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ABSTRACT

The quality of seismic images obtained by reverse time migration strongly depend on the employed
image condition. We propose a new imaging condition, which is motivated by stationary phase ana-
lysis of the classical cross-correlation imaging condition. Its implementation requires the Poynting
vector of the source and receiver wavefields at the imaging point. An obliquity correction is added
to compensate for the reflector dip effect on amplitudes of reverse time migration. Numerical ex-
periments show that using an imaging condition with obliquity compensation improves reverse time
migration by reducing backscattering artifacts and improving the illumination compensation.

INTRODUCTION

Pre-stack reverse time migration (RTM) is based on the time reversal property of the two-way wave equa-
tion and the cross-correlation imaging condition proposed by Claerbout (1985). Several implementations
of RTM using this imaging condition have been reported (McMechan, 1983; Kosloff and Baysal, 1983;
Baysal et al., 1983).

The computational demand for RTM is high compared to wave equation migration by downward extrap-
olation of the wavefield (Biondi, 2006). However, low cost parallel computing and more efficient storage
hardware is making RTM feasible. The difficulties of seismic imaging below the salt column and in areas
of high lateral velocity variation have drawn attention to RTM, which, at least theoretically, is able to meet
those challenges.

RTM has its limitations, though. Two major drawbacks are the artifacts produced by backscattering and
the amplitudes of the migrated images, which are not proportional to the subsurface reflectivity (Biondi,
2006). To reduce the artifacts due to backscattering, several approaches have been recently proposed.
Guitton et al. (2007) use a least-squares regularization; Fletcher et al. (2005) introduced a new forward
wave-equation to attenuate backscattering events and Yoon and Marfurt (2006) introduced the Poynting
vector imaging condition.

Several attempts to improve the amplitudes in RTM are based on illumination compensation with dif-
ferent kinds of regularization (Valenciano and Biondi, 2003; Kaelin and Guitton, 2006). Attempting to
better understand the amplitudes in RTM, Matthew et al. (2005) performed an asymptotic analysis of the
cross-correlation imaging condition. Their analysis assumes a single planar reflector in a 3D homogeneous
medium, full coverage, and infinite aperture. They demonstrate that the amplitudes of RTM are affected by
an obliquity factor that depends on the reflector dip. Based on this result, we propose an imaging condi-
tion which can asymptotically correct for this obliquity factor in RTM. We present numerical experiments
that show the improvement of RTM images when the obliquity and illumination compensation are applied
in the imaging condition. Numerical experiments demonstrate the improvement of the images when the
obliquity factor and illumination compensation are included in the imaging condition for RTM.
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METHOD

We start revisiting the asymptotic analysis of the cross-correlation imaging condition (Matthew et al.,
2005). Based on this result we propose an imaging condition for RTM which, asymptotically, improves the
amplitude of RTM images.

Asymptotic analysis of cross-correlation imaging condition

The cross-correlation imaging condition for shot-profile migration (Claerbout, 1985)

I(x) =
∑
xs

∑
xr

∫ tmax

0

ps(x, t;xs) pr(x, t;xr)dt, (1)

produces an image, I(x), through the cross-correlation, with zero lag, of two wavefields; ps(x, t;xs)
represents the forward propagated wavefield from the source, xs, to the imaging point, x; pr(x, t;xr)
represents the receiver wavefield that is backpropagated in reverse time from the receiver, xr, to the imaging
point. Moreover, tmax is maximum recorded time.

The asymptotic analysis of imaging condition (1) was presented by Matthew et al. (2005). They as-
sumed a single planar reflector, with dip angleD along the x coordinate direction; a homogeneous medium
with P velocity cP , and unlimited coverage of sources and receivers. We use the method of stationary phase
and re-derive the high frequency approximation for (1). Our result (see Appendix I) is

I(x) ≈ πC3c3P
R(x0,x0)
cos3D

1
ξ
w′′
(

2 cosD
cP

ξ

)
⊗ w′′

(
2 cosD
cP

ξ

)
, (2)

where ξ = z − zR, with zR being the depth of the reflector at the horizontal position (x, y) of the image
point x = (x, y, z). Also, R(x0,x0) is the normal incidence reflection coefficient, C is a constant, and
w(t) is the source pulse. Moreover, symbol ⊗ stands for the convolution operation.

Expression (2) differs from the result of Matthew et al. (2005) only by the presence of the pulse-
stretch factor, 2 cosD/cP in the arguments of both the wavelets. As pointed out by Matthew et al. (2005),
for this simple example, we note that (a) the geometrical spreading is corrected even with no amplitude
compensation term in the imaging condition; (b) the pulse is antisymmetric relative to the reflector position;
(c) the pulse amplitude decays with the distance from the reflector; (d) the obliquity factor 1/ cos3D,
increases the amplitude with the reflector dip as in Kirchhoff migration. In the next section we propose an
imaging condition that can compensate for this amplitude distortion.

Obliquity factor compensation

The Poynting-vector imaging condition proposed by Yoon and Marfurt (2006), without the illumination
compensation,

I(x) =
∫
xs

∫
xr

∫ tmax

0

W (Ss,Sr)ps(x, t;xs) pr(x, t;xr)dtdxsdxr , (3)

adds a weight W (Ss,Sr) to operation (1); in this expression, the Poynting vector S represents the acoustic
power flux, given by

S = pv , (4)

where p represents pressure and v particle velocity. The subscripts s and r indicate the power flux associ-
ated to the source and receiver wavefields. The weight function W (Ss,Sr) was proposed to filter events
considered for imaging based on the scattering angle, γ. Yoon and Marfurt (2006) proposed to use

cos γ =
Ss · Sr

‖Ss‖‖Sr‖
(5)

to set a maximum scattering angle for the events used for image forming, i.e., the weight W (Ss,Sr) is
calculated as

W (Ss,Sr) =
{

1 if γ < γmax,
0 otherwise. (6)
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(a) (b)

Figure 1: (a) Velocity model; (b) Density model.

A disadvantage of this weight is its dependence on the choice of the maximum angle γmax, for which no
obvious physical criteria are available.

We propose to use the Poynting vector information to compensate for the obliquity factor in (2). The
bisection angle, α = γ/2, can be detected from

cos2 α =
1
2

(
1 +

Ss · Sr

‖Ss‖‖Sr‖

)
. (7)

It will give the reflector dip for a reflection event. For this simple model, taking W (Ss,Sr) = cos3 α in
equation (3), and applying the same stationary phase analysis described above, we arrive at (2) without the
obliquity factor. For the 2D case, the obliquity compensation is achieved with W (Ss,Sr) = cos5/2 α.

The analysis above is simple and does not take into account other issues that affect amplitude when
applying RTM in complex velocity models, like the lack of full coverage of sources and receivers and the
uneven illumination of the targets. Illumination compensation is achieved normalizing the cross-correlation
imaging condition by the source energy at the imaging point (Biondi, 2006). We propose to combine the
obliquity factor weight and illumination compensation in the imaging condition

I(x) =
∫
xs

∫
xr

∫ tmax

0
W (Ss,Sr)ps(x, t;xs) pr(x, t;xr)dt∫ tmax

0
ps(x, t;xs) ps(x, t;xs)dt

dxsdxr . (8)

This imaging condition will be evaluated in the next section by means of numerical experiments.

NUMERICAL EXAMPLES

We evaluate the imaging condition with obliquity compensation on two synthetic data sets. In each exper-
iment, we applied RTM using four types of imaging conditions: cross-correlation, cross-correlation with
illumination compensation, Poynting vector with illumination, and the proposed imaging condition (8). We
did not apply any regularization strategy to the denominator of the imaging conditions with illumination
compensation. In all experiments we used γmax = 120◦, i.e., cos γ > −1/2, as the cutoff for the Poynting-
vector imaging condition. The first numerical example images a single shot in a medium with a planar
reflector and a point diffractor. We used the velocity and density model presented in Figure 1 to compute
the synthetic data in Figure 2. The minimum offset is 140 m and the maximum offset 1500 m, receiver
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Figure 2: Single shot data after muting the direct arrival.

spacing is 20 m. Figure 3 shows the results of RTM using standard cross-correlation and cross-correlation
with illumination compensation. Figure 4 shows the results of RTM using the Poynting-vector imaging
condition with illumination compensation and using the proposed imaging condition. We notice the strong
artifact near the source in Figure 3a and the week amplitude at the diffractor. Figure 3b shows the diffractor
with stronger amplitude and the reduction of artifacts near the source. The Poynting vector imaging condi-
tion (Figure 4a) produced about the same results as in Figure 3b. The proposed imaging condition presents
reduced artifacts near the source when compared to the previous imaging conditions.

The second numerical example presents RTM results for the Marmousi data set (Versteeg and Grau,
1990). The data set has 240 shots, each common shot gather has 96 receivers and 200 m minimum offset;
the distance between shots is 25 m, which is the same distance between receivers. The original Marmousi
velocity model is depicted in Figure 5a. A smoothed version of this model (Figure 5b) was used for RTM
in order to reduce backscattering. The RTM images using cross-correlation imaging condition, with and
without illumination compensations are presented in Figure 6. The dark artifacts in the upper left part of
these figures and the white spots in the bottom right of these figures are caused by backscattering. The arti-
facts are much reduced using the Poynting vector image condition (Figure 7a), though some artifacts still
remain in the upper left part of the image. The image produced with obliquity compensation (Figure 7b)
presents fewer artifacts than the all the previous imaging conditions. It also has improved amplitudes at the
bottom around the reservoir region. More investigation is required in order to combine obliquity compen-
sation with regularized illumination compensation (Valenciano and Biondi, 2003). However, our numerical
experiments indicate that obliquity compensation can improve RTM images.

CONCLUSIONS

We proposed and evaluated a new imaging condition for reverse time migration. This imaging condition
was motivated by a stationary phase analysis of the cross-correlation imaging condition in a homogeneous
medium with a single planar reflector and illumination compensation. The new imaging condition incor-
porates a dip-dependent weight function. Its implementation requires Poynting-vector information of the
source and receiver wavefields at the imaging point. Numerical experiments using the Marmousi data sup-
port our claim that the proposed imaging condition reduces backscattering artifacts in RTM. These results
are even more interesting considering that no regularization strategy was applied to the imaging conditions
under consideration.
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(a) (b)

Figure 3: Imaging condition: (a) cross-correlation; (b) cross-correlation with illumination compensation.

(a) (b)

Figure 4: Imaging condition: (a) Poynting vector; (b) obliquity correction plus illumination compensation.
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(a)

(b)

Figure 5: (a) Marmousi model; (b) Smoothed RTM velocity model.

(a)

(b)

Figure 6: Imaging condition: (a) cross-correlation; (b) cross-correlation plus illumination compensation.
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(a)

(b)

Figure 7: Imaging condition: (a) Poynting vector; (b) obliquity correction plus illumination compensation.
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APPENDIX A

STATIONARY-PHASE ANALYSIS OF REVERSE TIME MIGRATION

In this appendix, we asymptotically analyze reverse time migration following the lines of Matthew et al.
(2005). Specifically, we apply the method of stationary phase (see, e.g., Bleistein and Handelson, 1975) to
integral (1) for the situation of a planar dipping interface in a homogeneous medium and a set of common-
shot records with unlimited acquisition aperture both in source and receiver coordinates. Our result differs
from the one of Matthew et al. (2005) by a pulse-stretch factor that depends on the reflector dip.

Reflection from a dipping reflector

We start by considering a dipping reflector. Without loss of generality, we assume the x-axis to be oriented
in the down-dip direction so that the dip angle D is the angle between the reflector and the x-axis. Then, a
point on the reflector has the coordinates

xR(x, y) = x e1 + y e2 + (zd + x tanD) e3, (9)

where ei (i = 1, 2, 3) are the unit vectors in the coordinate directions and where zd is the depth of the
reflector at x = y = 0.

To describe the source wavefield ps(x, t;xs, 0) at the image point, we consider the point source at xs

to be a volume injection source described by q(x, t) = δ(x − xs)w(t). Here, w(t) represents the source
pulse and xs = (xs, ys, 0) describes the coordinates of the source at the surface. Then, the pressure field
produced by such a source is given by

ps(x, t;xs, 0) =
C

|x− xs|
w′
(
t− |x− xs|

cP

)
(10)

where the prime denotes the time derivative. Also, cP is the wave velocity and C is a constant (Cerveny,
2001). For an acoustic medium with constant density ρ, we have C = 1/4πρ. Correspondingly, the
reflected pressure field registered by a geophone at xg = (xg, yg, 0) can be expressed as

pg(xg, t;xs, 0) =
CR(xg,xs)
|xg − xI

s|
w′
(
t− |xg − xI

s|
cP

)
, (11)

where xI
s(xs, ys) denotes the position of the image source associated with the surface source at xs =

(xs, ys, 0). For our dipping reflector, the image source is found at

xI
s(xs, ys) = xs + (2zR(xs, ys) cosD) n, (12)

where zR(xs, ys) is the reflector depth below the source and

n = − sinD e1 + cosD e3 (13)

is the normal vector to the reflector. Therefore,

xI
s(xs, ys) = (xs cos 2D − zd sin 2D) e1 + ys e2 + 2(xs sinD cosD + zd cos2D) e3. (14)
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In a reverse time migration, the receiver wavefield is backpropagated in reverse time. In other words,
an explosive source acts at the position of every geophone, where the volume injection must be equal to

wb(t;xg) = pg(xg, tmax − t;xs, 0) =
CR(xg,xs)
|xg − xI

s|
w′′
(
tmax − t− |xg − xI

s|
cP

)
. (15)

In this way, a new source field of the form of equation (10) is generated, where the source wavelet w(t) is
replaced by wb(t) of equation (15). In this way, the backpropagated field within the medium is given by

pb(x, t;xg, 0) =
C2R(xg,xs)

|x− xg||xg − xI
s|
w′′′′

(
tmax − t+

|x− xg|
cP

− |xg − xI
s|

cP

)
. (16)

Imaging condition

The imaging condition (1) for reverse time migration is given by the zero-lag cross-correlation between the
forward and backward propagating wavefields (Claerbout, 1985). Considering a continuous and infinite
distribution of sources and receivers over the surface, we can write

I(x) =
∫ +∞

−∞
dxs

∫ +∞

−∞
dys

∫ +∞

−∞
dxg

∫ +∞

−∞
dyg

∫ tmax

0

dt ps(x, t;xs)pb(x, t;xg) . (17)

Under the assumptions of a causal source pulse and that no reflection events exist after the maximum time
tmax, the time integral can be extended to infinity, i.e.,

I(x) =
∫ +∞

−∞
dxs

∫ +∞

−∞
dys

∫ +∞

−∞
dxg

∫ +∞

−∞
dyg

∫ +∞

−∞
dt ps(x, t;xs)pb(x, t;xg) . (18)

Using Parseval’s theorem (see, e.g., Bracewell, 1999), the time integral can now be substituted by the
corresponding frequency integral, resulting in

I(x) =
1
2π

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dxsdysdxgdyg

∫ +∞

−∞
dω Ps(x, ω;xs)P ∗

b (x, ω;xg) , (19)

where the asterisk denotes the complex conjugate.
Taking the Fourier transforms of the source and receiver wavefields,

Ps(x, ω;xs) =
C

|x− xs|
(−iω)2W (ω)e−iω|x−xs|/cP (20)

and

Pg(x, ω;xg) =
C2R(xg,xs)

|x− xg||xg − xI
s|

(iω)4W (ω)eiω(|x−xg|−|xg−xI
s|)/cP (21)

the imaging condition integral can be expressed as

I(x) =
C3

2π

∫ +∞

−∞
dω (−iω)6 W 2(ω)[∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dxsdysdxgdygG(xg,xs) e−iωΦ(xg,xs)

]
(22)

with

G(xg,xs) =
R(xg,xs)

|x− xg||x− xs||xg − xI
s|

(23)

and
Φ(xg,xs) =

(
|x− xs|+ |x− xg| − |xg − xI

s|
)
/cP . (24)
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Stationary phase evaluation

Following Matthew et al. (2005), the four-dimensional integral in brackets in equation (22) can be evaluated
by the stationary-phase method. This methods evaluates oscillatory integrals of the type

I(ω) =
∫

Ω

G(x) exp[−iωΦ(x)]dnx (25)

asymptotically for large ω as (see, e.g., Bleistein and Handelson, 1975)

I(ω) ≈
(

2π
ω

)n/2
G(x0)√

|∇∇T Φ(x0)|
exp

[
−iωΦ(x0)− i

π

4
Sgn

(
∇∇T Φ(x0)

)]
, (26)

where x0 is a isolated point of stationary phase (supposed to be unique), i.e.,

∇Φ(x0) = 0 (27)

and
|∇∇T Φ(x0)| 6= 0 . (28)

Moreover, Sgn(∇∇T Φ(x0) represents the signature of the matrix, i.e., the number of positive eigenvalues
minus the number of negative ones.

Stationary point.— The derivatives of the phase function (24) are

∂Φ
∂xs

=
1
cP

(
− x− xs

|x− xs|
+
xg cos 2D − xs − zd sin 2D

|xg − xI
s|

)
, (29)

∂Φ
∂xg

=
1
cP

(
− x− xg

|x− xs|
− xg − xs cos 2D + zd sin 2D

|xg − xI
s|

)
, (30)

∂Φ
∂ys

=
1
cP

(
− y − ys

|x− xs|
+

yg − ys

|xg − xI
s|

)
, (31)

∂Φ
∂yg

=
1
cP

(
− y − yg

|x− xs|
− yg − ys

|xg − xI
s|

)
. (32)

From using equations (31) and (32) in condition (27) follows that the stationary point in both the ys and yg

integrals is at the same point y0 defined by

y0 ≡ ys = yg = y . (33)

Equations (29) and (30) are symmetric in xs and xg . Therefore, the stationary point in both the xs and xg

integrals is also at the same point x0, given by

x0 ≡ xs = xg = x+ z tanD . (34)

Thus, at the stationary point, we have

G(x0,x0) =
R(x0,x0)

|x− x0|2|x0 − xI
s|

(35)

and

Φ(x0,x0) =
2
cP

cosD (z − zd + x tanD) . (36)

Here, R(x0,x0) is the reflection coefficient for normal incidence.
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Hessian matrix.— The second derivatives at the stationary point have the following nonzero compo-
nents:

∂2Φ(x0,x0)
∂xs∂xs

=
cos2D
cP

(
1

|x− x0|
− 1
|x0 − xI

s|

)
, (37)

∂2Φ(x0,x0)
∂xg∂xs

=
cos2D
cP

(
1

|x0 − xI
s|

)
, (38)

∂2Φ(x0,x0)
∂xg∂xg

=
cos2D
cP

(
1

|x− x0|
− 1
|x0 − xI

s|

)
, (39)

∂2Φ(x0,x0)
∂ys∂ys

=
1
cP

(
1

|x− x0|
− 1
|x0 − xI

s|

)
, (40)

∂2Φ(x0,x0)
∂yg∂ys

=
1
cP

(
1

|x0 − xI
s|

)
, (41)

∂2Φ(x0,x0)
∂yg∂yg

=
1
cP

(
1

|x− x0|
− 1
|x0 − xI

s|

)
. (42)

Therefore, the Hessian determinant is√
|∇∇T Φ(x0)| =

2 cos3D
c2P

|x tanD + zd − z|
|x− x0|2|x0 − xI

s|
(43)

The signature of the Hessian is determined by an analysis of its eigenvalues. Because of the particular
structure of the Hessian matrix, the problem reduces to the evaluation of two 2× 2 submatrices,∣∣∣∣∣ ∂2Φ

∂xs∂xs
− λ ∂2Φ

∂xg∂xs

∂2Φ
∂xg∂xs

∂2Φ
∂xs∂xs

− λ

∣∣∣∣∣
xs=xg=x0

= 0 (44)

and ∣∣∣∣∣ ∂2Φ
∂ys∂ys

− λ ∂2Φ
∂yg∂ys

∂2Φ
∂yg∂ys

∂2Φ
∂ys∂ys

− λ

∣∣∣∣∣
xs=xg=x0

= 0 . (45)

This results in the eigenvalues

λ1,3 =
1
cP

1
|x− x0|

=
1
cP

cosD
z

(46)

and

λ2,4 =
1
cP

(
1

|x− x0|
− 2
|x0 − xI

s|

)
=

cos3D
cP

x tanD + zd − z

z + (x tanD + zd − z) cos2D
. (47)

Thus, eigenvalues λ1,3 are always positive, while the sign of λ2,4 depends on the vertical position z of the
image point. We have that λ2,4 > 0 if z < x tanD + zd, i.e., if the image point is above the reflector, and
λ2,4 < 0 below it. Therefore, the signature of the Hessian is equal to 4 for points above the reflector and 0
for points below it. Thus, the phase term in equation (26) can be represented as

e−i π
4 Sgn(∇∇T Φ(x0,x0)) = sgn(z − zd − x tanD) . (48)

Final image.— Collecting results, the image I(x) becomes

I(x) ≈ πC3c3P
R(x0,x0)
cos3D

sgn(z − x tanD − zd)
|z − x tanD − zd|

(49)∫ +∞

−∞
dω(−iω)4W 2(ω)e−i2ω(z−zd−x tan D) cos D/cP . (50)
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The frequency integral can be solved using the convolution theorem and the properties of the Fourier
transform. Thus, the final representation of the image at point x is

I(x) ≈ πC3c3P
R(x0,x0)
cos3D

1
z − zR

w′′
[
2 cosD
cP

(z − zR)
]
⊗ w′′

[
2 cosD
cP

(z − zR)
]
, (51)

where we have recognized that zd + x tanD = zR is the reflector depth at the horizontal position of the
image point. As mentioned earlier, expression (51) coincides with the corresponding one of Matthew et al.
(2005) except for the pulse-stretch factor, 2 cosD/cP in the arguments of both the wavelets.


