp0

√
1− u2

1− 2η u2
−

√
1− c2

v2
n

u2

]
, (21)

where c is the constant velocity of the isotropic reference medium. Introducing the notations p0 = c/vp0

and pn = c/vn, this can be recast into the form

kz =
ω
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.(26)

Neglecting terms of fourth order,

kz =
ω
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