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ABSTRACT

Current algorithms for the estimation of Common Reflection Surface (CRS) parameters are based on
one- or multi-parameter coherency analysis (semblance) schemes applied to the data. Such proce-
dures, besides computationally expensive, leads to significant uncertainties on the searched parame-
ters. Conventional semblance methods can be avoided for a number imaging tasks if local slopes can
be directly extracted from prestack data, for example, by filtering schemes. Although the idea is not at
all new, recent literature shows its revival for various purposes, such as velocity analysis, tau-p imag-
ing, migration to zero offset and time migration. Here, we discuss several different ways of extracting
the desired slope information from the data. We propose a simple, straightforward correction to linear
plane-wave destructors. The correction is based on the observation that additionally to the local slope,
also its inverse can be extracted from the data in a fully analogous way. Combining the information
of both extractions yields a simple but powerful correction to the local slopes. In our numerical ex-
amples, the naive application of simple linear plane-wave destructors with our simple, straightforward
correction produced results of high quality, even in an example with a rather high noise level and
interfering events.

INTRODUCTION

The estimation of kinematic attributes of locally coherent events, in seismic data or seismic images, is
an essential step for several recent developments in seismic data processing and velocity model building.
Perhaps, the most visible ones are those connected with seismic tomography in which, not only traveltimes
but also slowness components of events and possible other time-domain attributes are used for velocity
model building. Famous examples are stereo-tomography (Billette and Lambaré, 1998; Billette et al.,
2003) and NIP-wave tomography (Duveneck, 2004). Locally coherent events are also applied to velocity-
independent time imaging Fomel (2007b).

The estimation of kinematic attributes is usually performed in two steps. The first one is a detection
step based on local coherence analysis and the second one is an extraction step based on the coherence level
and continuity of the event. This report investigates different implementations of plane-wave destructors
for automatic detection of locally coherent events.

Two implementations use small moving windows through data. In the first algorithm, a single slope
at the center of the window is computed by linear least squares. The second algorithm implements the
prediction-error filter approach proposed by Fomel (2002). We compare these moving-window strategies
with a global inversion of the slope field proposed by Fomel (2002). The global slope estimation admits
different alternatives of smoothing the slowness field (Fomel, 2007a) by regularization, but is computation-
ally demanding. The slope estimation using local windows is computationally very fast compared to the
global estimation alternative and less dependent on prior information.

We present numerical experiments using the local and global strategies for slope estimation on a simple
synthetic data, corrupted by white noise. These initial results suggest that the estimation of event slopes
using local windows can be a very efficient alternative to the detection of locally coherent events.

mailto:lucio@ime.unicamp.br
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PLANE-WAVE DESTRUCTORS

The extraction of local slopes is done by so-called plane-wave destructors. Let us briefly review the under-
lying theory.

Linear plane-wave destructors

The differential equation for a local plane wave is given by

ψx(x, t) + p ψt(x, t) = 0, ψ(0, t) = f(t), (1)

where ψ(x, t) is the wavefield, x is the offset, t is time, and p is the local slope (ray parameter or slowness),
which may depend on x and even on t, p = p(x, t). In the case that p depends only on x, equation (1)
admits the simple solution,

ψ(x, t) = f(t− P (x)), P (x) =
∫ x

0

p(y) dy. (2)

In particular, if p is constant, we have

ψ(x, t) = f(t− p x). (3)

Our goal is to estimate the local slope p(x, t) for any seismic section which, in general, containing not
only plane-wave events but also curved ones.

The first approach is basically the technique presented in Claerbout (2004). For each pair (x0, t0) in the
seismic section, we select a small window of points xi, tj with (i, j) ∈W around that point. Let ψx(xi, tj)
and ψt(xi, tj) be the discretized values for the derivatives ψx and ψt, respectively, in the selected window.
We compute the partial derivatives in the Fourier domain. In order to accomplish with equation (1), we
minimize the quadratic residual

R(p) =
∑

(i,j)∈W

[ψx(xi, tj) + p ψt(xi, tj)]
2 (4)

where W denotes the window. The solution is easily found as

〈p〉 = 〈p(x0, t0)〉 = −
∑

(i,j)∈W ψx(xi, tj)ψt(xi, tj)∑
(i,j)∈W ψ2

t (xi, tj)
. (5)

where (x0, t0) is the center of the selected window.
One measure for the fit is given by the normalized correlation,

E(x0, t0) = 1− R(〈p〉)
R(0)

=

[∑
(i,j)∈W ψx(xi, tj)ψt(xi, tj)

]2
[∑

(i,j)∈W ψ2
t (xi, tj)

] [∑
(i,j)∈W ψ2

x(xi, tj)
] . (6)

Observe that 0 ≤ E ≤ 1. In fact, E has all the properties of the classical semblance

S(x0, t0) =
1
Nx

[∑
i∈Wx

ψ (xi, t0 + 〈p〉(xi − x0))
]2∑

i∈Wx
ψ2 (xi, t0 + 〈p〉(xi − x0))

, (7)

where Nx is the number of traces in the window Wx in x.
It is to be noted that equation (1) can be equivalently written as

qψx(x, t) + ψt(x, t) = 0, (8)

where q = 1/p. This points towards the possibility of extracting q in the very same manner as described
above for p. The solution for q, corresponding to equation (5) for p, reads

〈q〉 = 〈q(x0, t0)〉 = −
∑

(i,j)∈W ψx(xi, tj)ψt(xi, tj)∑
(i,j)∈W ψ2

x(xi, tj)
. (9)
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Comparing equations (5) and (9), we see that estimation of p or q is equivalent and requires the computation
of the same quantities. Those are also the quantities that enter the computation of E(x0, t0) in equation
(6), which can be easily seen to be nothing more than

E(x0, t0) = 〈p〉 〈q〉 . (10)

If we suppose that the estimates are proportional to the true value of the corresponding quantity, i.e.,

〈p〉 = α p and 〈q〉 = β
1
p
, (11)

then equation (10) becomes
E(x0, t0) = αβ . (12)

Generally, the proportionality factors α and β are due to the noise in the data and thus both smaller than
one. Under the further assumption that α ≈ β, we have

E(x0, t0) ≈ α2 , (13)

and thus
α ≈

√
E . (14)

Combining equations (11) and (14), we obtain another estimator for the slope:

〈p〉E = 〈p〉/
√
E =

√
〈p〉
〈q〉

. (15)

Our numerical experiments indicate that this estimator is more robust than the one of equation (5) in the
presence of noise.

Nonlinear plane-wave destructors

We compared the two linear estimators above with the nonlinear plane-wave destructors proposed by Fomel
(2002). The nonlinear slope estimation is based on the frequency-domain equation

dΨ(x, ω)
dx

+ iωpΨ(x, ω) = 0 . (16)

The solution to this equation defines the prediction-error filter

P (x+ ∆x, ω)− eiωp∆xP (x, ω) = 0 . (17)

This solution defines a prediction filter for a neighbouring trace that is nonlinear in the slope p. The
numerical implementation is based on rational approximations for the exponential (Fomel, 2007b).

We tested two implementations of nonlinear plane-wave destructor, these being the estimation of p
in a local window and the global estimation of p in the whole section. The global estimation requires
regularization to produce stable results. We required the solution to have a minimum gradient. Each
nonlinear iteration solves the linear system

F(p0)δpd + F(p0)d = 0 ,

λ1Dxδp = 0 , (18)
λ2Dtδp = 0 ,

where F(p0) represents the operator convolved with the data, d; Dx and Dt are difference operators and
λ1, λ2 are the regularization parameters. Moreover, δp represents the correction to the slope field to be
estimated, i.e., the correction vector for all individual values of p for all points in the section, and p0 is the
slope field prior to the current iteration.
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Figure 1: CMP, NMO, Slope and Semblance sections. Noise level = 0%.

SYNTHETIC EXAMPLES

Automatic NMO correction

We tested the indicated technique in two different applications. The first is an automatic NMO correction
based on local slopes. To compute the NMO section, we use the fact that the ray parameter for the reflection
ray in the CMP gather is given by the traveltime slope (see, e.g., Castagna and Backus, 1993), i.e.,

p =
dT

dx
=
C x

T
, where T =

√
T 2

0 + C x2. (19)

where T0 is the zero-offset (ZO) traveltime and C is a parameter. If we know the local slope p = p(x, t) in
the CMP gather, we can use equations (19) to eliminate the velocity-dependent parameter C from equation
(19). Then, we find the new moveout equation,

T0 = T0(x, t) =
√
t2 − C x2 =

√
t2 − t x p(x, t) (20)

as a function of the local slope. The procedure that achieves the NMO correction is then to transfer the
sample in the CMP section at (x, t) to the NMO section at (x, t0). This can be done fully automatically.

The results for noise-free data from a simple synthetic model of a horizontally stratified medium are
shown in Figure 1. We have plotted the CMP section and the corresponding NMO section using the slopes
estimated using equation (5). Figure 2 shows the results for the same model with 30% added noise to the
CMP section. For the noisy data, the derivatives of the wavefield have been smoothed by a two-dimensional
moving average with a window of Nt = 10 and Nx = 5. Both results are satisfactory, demonstrating that
the estimation of local slopes is sufficiently stable to permit an automatic NMO correction even for noisy
data.
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Figure 2: CMP, NMO, Slope and Semblance sections. Noise level = 30%.

Extraction of local slopes

In the second example, we tested the extraction of the local slopes as an event attribute. This type of
application has its meaning in the context of stereotomography or the CRS stack, where event dips are
crucial parameters.

For our tests we devised a model with a single trough-shaped reflector separating two homogeneous
interfaces (see Figure 3). We modeled synthetic data with the Kirchhoff integral and added white noise at
a level of 20% of the maximum amplitude. For the subsequent slope extraction, we then applied an AGC.
Note the distorted bow-tie structure in the data. This was chosen to make it a little harder to extract correct
slopes.

Next we applied the above slope extraction techniques to these data. The resulting semblance and
slope sections are shown in Figures 4 and 5, respectively. Also shown in these figures are the paths of
maximum semblance along which the slopes are extracted from these panels. As before, the derivatives
of the wavefield were smoothed with a two-dimensional moving average with a window of Nt = 10 and
Nx = 5.

For the extraction of the slopes, one possible measure of reliability is the semblance section. However,
establishing a semblance threshold above which all values are considered reliable and below which all val-
ues are discarded tuns out not to be a very successful strategy. If we choose the threshold to be a semblance
value of 0.75, we obtain the picture in Figure 6. We recognize that while some regions of the events are
well represented, there are large parts of the events where no slope will be extracted. Unfortunately, this
cannot be remedied by decreasing the threshold, which mainly leads to the extraction of more and more
incorrect slope values.

The quality of the extracted slope values can be evaluated in Figure 7. Except for the nonlinear plane-
wave destructors in the whole section, practically all extracted slope values correspond nicely to the true
values along the three events. However, as expected from Figure 6, there are quite considerable gaps where
no slope values have been extracted.

There is another way of extracting slopes. This is already indicated in Figures 4 and 5. It consists of
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Figure 3: Model and data for the slope extraction. Top left: Model and ray family. Top right: Kirchhoff
data. Bottom left: Kirchhoff data with 20% random noise. Bottom right: Noisy data after AGC.

extracting the slope values along the maximum-semblance curve, independently of the absolute semblance
at the location. The results of this procedure are shown in Figure 8. We observe high-quality slope values
along the first part of the event. The quality of the extracted slopes drops only where the events interfere,
thus altering the true slope values. In this region, the windowed nonlinear plane-wave destructors seem
to do the best job. However, the simple and fast corrected estimate of equation (15), when guided by any
of the chosen semblance functions, also provides very good slope estimates. The whole-section nonlinear
plane-wave destructors suffer more from the interfering events.

The consequence of eliminating slope values with semblance below a threshold can be understood with
the help of Figure 9. We see that even though large parts of perfectly well estimated slope values have
already been discarded, still some of the bad estimates pass the criterion. The windowed nonlinear plane-
wave destructors suffers the least, since its semblance exceeds the threshold almost everywhere. Still in this
case, the eliminated slopes are better estimates than some of the retained ones. This is another indication
that simple semblance masking is not the best way to proceed in order to extract reliable slope values from
the data.

It is to be remarked that the results of the whole-section nonlinear plane-wave destructors depend on the
regularization parameters for the damping of the roughening operator in the optimization. To understand
this dependence, Figure 10 shows the extracted slopes along the first arrival as a function of the regular-
ization parameter. We see that stronger damping leads to more stable slope values. On the other hand, the
estimated values become lower and lower, thus more and more underestimating the true slopes. Note that
in addition to the effects on the extracted slopes, stronger damping leads to faster convergence and higher
semblance values.



276 Annual WIT report 2007

CONCLUSIONS

In this paper, we have shown how local slopes can be extracted from a seismic section. Local slopes are
important attributes for a number of different tasks, ranging from velocity analysis to an automatic NMO
correction, CRS stack, and stereotomography.

We have discussed several different ways of extracting the desired slope information from the data.
We have proposed a simple, straightforward correction to the linear plane-wave destructors of Claerbout
(2004). The correction is based on the observation that additionally to the local slope, also its inverse can
be extracted from the data in a fully analogous way. Combining the information of both extractions yields
a simple but powerful correction to the local slopes.

In our numerical examples, the naive application of simple linear plane-wave destructors with our sim-
ple, straightforward correction produced results of high quality, even in an example with a rather high noise
level and interfering events. Only a windowed application of nonlinear plane-wave destructors produced
slightly better results. The application of nonlinear plane-wave destructors in the whole section at once
under regularization with a roughening operator as proposed by Fomel (2002) turned out to be strongly
dependent on the chosen regularization parameters. Moreover, in the region of interfering events, the ex-
tracted slope values where of lower quality.
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Figure 4: Final semblance sections and curves of maximum semblance along the first arrival. Top left:
Calculated using equation (6). Top right: Calculated using equation (7) along short lines with the extracted
slope at every point. Center left: Maximum semblance of the two above. Center right: Optimization of the
classical semblance [equation (7)] using the previous p as initial value. Bottom left: Calculated using the
nonlinear plane-wave destructors of Fomel (2002) in the whole section. Bottom right: Calculated using the
nonlinear plane-wave destructors of Fomel (2002) in 10× 3 windows.
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Figure 5: Slope panels with overlain maximum-semblance curves. Top left: Calculated using equation (5).
Top right: Calculated using equation (15) in 10×5 windows. Center left: Calculated using equation (15) in
10 × 5 windows. Center right: Calculated using an optimization of the classical semblance [equation (7)]
using the previous p as initial value. Bottom left: Calculated using the nonlinear plane-wave destructors of
Fomel (2002) in the whole section. Bottom right: Calculated using the nonlinear plane-wave destructors
of Fomel (2002) in 10× 3 windows.
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Figure 6: Slope extraction by semblance threshold. Shown are all values of slopes at points where the
semblance exceeds 0.75. Top left: Semblance from equation (6). Top right: Semblance from equation
(7) along short lines with the extracted slope at every point. Center left: Maximum semblance of the two
above. Center right: Optimized semblance. Bottom left: Semblance from nonlinear plane-wave destructors
in the whole section. Bottom right: Semblance from windowed nonlinear plane-wave destructors.
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Figure 7: Slope extraction by semblance threshold. Shown are all values of slopes at points where the
semblance exceeds 0.75 as a function of their horizontal position. Also indicated are the true slopes of the
three events as determined by ray theory. Left: Accepted slopes as calculated with equation (5) (top) and
equation (15) (bottom). Center: Accepted slopes with classical semblance equation (5) (top) and semblance
maximum (bottom). Right: Accepted slopes from nonlinear plane-wave destructors in the whole section
(top) and in windows (bottom).
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Figure 9: Slope values extracted along the maximum-semblance curve of the first arrival with semblance
above the threshold of 0.75. 1: True slope along the first arrival. 2. Calculated with formula (5), semblance
of equation (6). 3: Calculated with formula (15), semblance of equation (6). 4: Calculated with formula
(15), classical semblance. 5: Calculated with formula (15), maximum of last two semblances. 6: Optimized
slope, optimized classical semblance. 7. Nonlinear plane-wave destructors in whole section. 8. Windowed
nonlinear plane-wave destructors.
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Figure 10: Extracted slope values of whole-section nonlinear plane-wave destructors with different regu-
larization parameters for the damping of the roughening operator.


