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ABSTRACT

The application of an imaging condition in wave equation shot profile migration is important to
provide illumination compensation and amplitude recovery. Particularly for true-amplitude wave-
equation migration algorithms, a stable imaging condition is essential to successfully recover the
medium reflectivity. We continue our study of a set of image conditions with illumination compen-
sation by application to the Marmousi data. The imaging conditions are evaluated by the quality
of the stacked migrated sections. The most stable of the tested imaging condition with illumination
compensation divides the crosscorrelation of the up- and downgoing wavefields by the autocorrela-
tion of the downgoing wavefield. Smoothing imaging conditions, which work perfectly in vertically
inhomogeneous media, tend to fail for laterally varying velocities.

INTRODUCTION

Shot-profile migration is a method used to construct an image of the earth interior from seismic data. This
technique is implemented in two steps. The first step consists of downward continuing the source and
receiver wavefields for each shot position and the second step consists of applying the imaging condition.
The imaging step is based on Claerbout’s imaging principle (Claerbout, 1971).

The theoretically correct imaging condition for Claerbout’s imaging principle uses one-dimensional de-
convolution between the down- and up-going wavefields, i.e., division in the frequency domain. Since this
division is unstable off the reflector position, historically, and for practical reasons, the imaging condition
is usually estimated by cross-correlating the down- and up-going wavefields (Claerbout, 1971). This yields
perfectly stable images since the phase information is correctly preserved and no division is necessary.

However, once migrated amplitudes are another desired result to be obtained from prestack migration,
as suggested by Zhang et al. (2003, 2005), a more realistic imaging condition that approximates the division
in the frequency domain, needs to be used. Last year, Schleicher et al. (2006) investigated the behaviour
of a set of different imaging conditions for a single shot experiment in a simple model that consisted
of four horizontal reflectors embedded in a horizontally homogeneous medium with a constant vertical
velocity gradient. They concluded that the most stable of the tested imaging conditions with illumination
compensation is the one that divides the crosscorrelation of the up- and downgoing wavefields by the
autocorrelation of the downgoing wavefield.

In this paper, we carry this analysis to a more realistic situation, comparing the behaviour of the best of
the tested imaging conditions when applied to the Marmousi data.

METHOD

Wave equation migration tries to undo the propagation effects described by the (acoustic) wave equation
on the surface data Q(xr, yr;ω) recorded at the receiver at xr = (xr, yr, z = 0). After Fourier transform,
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the wave equation reads (
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)
p(x, y, z;ω) = −δ(x− xs), (1)

where ∆ = ∂2

∂x2 + ∂2

∂y2 , and where xs denotes the source location. The solution of this equation at xr must
equal the recorded surface data Q(xr, yr;ω), i.e.,

p(xr, yr, z = 0;ω) = Q(xr, yr;ω). (2)

To map this solution into depth, the Helmholtz equation (1) is generally decomposed into two one-way
wave equations. These are (
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PD = 0, (3)

with initial condition
PD(x, y, z = 0;ω) = δ(x− xs) (4)

for the downgoing waves, and (
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)
PU = 0 (5)

with initial condition
PU (x, y, z = 0;ω) = Q(x, y;ω) (6)

for the upgoing waves.
After propagating the waves from the indicated initial conditions at z = 0 into the underground (down-

going waves forward from t = 0, upgoing waves backward from t = tmax), an imaging condition must be
applied in order to obtain the final image. The theoretically correct imaging condition is the division of
both wavefields at the reflectors depth in order to recover the reflection coefficient as the amplitude ratio,
i.e.,

R(x, y, z) =
Nω∑
j=1

PU (x, y, z;ωj)
PD(x, y, z;ωj)

, (7)

where Nω is the number of frequencies used in the process. Since the reflector position is unknown, this
division has to be carried out at all depths, which is rather unstable, because the downgoing wavefield
will be zero at some places. Therefore, some stabilization is required. For this purpose, many different
practical imaging conditions have been suggested. Below we give an overview over a number of them and
compare their performance on a simple vertical-gradient model with four horizontal interfaces, as well as
the Marmousi data.

IMAGING CONDITIONS

Crosscorrelation

The simplest imaging condition is the one originally proposed by Claerbout (1971). It uses a simple
convolution of the up- and downgoing fields, viz.

R(x, y, z) =
Nω∑
j=1

P ∗
D(x, y, z;ωj)PU (x, y, z;ωj), (8)

where the asterisk denotes the complex conjugate.
This condition is obtained as a simplification of

R(x, y, z) =
Nω∑
j=1

PU (x, y, z;ωj)P ∗
D(x, y, z;ωj)

PD(x, y, z;ωj)P ∗
D(x, y, z;ωj)

, (9)
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which is obtained from equation (7) by multiplication of numerator and denominator with P ∗
D(x, y, z;ωj),

in order to make the denominator real. Of course, equation (9) does not remedy the division by zero.
However, the denominator is now merely a scale factor that does no longer contain any phase information.
Thus, if no amplitude information is to be preserved, the denominator can be omitted, leading to imaging
condition (8).

Stabilized divisions

Actual implementations of imaging condition (9) retaining the denominator need to apply some stabiliza-
tion. Here, we have tested two forms. The first one is an additive form, given by

R(x, y, z) =
Nω∑
j=1

PU (x, y, z;ωj)P ∗
D(x, y, z;ωj)

PD(x, y, z;ωj)P ∗
D(x, y, z;ωj) + ε

, (10)

where ε is an additive constant. There are many ways to define its value. A constant value for all depth
levels is generally an inadequate choice, leading to insufficient stability or too strong smoothing at different
depth levels. In our numerical tests, we used

ε = ε(ω, z) = λ[max
x,y

(|PD(x, y, z;ω)|2)] . (11)

In other words, the stabilization is achieved by adding a fraction (0 < λ < 1) of the maximum of the
squared absolute value of the downgoing wavefield at the current depth level to the denominator.

The second one is a low-cut form, given by

R(x, y, z) =
Nω∑
j=1

F (x, y, z;ωj), (12)

where

F (x, y, z;ω) =


PU (x, y, z;ωj)P ∗

D(x, y, z;ω)
PD(x, y, z;ω)P ∗

D(x, y, z;ω)
, if |PD(x, y, z;ω)|2 > ε

0 otherwise
, (13)

where ε is again defined by equation (11). In other words, stabilization is achieved by substitution of all
values of the denominator smaller than a fraction of the maximum value of the wavefield at the current
depth level by that value.

Since the corresponding stabilization of the the original complex division 7 already turned out to be of
very poor quality, we refrained from testing it on the Marmousi data.

Smoothing

Recently, imaging conditions using lateral smoothing have been proposed (Guitton et al., 2006). We have
tested four such conditions. The first one uses a smoothed denominator in equation (9), i.e.,

R(x, y, z) =
Nω∑
j=1

PU (x, y, z;ωj)P ∗
D(x, y, z;ωj)

<PD(x, y, z;ωj)P ∗
D(x, y, z;ωj)>

, (14)

where the smoothing operator is

<PD(xi, yk, z;ω)P ∗
D(xi, yk, z;ω)> =

i+nx∑
l=i−nx

k+ny∑
m=k−ny

PD(xl, ym, z;ω)P ∗
D(xl, ym, z;ω) . (15)

Here nx and ny represent the size of the smoothing windows in the x and y directions.
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The next imaging condition uses corresponding smoothing also in the numerator. In formulas,

R(x, y, z) =
Nω∑
j=1

<PU (x, y, z;ωj)P ∗
D(x, y, z;ωj)>

<PD(x, y, z;ωj)P ∗
D(x, y, z;ωj)>

. (16)

The other two smoothing imaging condition add another smoothing operation along the frequency axis
to the lateral smooting as indicated above. These conditions read

R(x, y, z) =
Nω∑
j=1

PU (x, y, z;ωj)P ∗
D(x, y, z;ωj)

�PD(x, y, z;ωj)P ∗
D(x, y, z;ωj)�

(17)

and

R(x, y, z) =
Nω∑
j=1

�PU (x, y, z;ωj)P ∗
D(x, y, z;ωj)�

�PD(x, y, z;ωj)P ∗
D(x, y, z;ωj)�

. (18)

where the smoothing operator now also contains a sum in ω, i.e.,

�PD(xi, yk, z;ωs)P ∗
D(xi, yk, z;ωs)� =

i+nx∑
l=i−nx

k+ny∑
m=k−ny

s+nω∑
t=s−nω

PD(xl, ym, z;ωt)P ∗
D(xl, ym, z;ωt) .

(19)
Here nx, ny , and nω represent the size of the smoothing windows in the x, y, and ω directions, respectively.

Division by autocorrelation

In the single-shot examples of Schleicher et al. (2006), to divide the complete crosscorrelation of the
up- and downgoing wavefields at the current depth level at t = 0 by the autocorrelation of the downgoing
wavefield turned out to be the most stable of the tested imaging conditions with illumination compensation.
In symbols, this image condition reads

R(x, y, z) =
U(x, y, z)
D(x, y, z)

, (20)

where

U(x, y, z) =
Nω∑
j=1

PU (x, y, z;ωj)P ∗
D(x, y, z;ωj) (21)

and

D(x, y, z) =
Nω∑
j=1

PD(x, y, z;ωj)P ∗
D(x, y, z;ωj) . (22)

This imaging condition is the result of a least-squares inversion of the equation

PU (x, y, z;ω) = R(x, y, z)PD(x, y, z;ω) (23)

for all ω (Arienti et al., 2002). Equation (23) relates the up- and downgoing fields at the image point. In
other words, R(x, y, z) of equation (20) minimizes the cost function

C(R(x, y, z)) =
1
2

Nω∑
j=1

[PU (x, y, z;ω)−R(x, y, z)PD(x, y, z;ω)]2 . (24)

It turns out that equation (20) is a rather stable imaging condition. Only at the corners of the migrated
image, very far from sources and receivers, some problems may occur. Because of the location of these
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Figure 1: Marmousi data migrated using the crosscorrelation imaging condition.

problems, it is sufficient to avoid these areas. Thus, for the application to the Marmousi data, we have
tested the slightly modified forms

R(x, y, z) =
U(x, y, z)

D(x, y, z) + ε
, (25)

and

P (x, y, z;ω) =


U(x, y, z)
D(x, y, z)

, if |D(x, y, z)|> ε

0 otherwise ,
(26)

where
ε = ε(z) = max{α, λmax

x,y
(|D(x, y, z;ω)|)} . (27)

Note that conditions (20) and (26) can be easily generalized to incorporate the time-shift imaging con-
dition of Sava and Fomel (2006). All that needs to be done is calculation of the inverse Fourier transforms
in the numerator and denominator with opposite time shifts.

NUMERICAL EXPERIMENTS

Marmousi data

To study the quality of the best of the above imaging conditions under more realistic conditions, we applied
them to the Marmousi data (Versteeg, 1994). The employed migration was a common-shot PSPI migration
with ten reference velocities chosen according to the maximum entropy criterion of Bagaini et al. (1995).
The following figures depict the resulting depth-migrated image using the true velocity distribution. Note
that we used the same migration in all cases, only varying the imaging condition, thus eliminating the
influence of migration from the image variations. Therefore, all differences in the images below are a
direct concequence of the different imaging conditions used.

Crosscorrelation.— Figure 1 shows the migration result for the standard crosscorrelation imaging condi-
tion. This image should be considered a benchmark, since the applied imaging conditions are not supposed
to degrade the image quality in comparison to this one.
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Figure 2: Marmousi data migrated using the imaging condition by stabilized division [equation (10)] using
the variable ε of equation (11) with λ = 0.1.

Stabilized divisions.— The first imaging condition with illumination compensation to be tested is the
stabilized division of equation (10) (see Figure 2). As we know from the tests of Schleicher et al. (2006),
divisional imaging conditions tend to create migration artifacts. This becomes immediately clear when we
compare Figure 2 to Figure 1. The migration artifacts are so strong that the actual image cannot be seen
except for a few very strong reflectors. Figure 4 was obtained using λ = 0.1 in equation (11). However,
increasing λ does not much to improve the situation. This can be seen in Figure 3, which was obtained
with λ = 0.2.

Actual stabilization could only be achieved using quite a large fixed value for ε of 10−4 for the whole
migration of all shots at all depths rather than a variable ε with depth as suggested in connection with
condition (10). The result is depicted in Figure 4. We note that the images in Figures 1 and 4 look almost
identical. The reason is the large stabilization value, which makes the illumination compensation almost a
division by a constant scale factor, thus resulting in no relative differences between the images.

The situation is almost identical if we avoid adding ε to the denominator but carry out the division only
if the denominator exceeds ε as proposed in imaging condition (12). For λ = 0.1 and λ = 0.2, we obtain
the images of Figures 5 and 6, respectively. By substitution for a fixed ε = 10−4, the image improves
again, though it remains full of artifacts (see Figure 7).

Smoothing

The results of the imaging conditions (14) to (18) that rely on smoothing are depicted in the next figures.
Figures 8 and 9 show the results of condition (14), which smoothes the denominator of the division, for two
different sizes of the smoothing window, nx = 75 and nx = 256. The structure of the image has improved
in comparison to the images in Figures 2, 3, 5, 6, and even 7. Moreover, the illumination compensation
can be seen to have an effect as the stronger reflections deeper in the model like, for instance, the reservoir
reflections, have stronger amplitudes as before. However, the migration artifacts are still rather strong,
deteriorating the image quality. The effect of the different window sizes is barely detectable.

The behaviour of condition (16), which smoothes the both the numerator and the denominator, is quite
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Figure 3: Marmousi data migrated using the imaging condition by stabilized division [equation (10)] using
the variable ε of equation (11) with λ = 0.2.
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Figure 4: Marmousi data migrated using the imaging condition by stabilized division [equation (10)] using
a fixed ε = 10−4.
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Figure 5: Marmousi data migrated using the imaging condition by stabilized division [equation (12)] using
the variable ε of equation (11) with λ = 0.1.
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Figure 6: Marmousi data migrated using the imaging condition by stabilized division [equation (12)] using
the variable ε of equation (11) with λ = 0.2.
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Figure 7: Marmousi data migrated using the imaging condition by stabilized division [equation (12)] using
a fixed ε = 10−4.
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Figure 8: Marmousi data migrated using the imaging condition with lateral denominator smoothing [equa-
tion (14)] with a window size of nx = 75.
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Figure 9: Marmousi data migrated using the imaging condition with lateral denominator smoothing [equa-
tion (14)] with a window size of nx = 256.

different (see Figure 10 for a window size for the smoothing operator of nx = 150). Because the smoothing
is applied horizontally, not following the geological structure, the numerator smoothing leads to strong
horizontal smear in the image, obscuring any structural information, even with a rather short smoothing
operator with nx = 75..

The corresponding images for condition (17) are shown in Figures 11 and 12, again for two two sizes of
the lateral smoothing window of nx = 128 and nx = 256, with a rather short frequency smoothing window
of nω = 10. Again, the influence of the window size is irrecognizable. We note that while the structure
of the Marmousi model can be guessed, the migration noise is still unacceptably strong. We conclude that
contrary to the observation for the vertically inhomogeneous medium, frequency smoothing in complex
media does not help to improve the image. We refrain from including a figure for condition (18), since it is
rather obvious that smoothing in frequency in addition to the lateral smoothing already applied in Figure 10
won’t do any good.

In summary, our numerical tests with lateral smoothing imaging conditions for the Marmousi data
exclusively yielded unsatisfactory results. Numerator smoothing smears the image since the smoothing
generally does not follow reflectors as in the case of the above simple model. Smoothing the denominator
alone was only slightly better. However, even when choosing a rather large size for the smoothing filter,
division by zero could not be avoided for certain frequencies, resulting in very unstable images. A possible
remedy might be the omission of frequencies that cause denominators close to zero. Those frequencies
should be removable without degrading the image as the do not carry any extractable information anyway.

Division by autocorrelation

Finally, Figures 13, 14, and 15 show the results of imaging conditions (20), (25), and (26), respectively, that
division of the crosscorrelation by the autocorrelation. For conditions (25) and (26), we chose λ = 0.05
and α = 10−6 in equation (27). Note that for the stack, each migrated shot had to be normalized by its rms
value so as to guarantee comparable energy in each image.

As expected, the artifacts outside the illuminated regions perturb the image obtained with the uncondi-
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Figure 10: Marmousi data migrated using the imaging condition with lateral numerator and denominator
smoothing [equation (16)].
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Figure 11: Marmousi data migrated using the imaging condition with lateral and frequency denominator
smoothing [equation (16)] with a window size of nx = 128 and nω = 10.
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Figure 12: Marmousi data migrated using the imaging condition with lateral and frequency denominator
smoothing [equation (16)] with a window size of nx = 256 and nω = 10.
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Figure 13: Marmousi data migrated using the imaging condition dividing the crosscorrelation by the
autocorrelation.
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Figure 14: Marmousi data migrated using the imaging condition dividing the crosscorrelation by the
stabilized autocorrelation.
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Figure 15: Marmousi data migrated using the imaging condition (26) dividing the crosscorrelation by the
nonzero autocorrelation.
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tional application according to equation (20). However, both modified divisions (25) and (26) produce very
nice results. Figure 14 shows the result of stabilizing the division by adding a small ε to the autocorrelation
(equation 25). In Figure 15, we see the result of its conditional form 26, which applies the division only
where the autocorrelation is larger than a small threshold value. In both cases we have used a very small
value given in equation (27) with λ = 0.05. Both migrated images are virtually identical to each other,
showing an improved recovery of the reservoir zone when compared to the simple crosscorrelation result.
Overall, the strength of the reflector images resemble more closely the relative strength of the contrasts in
the original Marmousi model.

Upon a very close inspection some minor differences can be spotted between Figures 14 and 15. While
the conditional autocorrelation division (Figure 15) resolves some details in the fault region a little better,
it loses a bit of continuity of the two reflectors below the fault zone. Also, its resolution of the strongest
reflector in the top right corner is a bit reduced in comparison to the stabilized autocorrelation division
(Figure 14).

As expected from the single-shot experiments of Schleicher et al. (2006), setting the image to zero
where the downgoing wavefield is too small actually provides a nice muting of undesired effects outside the
actual image. Note that although image conditions 20, 25, and 26 carry out the illumination compensation
by division with the downgoing wavefield, the migration artifacts in Figures 14 and 15 are not worse than
those of Claerbout’s simple convolutional image condition (8) in Figure 1.

CONCLUSIONS

If the amplitudes of wave-equation migration are to be corrected for geometrical-spreading effects in het-
erogeneous media, it is important to take the effect of the imaging condition into account. Different imaging
conditions have different effects on the resulting migrated images. Divisional imaging conditions gener-
ally strongly enhance migration artifacts. Standard stabilization techniques may lead to altered reflection
amplitudes.

In this paper, we have compared the numerical behaviour of a number of different imaging conditions
for common-shot wave equation migration when applied to the Marmousi data. As in the previous tests
using a single shot from a vertical-gradient model with four horizontal interfaces, the most stable of the
tested imaging condition with illumination compensation turned out to be the one that divides the cross-
correlation of the up- and downgoing wavefields by the autocorrelation of the downgoing wavefield. In
this way, not only the migration artifacts are strongly reduced, but the amplitudes become more stable and
reliable.

Our tests on the Marmousi data demonstrated that an application of the latter imaging condition can
help to preserve relative amplitudes of reflectors, i.e., strong or weak velocity contrasts in the earth appear
as strong or weak reflections in the image, respectively. The muting of images where the downgoing field
is close to zero was successful for the cited imaging condition to reduce migration artifacts outside the
illuminated area.
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