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ABSTRACT

The purpose of redatuming is to transform seismic data acquired at a certain measurement surface to
simulated data as if acquired at a different measurement surface. Based on the chaining of diffraction-
stack migration and isochron-stack demigration, we derive a 2.5D true-amplitude diffraction-stack-
type redatuming operator and present its specific form for zero-offset data. The operator consists
of performing a single weighted stack along adequately chosen stacking lines. For simple types of
media, we derive analytic expressions for the stacking lines and weight functions and demonstrate its
functionality with numerical examples.

INTRODUCTION

The purpose of redatuming is to transform seismic data acquired at a certain measurement surface to simu-
lated data as if acquired at a different measurement surface (Wapenaar et al., 1992). Generally, redatuming
is used to remove the influence of the surface topography from the data, simulating the acquisition at a pla-
nar surface, the so-called datum (Berryhill, 1979, 1984). However, in a general treatment of redatuming,
the restriction on the output measurement surface to be planar can be dropped.

Many different redatuming techniques have been discussed in the literature. Wiggins (1984) proposed
the so-called RKR method, based on the successive aplication of Kirchhoff integration, reciprocal inter-
change of sources and receivers, and a second Kirchhoff integration. Wapenaar (1993) proposed a recursive
one-way Kirchhoff-Helmholtz extrapolation as the basis for true amplitude redatuming in media consist-
ing of homogeneous layers. Tegtmeier et al. (2004) propose a Kirchhoff redatuming that can be applied
to sparse data. Other contributions to the theory of wave-equation-based redatuming methods include the
works of Yilmaz and Lucas (1986), Bevc (1995), and Schneider et al. (1995). A comprehensive summary
about the state of the art in redatuming can be found in Schuster and Zhou (2006).

The correct transformation of the field amplitudes from the original measurement surface to the new da-
tum level is of fundamental importance, if a true-amplitude migration (see, e.g., Schleicher et al., 1993) is
to be applied later in the processing sequence. As kinematically discussed in Hubral et al. (1996) and math-
ematically shown in Tygel et al. (1996), a true-amplitude configuration transform (of which redatuming is a
particular case) can be achieved by chaining weighted diffraction-stack migration and isochron-stack dem-
igration. In this work, we derive the true-amplitude redatuming operator resulting from this approach and
demonstrate its application in simple situations.

2.5D REDATUMING

In this paper, we derive the redatuming operator for the 2.5D case, i.e., the wave propagates in a 3D
medium, which is isotropic and laterally homogeneous in the y direction, but arbitrally inhomogeneous
in the (x, z) plane. This situation can be parameterized in a 2D form. Particularly, all reflectors can
be parameterized by curves in (x, z). We suppose that all point sources emit identical pulses, and are
distributed along the x axis, together with the receivers.
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Let the original seismogram section be parameterized by the variable ξ. Thus, the coordinates Si =
Gi = (ξ, 0, zi(ξ)) on the acquisition surface z = zi(x) and along the seismic line y = 0, define the location
of the coincident source-receiver pairs. Correspondingly, the output seismogram is parameterized by the
variable η, with a acquisition surface described by z = zo(x) and along the seismic line y = 0. Thus, the
coordinates So = Go = (η, 0, zo(η)) describe the source-receivers pairs on the output datum.

We suppose that each real seismic trace in the input section has been transformed into its analytic trace,
adding the Hilbert transform of the original trace as the imaginary part. Thus, the output seismogram will
be considered analytic too. The analytic traces from input section will be denoted by Ui(ξ, t), where t is
the temporal coordinate in this section. Correspondingly, the analytic trace in the output section will be
denoted by Uo(η, τ), where τ is the temporal coordinate in the redatumed section.

As kinematically discussed in Hubral et al. (1996) and mathematically proved in Tygel et al. (1996), we
know that the migration and demigration operators can be chained to construct operators for a broad range
of seismic image transformations. The resulting operator achieves the desired imaging task in a single
stacking procedure. In other words, for each point (η, τ) in the redatumed section, we know that Uo(η, τ)
can be expressed as a single stacking operator with a weight function acting upon the input data, i.e.,

Uo(η, τ) =
1√
2π

∫
A

dξWred(ξ; η, τ)D
1/2
− [Ui(ξ, t)]|t=Tred(ξ;η,τ) . (1)

The input traces Ui(ξ, t) are weighted by factor Wred(ξ; η, τ), and then summed along the stacking curve
t = Tred(ξ; η, τ). Both functions depend on the point (η, τ) where the stacking is performed. Moreover,
A denotes the aperture of the stack, i.e., the range where the data are available in the input section. At last,
the half derivative

D
1/2
− [f(t)]| = F−1

[
|ω|1/2e−i π

4 sign(ω)F [f(t)]
]
, (2)

where F denotes the Fourier transform, is necessary to correct the pulse shape.
The stacking curve Tred is defined by the kinematics of the problem, while the weight function Wred

will be determined by the desired amplitude behaviour. So, for a true-amplitute weight function, this is
done imposing that, asymptotically, the simulated reflections must have the same geometrical-spreading
factor that the reflections would have if they were actually acquired on the new datum. As we will see, the
resulting true-amplitude weight function does not depend on any reflector property. Thus, it is possible to
evaluate it for any point (η, τ) in the redatumed section using only information about the velocity model.

We are going to construct the stacking curve Tred. Given (η, τ) in output section, we want to find the
curve in the input section that is kinematically equivalent to (η, τ), i.e., where reflections might be found
in the input section that image to (η, τ). For this, we must follow these two steps:

(1) For a given point (η, τ), we determine its isochron z = Zo(x; η, τ) in the depth. This isochron is
implicity defined by all point M = (x,Zo(x; η, τ)) in the depth where the sum of the traveltime along two
ray segments SoM and MGo, connecting M with the source-receiver pair (So, Go), is equal to the given
time τ , i.e.,

T (So,M) + T (M,Go) = τ . (3)

In the same way, we define the isochron z = Zi(x; ξ, t) which refers to the input section.
(2) Treating the isochron like a reflector, we construct its traveltime curve in the original depth, i.e., we

evaluate the reflection time for all source-receiver pairs in ξ. The resulting curve can be written as

t = Tred(ξ; η, τ) = T (Si,M
∗) + T (M∗, Gi) , (4)

where, for each source-receiver pair in ξ, the point M∗ represents the position in the isochron z =
Zo(x; η, τ) where a reflection occurred. The point M∗, supposed to be unique, has the depth coordinates
(x∗,Zo(x∗; η, τ)), where x∗ = x∗(ξ; η, τ) is obtained using the stationary condition

∂

∂x
[T (Si,M) + T (M,Gi)] |x=x∗ = 0 . (5)

We refrain from detailing the lengthy determination of the true-amplitude weight functionWred(ξ; η, τ),
because it is completely analogous to the one presented for migration to zero offset (MZO) in Tygel et al.
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(1998). The reason is that both MZO and redatuming are part of the general class of configuration trans-
forms. Thus, the arguments apply to both situations in the same way. The final redatuming weight function
for an arbitrary medium, configuration and topography reads

Wred(ξ; η, τ) =
voS

viS

√
σiS + σiG

σoS + σoG

L̄iSL̄iG

L̄oSL̄oG

(
cos θS

L̄2
iS

+
cos θG

L̄2
iG

)
1

cosφ

√
cos θoR

v3
R

×exp{iπ[1− sgn(Ki −Ko)]/4}√
2|Ki −Ko|

, (6)

where viS and voS are the velocities at the sources on the input and output datums, respectively, and vR

is the velocity at M . Also, σiS and σiG are the so-called optical lengths of ray segments MSi and MGi,
respectively, i.e., the integral of squared velocity in traveltime along the ray. Analogously, σoS and σoG

represent these factors along segments MSo and MGo, respectively. These factors represent the out-of-
plane geometrical-spreading factors. The in-plane components of the geometrical spreading are given by
L̄iS and L̄iG, along segmentes MSi and MGi, and by L̄oS and L̄oG, along segmentes MSi and MGi,
respectively. Moreover, symbols θis and θis represent the angles that the raysMSi andMGi make with the
surface normal at Si and Gi, respectively, and φ is the surface dip angle at Si. Also, θoR is the reflection
angle at M in the output configuration. Finally, Ki and Ko are the curvatures of the input and output
isochrons, respectively. For zero-offset, expression (6) simplifies to

Wred(ξR; η, τ) =
voS

viS

√
2
σiS

σoS

cos θS

cosφ
1

v
3/2
R L̄2

oS

exp{iπκ/2}√
|Ki −Ko|

. (7)

Below, we construct the stacking curves (4) and weight functions (7) for simple types of velocity models.

Homogeneous medium (v = vo) without topography

We start with redatuming between flat surfaces in a homogeneous medium. For simplicity, we consider
zi(x) = 0 and zo(x) = zo constant. First we construct the stacking curve (4), and then we specify the
weight function (7) for this situation.

A point (η, τ) in the output section determines the isochron z = Zo(x; η, τ), which is defined by
equation (3). For homogeneous media with ZO configuration, we can write this as

T (So,M) + T (M,Go) = 2T (So,M) = 2
Ro

vo
= τ , (8)

where Ro =
√

(z − zo)2 + (x− η)2 = voτ/2. This equation can be solved in terms of z to yield the
semicircle

z = Zo(x; η, τ) = zo +
√
R2

o − (x− η)2 . (9)

Therefore, the diffraction time TD(x; ξ), that is, the sum of the traveltimes along the segments that pass
from Si to an arbitrary point M = (x,Zo(x; η, τ)) and from this M to Gi, can be written as

TD(x; ξ) =
2R
vo

, (10)

where
R =

√
(x− ξ)2 + z2 (11)

is the distance from Si and Gi to M , with z given by (9).
However, we are interested only in orthogonal reflections from isochron (9). So, we have to find the

stationary point of (10), i.e., the point that satisfies

∂TD

∂x

∣∣∣∣
x=x∗

=
2
vo

[
∂R

∂x
+
∂R

∂z

dz

dx

]∣∣∣∣
x=x∗

= 0 , (12)



152 Annual WIT report 2007

Figure 1: The zero-offset reflection from the source-receiver pair to the isochron z = Zo(x; η, τ) crosses
the center of semicircle.

with z satisfying the isochron (9). Thus, we obtain the stationary point x∗ as

x∗ =
γRo

α
+ η , (13)

where γ = η − ξ and α =
√
z2
o + γ2. In other words, γ represents the horizontal displacement between

the source-receivers pairs from input and output sections, and α represents the total distance between them
(see Figure 1).

Now we can write the redatuming time from isochron (9) in input section. Using the stationary point
(13) in equation (10), we find

Tred(ξ; η, τ) =
2
vo

(Ro + α) = τ + 2
α

vo
. (14)

This result has a simple geometrical explanation. In Figure 1, we see that for a given ξ, the unique zero-
offset ray from the source-receiver pair at ξ to the isochron z = Zo(x; η, τ) crosses the center (η, zo) of
the semicircle defined by the isochron Zo. This must be so because the reflection must be normal to the
isochron. The two-way traveltimes of all rays through (η, zo) define the stacking line in equation (14).

As the next step, we evaluate the weight function (7) of the redatuming operator. First, we will deter-
mine the curvatures of the isochrons. We start by determining that of the input isochron. For that purpose,
we need the point in depth that has originated the reflection event that arrives at source-receiver pair ξ at
time t. In analogy to the previous case, the input isochron is the lower semicircle given by

z = Zi(x; ξ, t) =
√

(vot/2)2 − (x− ξ)2 . (15)

With this, we can evaluate the curvatures of the isochrons (9) and (15) at a point M = (x, z) are

Ko =
d2Zo/dx

2

[1 + (dZo/dx)2]3/2
= − 1

Ro
(16)

and

Ki =
d2Zi/dx

2

[1 + (dZi/dx)2]3/2
= − 1

(vot/2)
, (17)

respectively. In particular, at the stationary point x∗, the traveltime is given by equation (14). Thus,

Ki = − 1
(Ro + α)

. (18)
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Figure 2: Simulation with the acquisition line at zi = 0 (left) and its respective seismic section (right).

With these two curvatures, we can evaluate the exponential term in the weight function. We have

Ki −Ko =
α

Ro(Ro + α)
, (19)

and therefore
exp

{
i
π

2
κ
}

= exp
{
i
π

4
[1− sign(Ki −Ko)]

}
= 1 . (20)

In other words, the weight function for redatuming in a homogeneous medium is always a real quantity.
Any phase changes in the events are taken care of by the stacking procedure itself.

To conclude the evaluation of the weight function, we have to determine the geometrical spreading. For
homogeneous media, we have σiS = vo(Ro +α) and σoS = voRo. The 2D spreading is the square root of
traveltime, i.e., L̄oS =

√
Ro/vo.

Using that cos θS = zo/α, we can thus write the final expression for the weight function of redatuming
operator (7) in homogeneous media as

Wred(ξ; η, τ) =
√

2
vo

(
Ro + α

Ro

)
zo

α3/2
. (21)

Numerical example.— To test the above formulas, we apply them in a simple numerical test. Figure 2
shows the two-layer model used together with the ray family of the zero-offset experiment and the position
of the new datum. We model the seismic sections at surface zi = 0 and at new datum zo, using a software
based on the Kirchhoff integral. To the section obtained for zi = 0 (input section), we apply the redatuming
and compare this result (output section) with the modelled section obtained at zo. The source-receiver pairs
are equally spaced from −1000 m to 1000 m with displacement 10 m. The new datum (represented by the
horizontal line in the left on Figure 2) is zo = 1400 m. The sampling rate was 1 ms. The velocitiy is
3.0 km/s above the reflector and 4.0 km/s below it.

The modelled zero-offset data at z = zi = 0 are depicted on the right side of Figure 2. The left panel
of Figure 3 shows the the output section of redatuming applied to the data in Figure 2. For comparison,
the right panel of Figure 3 shows the desired output, i.e., the data modelled at the new datum z = zo =
1400 m. Apart from the boundary effects of the stacking procedure, no differences between the two sections
are visible. Note that since the caustic occurs above the new datum, redatuming correctly removes the
triplication of the reflection event.

To evaluate the quality of the transformation in more detail, we refer to Figure 4. The left side shows
the pulse in the traces at x = 500 m of the modelled and redatumed sections. The redatumed trace is
undistinguishable from the modeled one. As another test, the right side of Figure 4 shows the relative
error in amplitude along the event between the redatumed and the modelled sections. Note that outside the
boundary region, the amplitude error is about 0.5%.
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Figure 3: Seismic sections obtained from redatuming (left) and modelling at the datum level z = zo

(right).
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Figure 4: Left: Seismic traces at x = 500 m from modelling (continuous line) and redatuming (dashed
line). Right: relative amplitude error obtained comparing the peaks of the two seismograms in Figure 3.

Homogeneous layers separated by a flat interface

In this section, we extend the previous results to redatuming to a flat interface separating two homogeneous
media with velocities v1 and v2. As before, we assume for simplicity that the input data were acquired at
z = zi = 0 and that the interface that takes the role of the new datum is at z = zo = constant (Figure 5).
As before, a point (η, τ) in the output section determines the circular output isochron

z = Zo(x; η, τ) = zo +
√
R2

o + (x− η)2 , (22)

where now Ro = v2τ/2.
To find an explicit expression for the reflection traveltime from an input source-receiver pair to the

isochron (22), we proceed differently from the homogeneous case. Because of the refacting of the ray at
the interface, finding the stationary point x∗ of TD(x; ξ) involves the solution of a fourth-order equation.
Thus, we will localize this point using geometrical arguments. As in the homogeneous case, the unique
reflection ray that connects a source-receiver pair to the isochron must cross the center of the semicircle
(Figure 5). Therefore, the ray also travels the distance 2(Ro + α), however in two different media. Thus
we can write the redatuming time as

Tred(ξ; η, τ) =
2Ro

v2
+

2α
v1

= τ + 2
α

v1
. (23)
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Figure 5: The unique reflection from an input source-receiver pair to the isochron z = Zo(x; η, τ) crosses
the center of the semicircle.

Figure 6: Given (ξ, t) in the input section, we have the isochron z = Zi(θ; ξ, t) in depth.

From the geometry (Figure 5) and Snell’s law, we find the respective stationary point where this reflection
occurs to be given by

x∗ = n
γRo

α
+ η and z∗ = zo +

Ro

α
|z̃o| , (24)

where n = v2/v1 is the refraction index and z̃2
o = α2 − n2γ2.

We observe that redatuming time (23) is the same as obtained in equation (14). This result shows that
the kinematics of redatuming are independent of the velocity v2 below the new datum.

Our next step is to find the weight function (7) for the present situation. First, we need to determine the
isochron Zi(x; ξ, t) of a point (ξ, t) in the input section. To simplify the considerations, we parameterize
the problem using the angle θ between the ray and the surface normal at Si (see Figure 6) instead of the
horizontal coordinate x. The isochron will then be described by z = Zi(θ; ξ, t) (−π/2 < θ < π/2).

The given time value t that defines the isochron can be thought of as composed of two contribuitions,
i.e., t = t1 +t2, where t1 is the two-way time from the source to the interface and where t2 is the remaining
two-way time to the isochron (Figure 6). The geometry implies that

cos θ =
zo

v1t1/2
: t1 =

2zo

v1 cos θ
. (25)
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The horizontal coordinate xp of the refraction point is found correspondingly from a function of θ as

sin θ =
ξ − xp

v1t1/2
: xp = ξ − zo tan θ . (26)

The refraction angle θ′ is related to θ via Snell’s law, i.e.,

sin θ
v1

=
sin θ′

v2
. (27)

Thus,
v2 sin θ
v1

= sin θ′ =
xp − x

v2t2/2
. (28)

Using that t2 = t− t1 and the result (25), we can write x as

x(θ; ξ, t) = ξ + (n2 − 1)zo tan θ − n
v2t

2
sin θ . (29)

Moreover, from Pythagoras’ theorem, we have(
v2t2
2

)2

= (z − zo)
2 + (xp − x)2 . (30)

Combining these two equation together with xp from equation (26), we obtain the isochron

z = Zi(θ; ξ, t) = zo +
√

1− (n sin θ)2
(
v2t

2
− n

zo

cos θ

)
. (31)

Note that for v1 = v2 = vo the isochron, now represented by x(θ; ξ, t) and z(θ; ξ, t), reduces to the one for
the homogeneous medium, i.e., the semicircle with radius vot/2.

To evaluate the curvature of this isochron, we need the first and second derivatives of Zi(θ; ξ, t) with
respect to x. Because of the chain rule we have

dZi

dx
=
dZi

dθ

(
dx

dθ

)−1

, (32)

where,
dZi

dθ
=
n sin θ[2zo(n2 − 1)− nv2t cos3 θ]

2 cos2 θ
√

1− (n sin θ)2
, (33)

and
dx

dθ
=

2zo(n2 − 1)− nv2t cos3 θ
2 cos2 θ

. (34)

Thus, we obtain
dZi

dx
= n

sin θ√
1− (n sin θ)2

= tan θ′ . (35)

Correspondingly, the second-order derivative with respect x is

d2Zi

dx2
=

d

dx

dZi

dx
=

d

dθ

(
dZi

dx

)(
dx

dθ

)−1

, (36)

where
d

dθ

(
dZi

dx

)
=

n cos θ
[1− (n sin θ)2]3/2

. (37)

We find
d2Zi

dx2
=

n cos3 θ
[zo(n2 − 1)− n(v2t/2) cos3 θ][1− (n sin θ)2]3/2

. (38)
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With these expressions, we obtain the curvature as

Ki =
n cos3 θ

zo(n2 − 1)− n(v2t/2) cos3 θ
. (39)

We are interested in the curvature at the stationary point. According to Figure 5, θ∗ must satisfy cos θ∗ =
zo/α and sin θ∗ = −γ/α, where α and γ continue as defined in the beginning of the section. Using this
fact and that t is given by (23), we can write

Ki = − nz2
o

αz̃2
o + nRoz2

o

. (40)

Again, we observe that for v1 = v2 = vo this curvature reduces to the previous result (18) for a homoge-
neous medium.

With this curvature and the curvature of the isochron (22), we can now calculate the exponential term
in the weight function. First, we observe that

Ki −Ko =
αz̃2

o

Ro[αz̃2
o + nRoz2

o ]
. (41)

Thus, the value of sign(Ki−Ko) depends on the sign of z̃2
o = α2−n2γ2 = α2(1−n2 sin2 θ) = α2 cos2 θ′,

which is positive for all nonevanescent transmissions. Thus, as for the homogeneous case,

κ =
1
2
[1− sign(Ki −Ko)] = 0 , (42)

which means that the weight function for redatuming in this situation is still a real quantity and any phase
changes in the events are taken care of by the stacking procedure itself.

Next, we will investigate the factors that constitute the geometrical spreading. As the medium is homo-
geneous in each layer, we have σiS = v1α+ v2Ro and σoS = v2Ro. The 2D spreading in the second layer
is again L̄oS =

√
Ro/v2.

With all its individual contributions calculated, we can express the weight function of the stacking
operator (1) for redatuming to a planar interface as

Wred(ξ; η, τ) =
√

2
v2

nzo

α3/2Ro

√
(α+ nRo)(αz̃2

o + nRoz2
o)

nz̃2
o

. (43)

Unlike in homogeneous media, the aperture A in stack (1) is now restricted if v2 > v1. The reason is that
supercritical rays don’t penetrate the interface. Thus, the corresponding source positions do not contribute
to the stack. The critical angle θc satisfies

sin θc

v1
=

sin 90o

v2
=

1
v2

. (44)

Thus, the aperture condition can be formulated as

|sin θ| ≤ |sin θc| :
|ξ − η|
α

≤ v1
v2

, (45)

or, in other words, for a given η, only those sources will contribute to the stack whose coordinates ξ satisfy

|ξ − η| ≤ zo√
n2 − 1

. (46)

Note that the maximum aperture tend to infinity when n tends to one, which is the case of the homogeneous
medium discussed above.
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Figure 7: Simulation with the acquisition line at zi = 0 (left) and its respective seismic section (right).
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Figure 8: Seismic sections obtained from redatuming (left) and from modelling considering the acquisition
line at z = zo (right).

Numerical example.— In the following numerical test, we considered a planar reflector without topogra-
phies in input and output datum (see Figure 7). The acquisistion parameters are the same as used in the
previous example. The input data are modeled at z = zi = 0 and the output datum is at z = zo = 500 m
depth. The medium velocities are 3000 m/s above the datum and 5000 m/s below it. As before, the seismic
section on the right side in Figure 7 is the modelled input data. We use it to apply the redatuming operator.
The resulting seismogram is depicted in the left panel of Figure 8 and compared to the synthetic data mod-
elled at the datum level (right panel). Except for a weak precursor to the reflection event, the modelled and
redatumed sections are identical. The detailed quality analysis was done in the same way as before. The
results are depicted in the Figure 9. The left panel compares the pulses of the trace at x = 500 m in the
modelled (continuous) and redatumed (dashed) sections. The actual reflection event is practically identical.
As already observed in Figure 8, the redatumed trace has a small precursor which is due to imperfect ta-
pering of the stacking operator. The right panel of Figure 9 shows the amplitude error along the redatumed
reflection event. Except for the boundary region, the error is under 2%.

Homogeneous medium (v = vo) with topography

In this section, we calculate the redatuming operator for the ZO configuration in a homogeneous medium
(v = vo), now allowing for topography both at the acquisition surface zi = zi(x) and at new datum
zo = zo(x).

The derivation is very similar to the one of the first section. Therefore, we will restrict the discussion
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Figure 9: Left: Seismic traces at x = 500 m from modelling (continuous line) and redatuming (dashed
line). Right: relative amplitude error obtained comparing the peaks of the two seismograms in Figure 8.

Figure 10: The unique point that go up, arrive at isochron z = Zo(x; η, τ) and go back to the same place,
is the ray that cross the center of the semicircle.

to the geometrical arguments. Given a point (η, τ) in the output section, the isochron (9) must now be
modified to

z = Zo(x; η, τ) = zo(η) +
√
R2

o − (x− η)2 , (47)

where still Ro = voτ/2.
We are only interested in the orthogonal reflections to isochron (47). As before, (see Figure 10) the ray

path covers a distance of 2(Ro + α) on its way from the source back to the receiver. Thus, the redatuming
time of isochron (47) in the input section is

Tred(ξ; η, τ) =
2
vo

(Ro + α) = τ + 2
α

vo
, (48)

where now α =
√
γ2 + [zo(η)− zi(ξ)]2. Moreover, the respective stationary point where this reflection

occurs is
x∗ =

γRo

α
+ η . (49)

Now, we calculate the curvature of the isochrons. To take the topography into account, the input
isochron of equation (15) must be modified to

z = Zi(x; ξ, t) = zi(ξ) +
√

(vot/2)2 − (x− ξ)2 . (50)
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Figure 11: Simulation with the acquisition line at zi(x) (left) and its respective seismic section (right).

This isochron is different of (15), just on the fact that now the topography influences in the depth of the
isochron. So, the Since the modifications of the isochrons (47) and (50) only affect their vertical position,
their curvatures are still given by equations (16) and (18), respectively. Thus, the exponential factor in the
weight function continues to be given by equation (20).

We still need expressions for the geometrical-spreading factors. Analogously to the previous results,
σiS = vo(Ro + α) and σoS = voRo, and the 2D spreading is the square root of the traveltime, i.e.,
L̄oS =

√
Ro/vo.

The last quantity to be specified in terms of model quantities is the emergence angle θ∗S of the stationary
ray at Si. Because of the surface topography, this angle no longer equals the ray propagation angle θ. From
geometrical considerations, it is not difficult to see that

cos θ∗S = cosφ(zo(η)− zi(ξ)− γz′i(ξ))/α , (51)

where z′i = dzi/dx denotes the derivative of the function zi that describes the surface topography.
Combining these results, we have the weight function given by

Wred(ξ; η, τ) =
√

2
vo

(
Ro + α

Ro

)
[zo(η)− zi(ξ)− γz′i(ξ)]

α3/2
. (52)

Numerical example.— As before, we have tested the expressions for the redatuming stacking operator
with a simply synthetic data set. We considered a synclinal reflector below a homogeneous overburden.
The acquisition surface and datum have different topographies (see Figure 11). The acquisition parameters
are the same as before. Again, the synthetic seismic section at right in the Figure 11 is the input to the
redatuming operator. Figure 12 compares the resulting redatumed section (left) with the synthetic data as
modelled at the datum level (right). As before, the sections look very similar except for a few boundary
effects. The quality analysis in Figure 13 compares two traces at x = 250 m from these sections (left) and
depicts the relative amplitude error along the first arrival (right). Again, the traces are virtually identical.
The error is below 1% except in the boundary region and in the center of the caustic, where the events
intersect.

CONCLUSIONS

In this work, we have developed a true-amplitude theory for a diffraction-stack type redatuming operation.
Such an operation can be conceived of as being composed of a true-amplitude diffraction-stack migration
and a true-amplitude isochron-stack demigration, as described in the unified approach to seismic reflection
imaging (Hubral et al., 1996; Tygel et al., 1996).

We have derived the general expressions for the stacking line and weight function for such a redatuming
operator. The quantities involved can be calculated by ray tracing in a given macro-velocity model. For
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Figure 12: Seismic sections obtained from redatuming to z = zo(x) (left) and from modelling considering
the acquisition line at z = zo(x) (right).
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Figure 13: Left: Seismic traces at x = 250 m from modelling (continuous line) and redatuming (dashed
line). Right: relative amplitude error obtained comparing the peaks of the two seismograms in Figure 12.

zero-offset data in two simple situations, being a homogeneous overburden and a horizontal interface at the
datum level, we have explicitly expressed the stacking line and weight function. We have seen that in both
situations, no contributions from the redatuming process to the number of caustics in the data need to be
taken into account. In other words, the weight function is a real quantity. All phase shifts in the wavelet
due to the new acquisition level are automatically taken into account by the stacking procedure.

In simple numerical examples, we have demonstrated the quality of the redatuming operation by com-
paring redatumed data to the ideal output obtained from modelling. We have seen that the proposed
diffraction-stack type redatuming indeed correctly transforms traveltimes, amplitudes and wavelet shapes
of the simulated data.

Ongoing research will extend the applicability of the method to more general situations. Of particular
interest is the situation where the new datum is a reflector with topography. Moreover, we intend to address
the question about the degree of medium inhomogeneity that is acceptable for constant-velocity redatuming
to work with a tolerable error.
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