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ABSTRACT

As exploration targets have gotten deeper, cable lengths have increased accordingly, making the con-
ventional two term hyperbolic traveltime approximation produce increasingly erroneous traveltimes.
To overcome this problem, many traveltime formulas were proposed in the literature that provide
approximations of different quality. In this paper, we give an overview over a number of those ap-
proximations and compare their quality. Moreover, we propose some new traveltime approximations
based on the approximations found in the literature. The main advantage of our approximations is that
some of them are have rather simple analytic expressions that makes them easy to use, while achieving
the same quality as the better of the established formulas.

INTRODUCTION

Traveltime approximations play a key hole in the processing of reflection data. They are used in, for
example, migration (Alkhalifah and Larner, 1994; Vestrum et al., 1999; Mukherjee et al., 2001), moveout
correction and velocity analysis (Tsvankin and Thomsen, 1994; Alkhalifah and Tsvankin, 1995; Fomel,
2003) as well as remigration (Fomel, 1994; Hubral et al., 1996; Schleicher and Aleixo, 2007) .

The standard hyperbolic approximation (Dix, 1955) of the P-wave reflection traveltime commonly used
in seismic data precessing is exact for a homogeneous isotropic medium and a planar reflector. It remains a
good approximation for short offsets in layered media with not too strong lateral variations. However,
as exploration targets have gotten deeper, cable lengths have increased accordingly. Increased offsets
have made the conventional two term hyperbolic equation produce increasingly erroneous traveltimes. To
overcome this problem, it is important to include a nonhyperbolic correction to the reflection moveout to
guarantee an accurate determination of the model parameters.

Many attempts have been made over the years to provide higher-order reflection moveout equations
that provide good approximations for higher offsets. Working with a layered earth model, Bolshix (1956)
obtained a sixth-order equation that approximates traveltime. Later, Taner and Koehler (1969) provided a
high-order approximation for traveltimes based on a exact Taylor-series expansion of the traveltime. May
and Straley (1979) used orthogonal polynomials to derive a high-order traveltime approximation. These
approximations based on polynomials, Taylor series or orthogonal polynomials are rather inaccurate for
larger offsets. Therefore other approximations are necessary.

To improve accuracy, various authors proposed a shifted-hyperbola approximation (Malovichko, 1978;
Claerbout, 1987; Sword, 1987; de Bazelaire, 1988; Castle, 1994). This equation describes a hyperbola that
is symmetric about the t-axis and has asymptotes that intersect the time axis x = 0 at a time t = τs that is
different from the zero-offset traveltime τ0. The shifted hyperbola proposed by Claerbout (1987) contains
a free parameter, called a, that can be used to find the best fitting traveltime approximation. The shifted
hyperbola’s parameter can be related to the anisotropy parameter η (Siliqi and Bousquié, 2000; Ursin and
Stovas, 2006) generating a VTI approximation for traveltime.

However, for a homogeneous transversely isotropic medium with a vertical symmetry axis (a VTI
medium) the hyperbolic approximation is only valid for small offsets, and the velocity coefficient is an

mailto:js@ime.unicamp.br


Annual WIT report 2007 283

NMO velocity that differs from the vertical velocity (Thomsen, 1986). Tsvankin and Thomsen (1994)
generalize the results of Hake et al. (1984) and give a forth-order approximation, but this equation rapidly
loses accuracy with increasing offset. Alternatively, they proposed a continued-fraction approximation,
that is valid for long offsets (Tsvankin and Thomsen, 1994; Alkhalifah and Tsvankin, 1995). Based on the
approximation of Tsvankin and Thomsen (1994), Douma and Calvert (2006) proposed new approximations
for the traveltime function based on the Padé approximation or rational interpolation. Stovas and Ursin
(2004), using another methodology, derive a different continued-fraction approximation for the traveltime
function, but this approximation is only valid for short and intermediate offsets. Fowler et al. (2006)
provide a methodology using orthogonal parameters to describe the traveltime approximation. They study
the orthogonal approximations to Tsvankin and Thomsen’s equation and to the shifted hyperbola.

Zhang and Uren (2001) observed that the ray velocity in general transversely isotropic (TI) media can
be approximated by a simple equation. Based on this equation, they provide a traveltime approximation
for P-waves in homogeneous TI media. Additionally, they found a equation for a single horizontal reflector
overlain by transversely isotropic media with a vertical symmetrical axis (VTI medium).

Fomel (2004) provides a anelliptic approximations for qP velocities in VTI media generalizing the
anelliptic approximation result of Muir and Dellinger (1985). Fomel’s (2004) approximation is a long
offset approximation for traveltime function in VTI media.

A tutorial on traveltime approximations in VTI media, summarizing the most practical of the above
formulas, can be found in Fowler (2003). In this paper, we give an overview over a collection of travel-
time approximations found in the literature and compare their quality. Moreover, we propose some new
traveltime approximations based on the approximations found in the literature. The main advantage of our
approximations is that some of them are have rather simple analytic expressions that makes them easy to
use, while achieving the same quality as the better of the established formulas.

TRAVELTIME APPROXIMATIONS

In this section we present a collection of traveltime approximations from the literature. The first approxi-
mation is the standard hyperbolic traveltime (Dix, 1955),

t2(x) = 1 + x2, (1)

Here and in everywhere in this paper, we use the normalized half-offset,

x =
h

τ0vnmo
, (2)

and the normalized traveltime

t(x) =
τ(x)
τ0

. (3)

The first attempts to improve on equation (1) were higher-order approximations based on Taylor series and
orthogonal polynomials (Taner and Koehler, 1969; May and Straley, 1979). However, those approxima-
tions do not reach to much father offsets than equation (1).

The first approximation that extends to farther offsets is the so-called shifted hyperbola. It was proposed
and studied by a number of authors (Malovichko, 1978; Claerbout, 1987; Sword, 1987; de Bazelaire, 1988;
Castle, 1994). It has the general form

t(x) = 1 +
1
S

[√
1 + S x2 − 1

]
. (4)

Malovichko (1978) considered a layered medium and expressed the parameter S as that S = µ4/µ
2
2, where

µj is the jth velocity momentum, given by

µj =
N∑

k=1

∆τk V
j
k

/
N∑

k=1

∆τk , (5)

where Vk is the interval velocity of the kth layer and ∆τk is the vertical traveltime in the kth layer. Claer-
bout (1987) suggests to use a free parameter a = 1/(1−S) in the shifted hyperbola to fit the approximation
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to the observed traveltime. He gives no interpretation of a in terms of medium parameters. In the shifted
hyperbola of Castle (1994), S is no longer a constant but is allowed to vary with offset, i.e., S = S(x).
For VTI media, Siliqi and Bousquié (2000) and Ursin and Stovas (2006) expressed the parameter S as
S = 8η + 1.

To further improve accuracy for large offsets in VTI media, Tsvankin and Thomsen (1994) proposed to
use the continued-fraction approximation

t2(x) = 1 + x2 − 2ηx4

1 + (1 + 2η)x2
. (6)

Based on the approximation of Tsvankin and Thomsen (1994), Douma and Calvert (2006) proposed new
approximations for traveltime function based on Padé approximation or rational interpolation.

Stovas and Ursin (2004), using another methodology, derive a different continued-fraction approxima-
tion for traveltime function. In our notation, it reads

t2(x) = 1 + x2 − Gx4

1 + (1 + 4G)x2
, (7)

where G is a parameter that depends of the anisotropic parameters ε and δ. It has the form

G =
2(ε− δ)
(1 + 2δ)2

[
1 +

2γ2
0δ

γ2
0 − 1

]
, (8)

where γ0 is vertical P-wave velocity over vertical S-wave velocity.
Zhang and Uren (2001) observed that ray velocity in TI media can be approximated with a simple

equation. Based on this observation, they provide a traveltime approximation for P-waves in homogeneous
TI media,

t2(x) =
1
2

[
1 + x2/Q+

√
(1 + x2/Q)2 + 4Ax2/Q

]
, (9)

They give no rule for how the anisotropy parameter A depends on the actual medium parameters.
Generalizing the anelliptic approximation result of Muir and Dellinger (1985), Fomel (2004) found the

traveltime approximation

t2(x) =
3 + 4η

4(1 + η)
t2h(x) +

1
4(1 + η)

√
t4h(x) + 16η(1 + η)x2/Q , (10)

where,
t2h(x) = 1 + x2/Q (11)

with Q = 1 + 2η. Note that t2h(x) is the hyperbolic part of equation (10), however using the horizontal
velocity vh = vnmo

√
1 + 2η rather than the NMO velocity.

NEW TRAVELTIME APPROXIMATIONS

In this section, we study a few additional traveltime approximations. Most of them are obtained by further
approximation of one of the above formulas, mainly the ones of Zhang and Uren (2001) and Fomel (2004).
Others are the result of adaptations that are based on the numerical experiments.

Using the Padé approximation (Baker and Graves-Morris, 1981) in Fomel’s traveltime equation (10)
we obtain the following expressions. The Padé [2m, 2n] approximation has the form

t2(x) =
m∑

i=0

a2ix
2i

/
n∑

j=0

b2jx
2j . (12)

For a VTI medium, the coefficients for the Padé [2, 2] approximation are

a0 = 1; a2 = (1 + 2η); b0 = 1, b2 = 2η . (13)
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The coefficients for the Padé [4, 2] approximation for the same equation are

a0 = 1 + 2η, a2 = 2(η + 1)(4η + 1), a4 = 4η2 + 6η + 1; b0 = 1 + 2η, b2 = 8η(η + 1) + 1. (14)

Finally, the Padé [4, 4] approximation for equation (10) has the coefficients

a0 = 1 + 8η(η+1)2, a2 = 24η2(2η2+ 5η + 4) + 13η + 2, a4 = 8η(2η2+ 3η + 1)(2η2+ 3η + 2) + 1;
b0 = 1 + 8η(η+1)2, b2 = 16η2(3η2+ 7η + 5) + 18η + 1, b4 = 4η(η + 1)(2η + 1)2 . (15)

Further expressions for the traveltimes can be obtained from approximating the square roots in the
above formulas. For small values of ε, we have up to the first order

√
1 + ε ≈ 1 +

ε

2
. (16)

If we suppose in equation (10) that t2h(x) has a large value compared to 16η(1+ η)x2/Q, we can apply
the above approximation to find

t2(x) ≈ 3 + 4η
4(1 + η)

t2h(x) +
t2h(x)

4(1 + η)

{
1 +

16
2
η(1 + η)

Q

x2

t4h(x)

}
≈ t2h(x) +

2η
Q

x2

t2h(x)
. (17)

For small values of η, we can neglect the term with η2 inside the square root of equation (10), thus

t2(x) ≈ 3 + 4η
4(1 + η)

t2h(x) +
t2h(x)

4(1 + η)

√
1 + 16

η

Q

x2

t4h(x)
(18)

≈ t2h(x) +
2η

(1 + η)Q
x2

t2h(x)
, (19)

where the second line is again obtained by approximating the square root according to equation (16).
Other approximations are obtained by replacing (1+η)Q in the denominator of equation (19) by either

(1 + η)2 or Q2. This yields

t2(x) = t2h(x) +
2η

(1 + η)2
x2

t2h(x)
(20)

and

t2(x) = t2h(x) +
2η
Q2

x2

t2h(x)
. (21)

Correspondingly, the application of the square root approximation (16) to formula (9) leads to

t2(x) = t2h(x) +
A

Q

x2

t2h(x)
. (22)

Since this approximation is very similar to equations (17) and (19), it gives us a means of expressing
parameter A of Zhang and Uren (2001) for VTI media in terms of η. The resulting expressions for the
approximation (9) are

t2(x) =
1
2

[
t2h +

√
t4h + 8η x2/Q

]
(23)

and

t2(x) =
1
2

[
t2h +

√
t4h +

8η
1 + η

x2

Q

]
. (24)



286 Annual WIT report 2007

If we want a approximation for t(x) rather than t2(x), we use again the square root approximation (16)
in equations (17) and (19). This results in equations that exhibit a simple correction term added to the
hyperbolic approximation. They read

t(x) ≈ th(x) +
η

Q

x2

t3h(x)
(25)

and

t(x) ≈ th(x) +
η

(1 + η)Q
x2

t3h(x)
. (26)

Actually, other good approximations are obtained by replacing 1 + η in the denominator of the last term in
equation (26) by Q = 1 + 2η, being

t(x) ≈ th(x) +
η

Q2

x2

t3h(x)
, (27)

or vice versa

t(x) ≈ th(x) +
η

(1 + η)2
x2

t3h(x)
. (28)

Alternative expressions are obtained if we approximate the outer root square in equation (10). This
leads to

t(x) = th(x)

√√√√1− 1
4(1 + η)

+
1

4(1 + η)

√
1 + 16

η(1 + η)
Q

x2

t4h(x)
(29)

≈ th(x)
(

1− 1
8(1 + η)

)
+

1
8(1 + η)

√
t2h(x) + 16

η(1 + η)
Q

x2

t2h(x)
. (30)

Note that an approximation of the remaining square root in equation (30) results again in equation (25).
If we put the factor th(x)

√
(3 + 4η)/4(1 + η) in evidence before approximating the square root, we

obtain yet another approximation of equation (10), which reads

t(x) = th(x)

√
3 + 4η

4(1 + η)

√√√√1 +
1

3 + 4η

√
1 + 16

η(1 + η)
Q

x2

t4h(x)
(31)

≈ th(x)

√
3 + 4η

4(1 + η)
+

√
t2h(x)

16(1 + η)(3 + 4η)
+

η

(3 + 4η)Q
x2

t2h(x)
. (32)

The second square root in equation (32) can be further approximated to yield

t(x) ≈ th(x)

[√
3 + 4η

4(1 + η)
+

1
4
√

(1 + η)(3 + 4η)

]
+

2η
Q

√
1 + η

3 + 4η
x2

t3h(x)
. (33)

The term in brackets can be shown to be very close to one. Thus, we arrive at

t(x) ≈ th(x) +
2η
Q

√
1 + η

3 + 4η
x2

t3h(x)
. (34)

Neglecting the η2 term in the inner integral of equation (31) yields

t(x) ≈ th(x)

√
3 + 4η

4(1 + η)

√√√√1 +
1

3 + 4η

√
1 + 16

η

Q

x2

t4h(x)
. (35)
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Successively approximating the square roots leads to

t(x) ≈ th(x)

√
3 + 4η

4(1 + η)

√
1 +

1
3 + 4η

(
1 + 8

η

Q

x2

t4h(x)

)
(36)

≈ th(x)

[√
3 + 4η

4(1 + η)
+

1
2(3 + 4η)

]
+

2η
Q
√

(1 + η)(3 + 4η)
x2

t3h(x)
. (37)

Again, the expression in brackets can be shown to be very close to one. Thus, we can write

t(x) ≈ th(x) +
2η

Q
√

(1 + η)(3 + 4η)
x2

t3h(x)
. (38)

From the similarity of equations (34) and (38), we conclude that another possible approximation is the
intermediate expression

t(x) ≈ th(x) +
2η

Q
√

3 + 4η
x2

t3h(x)
. (39)

The first square root in equation (32) can be approximated as√
3 + 4η

4(1 + η)
≈
(

1− 1
8(1 + η)

)
. (40)

The second square root of equation (32) can again be approximated in two different ways. The first one is
obtained by replacing 3 + 4η in the denominators of both terms by 4 + 4η. This results in√

t2h(x)
16(1 + η)(3 + 4η)

+
η

(3 + 4η)Q
x2

t2h(x)
≈ 1

8(1 + η)

√
t2h(x) + 16

η(1 + η)
Q

x2

t2h(x)
. (41)

The second one is obtained by approximating√
4 + 4η
3 + 4η

≈
(

1 +
1

8(1 + η)

)
. (42)

This yields√
t2h(x)

16(1 + η)(3 + 4η)
+

η

(3 + 4η)Q
x2

t2h(x)
≈
(

1 +
1

8(1 + η)

)
1

8(1 + η)

√
t2h(x) + 16

η(1 + η)
Q

x2

t2h(x)
.

(43)
Using equations (32), (40), (41), and (43) we have two more traveltime approximations, being

t(x) ≈ th(x)
(

1− 1
8(1 + η)

)
+

1
8(1 + η)

√
t2h(x) + 16

η(1 + η)
Q

x2

t2h(x)
(44)

and

t(x) ≈ th(x)
(

1− 1
8(1 + η)

)
+
(

1 +
1

8(1 + η)

)
1

8(1 + η)

√
t2h(x) + 16

η(1 + η)
Q

x2

t2h(x)
. (45)

As the numerical experiments will demonstrate, approximation (44) becomes more accurate upon replacing
16η(1 + η) by 2η(8 + 7η), i.e., using the approximation

t(x) ≈ th(x)
(

1− 1
8(1 + η)

)
+

1
8(1 + η)

√
t2h(x) + 2

η(8 + 7η)
Q

x2

t2h(x)
. (46)
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By substituting η = 0.25 in the appropriate places in equation (10), we find two more approximations,

t(x) ≈

√
1
5

(
4 t2h +

√
t4h + 20

η

Q
x2

)
(47)

and

t(x) ≈

√√√√1
5

(
4 t2h +

√
t4h + 16

η(1 + η)
Q

x2

)
. (48)

After approximation of the inner square roots, these equations reduce to expression (17) and

t(x) ≈

√
t2h + 8

η(1 + η)
5Q

x2

t2h(x)
. (49)

An approximation of the remaining square root leads to

t(x) ≈ th(x) +
4
5
η(1 + η)

Q

x2

t3h(x)
. (50)

Another observation results from the numerical experiments. As we will see below, the shifted hy-
perbola, equation (4) can be numerically improved by using different values for parameter S than the
ones suggested in the literature. Very good traveltime approximations are obtained for S = 1 + 3η and

S =
(

1− 7
8
√
η

)−1

.

NUMERICAL COMPARISONS

In this section, we compare the above traveltime approximations for a homogeneous VTI medium above a
horizontal reflector with the exact traveltime. Since we are comparing normalized traveltimes, no values for
reflector depth and NMO velocity need actually to be specified. The elastic parameters of the VTI medium
are that of the Greenhorn shale (Jones and Wang, 1981), i.e., c11 = 14.47 km2/s2, c33 = 9.57 km2/s2,
c13 = 4.51 km2/s2, and c55 = 2.28 km2/s2, which were also used by Fomel (2004). In this medium, we
have η = 0.34068.

To make sure that the approximations still hold for other amounts of anisotropy, we also run corre-
sponding tests with values of η between 0.1 and 0.5. All deviations from the true traveltime discussed
below behave very similar for all tested values of η.

The first comparisons involve the traveltime approximations from the literature. In Figure 1, we com-
pare the conventional hyperbolic approximation with NMO velocity (1), approximation (6) of Tsvankin and
Thomsen (1994), the hyperbolic approximation with horizontal velocity (11), and Bolshix’ Taylor-series
approximations of 4th and 6th orders for normalized offsets up to 3 to the exact traveltime. We see that
most of these approximations are rather poor approximations for large offsets. The exceptions are approx-
imation (6) of Tsvankin and Thomsen (1994) and the hyperbolic approximation (11) using the horizontal
velocity. However, the latter show already a deviation at smaller offsets.

In Figure 2 we present the most recent and more accurate traveltime approximations in the literature.
These are good approximations up to much larger offsets. Since approximation (6) of Tsvankin and Thom-
sen (1994) also has a reasonable quality, it is repeated in Figure 2.

To better appreciate the quality of these approximations, Figure 3 shows the relative error between
the approximations of Figure 2 and the exact traveltime. We see that approximation (10) is the best of
these, with its error never exceeding 4% in the depicted offset range between 0 and 3. The second-best is
approximation (6) with a relative error below 6%. The errors of the other approximation exceeds 6% for
rather small offsets.

The next figures show the relative errors for our collection of new traveltime approximations. In Fig-
ure 4 we present the Padé approximations of equation (10) of Fomel (2004). Observe that the best approx-
imation is achieved with the Padé [4,2] approximation, which already has rather complicated expressions
for the coefficients [see equations (14)].
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Figure 1: Comparison of traveltime approximations (1) [Hyp], (6) [TsTh 94], (11) [HypQ], as well as the
4th order and 6th order approximations of Bolshix (1956) with the exact VTI traveltime.

Figure 5 depicts the approximations of the type

t2(x) ≈ t2h(x) +B(η)
x2

t2h(x)
. (51)

As we can see, these are rather accurate approximations. None of these approximations exceeds a relative
error of 5%, the best one being equation (49), the error of which remains below 3%.

The approximations for t2(x) that are not of the type of equation (51) are more disperse (see Figure 6).
Equations (47) and (48) are rather good approximations with relative errors below 4%. The error of equa-
tion (18) remains below 5%. On the other hand, the error of equations (23), (24), and (36) increase rapidly,
exceeding the 6% threshold already for rather small offsets.

In Figure 7 we present the approximations of the type

t(x) ≈ th(x) +B(η)
x2

t3h(x)
. (52)

Again, all of these approximations are rather accurate. None of them exceeds a relative error of 5% in
the chosen range of offsets. Moreover, these approximations possess quite simple expressions that may be
advantageous for theoretical considerations. The best of these approximations with a maximum error of
about 2.5% is the one given in equation (34).

Figure 8 shows the remaining traveltime approximations for t(x). All of them are rather accurate with
relative errors below 4%. Equations (32), (33), (37), and (45), do not start with a zero error at zero offset,
but still have a good overall error behaviour.

Finally, in Figure 9 we compare the shifted hyperbola approximations from the literature with the ones
obtained with our suggested choices for S. Note that the choices S = 1 + 3η and S = (1− 7

8

√
η)−1 yield

highly accurate approximations with maximum errors below 2%.

CONCLUSION

Accurate traveltime approximations for large offsets are very important for many tasks of seismic process-
ing. The conventional hyperbolic approximation, which is still used by many processing algorithms for
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Figure 2: Comparison of traveltime approximations (4) (shifted hyperbola) with S = S(x) [Castle 94]
and S = 1 + 8η [SiBo 00], (6) [TsTh 94], (7) [StUr 04], and (10) [Fo 04] with the exact VTI traveltime.
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Figure 3: Relative error of traveltime approximations (4) (shifted hyperbola) with S = S(x) [Castle 94]
and S = 1 + 8η [SiBo 00], (6) [TsTh 94], (7) [StUr 04], and (10) [Fo 04].
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Figure 4: Relative error of traveltime approximation (10) [Fo 04] and its Padé approximations [2,2], [4,2]
and [4,4].
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Figure 5: Relative error of new traveltime approximations for t2(x) of the type

t2(x) = t2h(x) +B(η)
x2

t2h(x)
.
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Figure 6: Relative error of other traveltime approximations for t2(x).
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Figure 7: Relative error of new traveltime approximations for t(x) of the type

t(x) ≈ th(x) +B(η)
x2

t3h(x)
.
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Figure 8: Relative error of other traveltime approximations for t(x).
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Figure 9: Relative error of shifted hyperbola with S = S(x) [Castle 94], S = 1 + 8η [SiBo 00], and new

shifted hyperbola approximations with S = 1 + 3η and S =
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.
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moveout correction, time migration, multiple attenuation and velocity analysis, is inaccurate as soon as
anisotropy, wave-mode conversions or significant medium heterogeneity are involved.

Many different formulas to approximate far-offset traveltimes have been proposed in the literature (see,
e.g., Tsvankin and Thomsen, 1994; Fomel, 2004, and the references therein). Most of these are rather
complicated algebraic expressions that are hard to use.

In this paper, we have studied the quality of many of these approximations for a homogeneous VTI
medium above a horizontal reflector. Moreover, by further approximation of the formulas from the lit-
erature, as well as by combining some of their properties, we have presented a host of new traveltime
approximations. Our numerical comparisons show that it is possible to find traveltime formulas of a much
simpler type that provide equal or even better approximations to the true traveltime than those proposed
in the literature. The formulas that provided the best approximations to the true traveltime are the shifted
hyperbola with a different choice for the free parameter and the hyperbolic traveltime with a rather simple
correction term.
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