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ABSTRACT

Semblance is the mostly used coherence measure for parameter estimation from geophysical data. The
best example is velocity analysis in which the normal-moveout velocity is extracted from common-
midpoint (CMP) gathers. In complete analogy to velocity analysis, semblance is also applied to esti-
mate Common-Reflection-Surface (CRS) parameters by means of the hyperbolic traveltime applied to
multicoverage data. In statistics, semblance is related to the so-called second moment and in optimiza-
tion theory, to the least-squares solution of maximum signal energy as a characterization of reflection
events. Extensions of the usual semblance can be defined by replacing second-order by higher-order
quantities. Here we found encouraging results by a natural extension of semblance to fourth order.
The introduced fourth-order semblance is applied to CRS parameter estimation. Numerical examples
show that the search using fourth-order semblance is more reliable for high noise levels.

INTRODUCTION

Since the famous work of Taner and Koehler (1969), semblance has been a reliable measure of coherence
in seismic processing. Many applications like stacking velocity analysis (Doherty and Claerbout, 1976;
Yilmaz, 1979), migration velocity analysis (Sattlegger, 1975; Dohr and Stiller, 1975; Al-Yahya, 1989;
Schleicher and Biloti, 2007), filter techniques (Reiter et al., 1993) or CRS stack (see, e.g., Höcht et al.,
1999) rely on semblance to detect the shape of reflection events in seismic data.

Semblance is known to depend in various degrees on operator size (aperture and window length) and
noise level (Douze and Laster, 1979). Moreover, it is based on the assumption of white noise. Therefore,
it sometimes shows unpredictable behaviour if the noise is actually coloured. For these reasons, many
attempts have been made to find a more stable measure of coherence that depends less on the kind of
noise in the data or the choice of the parameters used in the analysis. One of the most successful ones is
differential semblance (Symes and Carazzone, 1991; Symes and Kern, 1994).

Being a very robust and easy to calculate measure of coherence for a broad variety of situations, the
second-order coherence measure semblance has survived all these attempts. Nonetheless, there exist par-
ticular situations, where other coherency measures can be advantageous. In this paper, we compare its
behaviour to those of a first- and a fourth-order coherence measure. We show that while in conventional
velocity analysis, there is no gain in replacing semblance by one of the other measures, for the linear search
of the CRS stack (Müller, 1999), the fourth-order measure is less dependent on aperture and noise level,
thus resulting in reliable estimates of the local slope more often than when using conventional semblance.

INTERPRETATION OF SEMBLANCE IN STATISTICS

One important step in the CMP (or CRS) stacking process is to find pre-assigned curves or surfaces (e.g.,
hyperbolic curves) that fit the reflection traveltimes in some best possible way. Of paramount importance
is an accurate determination of the parameters that define the best-fit curves or surfaces, as these con-
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vey most relevant information to be extracted from the seismic data. Of course, due to the presence of
noise, these tasks can be very difficult. Therefore, it is necessary to have some measure to decide whether
some curve/surface fits the traveltimes. One possibility for such a measure is the degree of alignment or
coherence of the seismic traces along the trial curves/surfaces.

Semblance is a quantitative measure of coherence, typically used for event characterization in noisy
data sets, for example seismic data. In a certain sense, semblance represents the energy of the stacked trace
divided by the energy sum of all stacking traces within a given time window. Mathematically, semblance
is defined as

S̃2 =

w∑
k=−w

(
N∑

i=1

ui(tk)

)2

N

w∑
k=−w

(
N∑

i=1

ui(tk)2
) . (1)

Here, the inner summation represents the traces (index i) along which the stack is performed; the outer
summation performs the stack for various time samples (index k), that fall in a given time window of
width 2w + 1. The window width should be related to the length of the signal wavelet of the event.
The summation enhances the signal-to-noise ratio of the resulting stack. In order to study semblance as
a statistical or optimization concept, it is convenient to disregard the time-window summation. In other
words, we shall, for the moment, define the local semblance as the simpler expression

S2 =

(
N∑

i=1

ui

)2

N

N∑
i=1

u2
i

. (2)

To describe the relationship between local semblance S2 and statistical quantities, it is convenient to
consider, for a given sample (u1, u2, . . . , uN ), the simple moment of order m, or simply m-moment, µm,
defined by

µm =
1
N

N∑
i=1

um
i , m = 0, 1, 2, . . . . (3)

We readily note that µ0 = 1 and µ1 is the standard mean or average. With the help of the above definitions,
the local semblance S2 of equation (2) can be recast as

S2 =
µ2

1

µ2
. (4)

To generalize the local semblance to a corresponding higher-order quantity (namely in terms of higher-
order moments), we introduce the central m-moments

σm =
1
N

N∑
i=1

(ui − µ1)m, m = 0, 1, 2, . . . , (5)

for which σ0 = 1 and σ1 = 0. In particular, σ2 is called the variance, which can be written as

σ2 = µ2 − µ2
1. (6)

The various quantities σm measure different dispersion attributes about the mean. Roughly speaking,
the variance carries information about the concentration of the sample in some interval around the mean.
A large value of the variance indicates a disperse distribution. A small variance means that the data is
clustered around the mean.
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For our purposes, we are only interested in moments of even order, in fact for definiteness, fourth
order. We observe that the local semblance S2 is naturally related to the second-order moments (simple
and central) by the relationship

σ2 = µ2 − µ2
1 = µ2

(
1− µ2

1

µ2

)
= µ2(1− S2) (7)

or, equivalently,
S2 = 1− σ2

µ2
. (8)

Equation (8) is the key relation that enables us to extend the semblance concept to higher (even) orders.
Here, we only consider the fourth order. In analogy to equation (8), we define the fourth-order “local
semblance” S4 as

S4 = 1− σ4

µ4
=
µ1

µ4

(
4µ3 − 6µ1µ2 + 3µ3

1

)
. (9)

As our final expression for the fourth-order coherency measure, which will replace the usual (second-order)
semblance, we re-introduce the (external) time-window ummation of the original semblance definition in
equation (1). Thus, the final fourth-order semblance is defined as
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INTERPRETATION OF SEMBLANCE IN OPTIMIZATION THEORY

As mentioned earlier, semblance is used in the CMP or CRS stack as a measure of cohrerence along a
specified trial curve or surface through the seismic data. Let the vector u = (u1, u2, . . . , uN ) represent the
amplitudes along some curve/surface in the seismic section, for some limited aperture around the central
point that is being analysed. We may assume that these values must be reasonably constant if they are
perfectly coherent, i..e., if they are aligned along the correct traveltime curve/surface. Hence, we can find
the N -dimensional constant vector c = (x, x, . . . , x) that is “closest” to u and to use their “distance” as a
measure of the fit. There are many different ways to define the distance between N -dimensional vectors u
and c, some of the possibilities being analysed below.

The first possibility is to minimize the average of the absolute values of the differences of the xandu
components, |x− ui|, namely,

min
x

R1(x) ≡
1
N

N∑
i=1

|x− ui|. (11)

The residual R1 is known as the absolute residual and its value at the mean, R1(µ1), is the well-known
absolute standard deviation. The solution to equation (11) is given by the median, x∗ = M, the value that
is above (or below) 50% of the values of u. Without loss of generality, we will assume that the elements of
u are in ascending (or descending) order. It is not difficult to see that the median can be computed as,

M =


u(N+1)/2 , N is odd,

uN/2 + uN/2+1

2
, N is even.

(12)

The minimal absolute residual is then given by

R1(M) =
1
N

N∑
i=1

|ui −M|, (13)
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from which we can measure the fit by the expression,

S1 = 1− R1(M)
R1(0)

. (14)

Clearly, S1 ≤ 1, and since R1(M) is the minimal residual, we also have S1 ≥ 0. The less R1(M) is, the
closer to one S1 will be. In particular, S1 = 0 for M = 0 and S1 = 1 if u is a constant vector. The main
drawback to work with the first-order “semblance” function S1 is that it is a nondifferentiable function.
Moreover, there is no closed form for S1, in the sense that we need to first compute M and then compute
the residual.

Let us next analyse a second-order type semblance function. It is a well-known result that the mean,
x∗ = µ1, is the solution of the quadratic (least-squares) optimization problem,

min
x

R2(x) ≡
1
N

N∑
i=1

(x− ui)2. (15)

To see this, observe that (dR2/dx)(x) = 0 is equivalent to
∑N

i=1(x − ui) = 0. Since (d2R2/dx
2)(x) =

2/N > 0, the zero of the derivative is the global minimizer. In other words, the mean is the value that
minimizes the root-mean-square (RMS) residual,

√
R2(x). Substituting x∗ = µ1 in the residual R2 we

find

R2(µ1) =
1
N

N∑
i=1

(ui − µ1)2 = σ2, (16)

i.e., the minimal quadratic residual equals the second central moment. As in the previous case, we can
define the relative measure of the fit as

S2 = 1− R2(µ1)
R2(0)

= 1− σ2

µ2
=
µ2

1

µ2
. (17)

Note that this defines the “true” second-order semblance function in correspondence with equations (2),
(4), and (8). Observe that, as in the case of the absolute residual, 0 ≤ S2 ≤ 1, with S2 = 0 if µ1 = 0 and
S2 = 1 if u is a constant vector. The semblance function can also be interpreted as the square of the cosine
of the angle θ between the amplitude vector u and the constant vector c = (µ1, µ1, . . . , µ1),

cos2 θ =

(
N∑

i=1

ui µ1

)2

(
N∑

i=1

u2
i

)(
N∑

i=1

µ2
1

) =

(
Nµ2

1

)2
(Nµ2)(Nµ2

1)
=
µ2

1

µ2
= S2. (18)

Increasing the order of the residual to four, let us now consider the optimization problem,

min
x

R4(x) ≡
1
N

N∑
i=1

(x− ui)4, (19)

i.e., we are now attempting to minimize the fourth-order (quartic) residual. Although the above minimiza-
tion problem is very similar to its second-order counterpart (15), an explicit optimal solution in this case
cannot be easily found. In fact, it involves the solution of the cubic polynomial equation,

dR4

dx
(x) =

4
N

(
x3 − 3µ1x

2 + 3µ2x− µ3

)
= 0. (20)

The unique real solution, x∗ = κ, can be computed using Cardano’s formula, but the final expression
cannot be easily manipulated. The same applies for the quartic residual function R4 and the corresponding
semblance function. This makes a fourth-order semblance function defined through the deviation of the
minimum residual hard to use.
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Figure 1: Random sample (top) and the residual functions R1, R2 and R4 (bottom). The horizontal lines
in the top figure and the symbols in the bottom one indicate the values of the minimizers of the absolute
(R1), quadratic (R2) and quartic (R4) residuals: � = M, © = µ1 and F = κ, respectively.

However, there is another, computationally more appealing way of defining a fourth-order semblance-
like function. For this purpose, we replace the optimal quartic residual,

R4(κ) =
1
N

N∑
i=1

(ui − κ)4, (21)

by the quartic residual at the mean,

R4(µ1) =
1
N

N∑
i=1

(ui − µ1)4 = σ4, (22)

which is equal to the fourth-order central moment σ4. Computing the relative quartic residual, as we have
done for the absolute and quadratic residuals, we obtain

S4 = 1− R4(µ1)
R4(0)

= 1− σ4

µ4
=
µ1

µ4

(
4µ3 − 6µ1µ2 + 3µ3

1

)
, (23)

which is the expression for the fourth-order semblance function, S4. given by equation (9). As in the cases
of S1 and S2, we also note that S4 ≤ 1. However, we cannot ensure that S4 ≥ 0, since R4(µ1) is not the
minimal quartic residual. In any case, S4 = 1 only if u is a constant vector, as desirable, and S4 = 0 if
µ1 = 0 as before.

Figure 1 illustrates, for a random number distribution between zero and one, the behavior of the ab-
solute, quadratic and quartic residuals and minimizers. The top part shows the random sample together
with its median (first-order minimizer), M, (cyan line), mean (second-order minimizer), µ1 (blue line),
and quartic minimizer κ (red line). The bottom part shows the residual functions R1 (cyan line), R2 (blue
line), and R4 (red line) as a function of x, together with their respective minima.

To examine the behavior of the various semblance functions (S1, S2 and S4) in a noisy environment,
we calculated their values for the typical amplitude curve after adding different levels of noise. The results
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Figure 2: Behaviour of the semblance functions. From top to bottom: Uniform noisy sample with unit
amplitude (blue) [S1 = 0.01, S2 = 0.01, S4 = 0.01] and typical amplitude curve (red) [S1 = 0.41,
S2 = 0.68, S4 = 0.92]; Amplitude with 25% added noise [S1 = 0.34, S2 = 0.61, S4 = 0.88]; Amplitude
with 50% added noise [S1 = 0.24, S2 = 0.52, S4 = 0.82]; Amplitude with 100% added noise [S1 = 0.13,
S2 = 0.34, S4 = 0.67]; Amplitude with 150% added noise [S1 = 0.10, S2 = 0.24, S4 = 0.53].

are shown in Figure 2. While the uniform noisy sample itself has indistinguishable values of S1, S2 and S4,
the amplitude function is more easily detected as representing a coherent event by the higher semblance
value of S4. Moreover, while all semblance values decrease with increasing noise level, S4 has the least
decrease.

From Figures 1 and 2, we observe that the fourth-order semblance S4 has the capability of detecting
coherency even under a very strong noise. This points towards the potential of an S4-based semblance
analysis to be more successful than standard S2 analysis in the presence of high levels of noise.

APPLICATION TO CRS STACK

The common reflection surface (CRS) method (see, e.g., Hubral et al., 1998) represents a natural extension
of the Commom Midpoint (CMP) method in two important aspects. Firstly, for each stacking trace location
(now called simply a central point), the CRS considers a supergather of source-receiver pairs, arbitrarily
located with respect to the central point. In other words, the gather is not restricted to the CMP condition.
Secondly, not only the stacking velocity, but also other additional parameters are extracted from the data. In
the 2D situation, three parameters are determined for each central point and all zero-offset (ZO) traveltime
samples. The procedure is performed for all traveltime samples.

To be able to stack traces from source-receiver pairs that do not conform to the CMP condition, the
CRS method utilizes the (generalized) hyperbolic moveout,

T (x, h) =
√

[T0 +A (x− x0)]2 +B (x− x0)2 + C h2, (24)

where x0 is the central point, x and h denote the midpoint and half-offset coordinates of the source and
receiver pair, and T0 is the ZO traveltime at the central point. As shown in Hubral et al. (1998), the
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parameters A, B and C are related to physical quantities referred to as the CRS parameters or attributes,

A =
2 sinβ
v0

, B =
2T0 cos2 β

v0
KN , and C =

2T0 cos2 β
v0

KNIP =
4
V 2

, (25)

where β is the emergence angle of the ZO ray with respect to the surface normal, KN and KNIP are the
curvatures of the N- and NIP-waves, respectively (see Hubral (1983)), and V is the stacking velocity. All
these quantities are evaluated at the central point. Finally, v0 denotes the surface velocity, also at the central
point.

The search for the parameters A, B and C can be performed in three main steps. First, for each pair
(x0, T0), we find the value of the parameterC that maximizes the semblance function (S1, S2 or S4) for the
amplitudes along the hyperbolic traveltime within the respective CMP section at x0. Denoting this CMP
section by φ(h, t), we can write that the vector, u = (ui), is given by

ui = φ(hi, Ti), with Ti = T (x0, hi) =
√
T 2

0 + C h2
i , i = 1, 2, . . . , NC , (26)

where NC is the number of traces considered inside some aperture. After determination of all parameters,
C, the CMP data is stacked. The result of this first-step process is, then, a panel C(x0, T0), as well as a
stacked section, ψ(x0, T0).

The second step consists of the search for parameterA, performed within the stacked section ψ(x0, T0).
For each pair, (x0, T0), we maximize the semblance S1. S2 or S4 of the amplitudes along the hyperbolic
traveltime (24) considering h = 0 and B = 0. In other words, the sample vector, u = (ui), is now given
by

ui = ψ(x, Ti), with Ti = T (x, 0) = T0 +A (x− x0), i = 1, 2, . . . , NA, (27)

where NA is again the number of traces considered inside some aperture, now taken in the stacked section.
Generally, NA will be different from NC . Typically, NA should be chosen smaller than NC .

In the third step, to find B, we repeat the search in the stacked section, using the estimated value of A.
For each (x0, T0), we maximize the semblance for the amplitude vector, u = (ui) given by

ui = ψ(x, Ti), Ti = T (x, 0) =
√

[T0 +A (x− x0)]2 +B (x− x0)2, i = 1, 2, . . . , NC . (28)

Here, the aperture NC in the stacked section must be larger than NA.

NUMERICAL EXPERIMENTS

To compare the behaviour of the different semblance functions in the estimation of CRS parameters and
stack, we have applied the procedure described in the previous section to a very simple synthetic data set.
The seismic model is depicted in Figure 3. It consists of a smooth reflector below a homogeneous acoustic
medium. We analyse the behaviour of the three semblance functions, S1, S2 and S4, for two different
central points and also using the correct value of the zero-offset (ZO) (or stacked) time. Also shown in
Figure 3 are the two ZO rays at the two central points. For each x0 we performed one thousand random
tests for each of five different sizes of the aperture (number of traces), 10, 20, 30, 50 and 70, and for each
of four noise levels, 30%, 50%, 100% and 150%, respectively. An estimate of any parameter A, B or C is
considered a success if the deviation from the true value is less than 10%.

Estimation of CRS parameters

The results of the search for parameter C were almost the same in all cases, with no significant advantage
of using any of the semblance functions. Parameter C was successfully determined at both points x0 in
over 90% of the tests, even for the highest noise level, with any of the three tested semblance functions.
This confirms the well-known robustness of the parameter C.

As opposed to the previous case, significant differences between the success rate for the different sem-
blance functions are now observed in the search for parameter A. Again, we performed one thousand
random tests for each of five different sizes of the aperture (number of traces), 10, 20, 30, 50 and 70, and
for each of four noise levels, 30%, 50%, 100% and 150%, respectively, at two differerent central points x0
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Figure 3: Model and central points for the synthetic experiments.
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Figure 4: Zero-offset section for the model in Figure 3. Every 3rd trace is shown

in the modeled zero-offset section (see Figure 4). The sought-for results of parameter A at the two central
points are the dips of the straight lines tangent to the zero-offset reflection, as depicted in Figure 4.

Figures 5 and 6 depict the percentage of success for parameter A at x0 = 5 km and x0 = 0.0 km,
respectively. As can be observed, the search using S4 has a higher success rate in almost every setting.
The largest advantage of the fourth-order semblance function is observed, as expected, at the highest noise
level.

Another conclusion from Figures 5 and 6 is that the search for A is highly dependent on the chosen
aperture. While there is a high success rate for all aperture sizes at the central point x0 = 0 km, the same
is not true at the central point x0 = 0.5 km. The reason is the stronger curvature of the reflection event
at x0 = 0.5 km (see again Figure 4), which makes it harder to fit a linear traveltime curve over a larger
aperture. Interestingly enough, an aperture of about 20 traces seems to work best at both central points,
even though Figure 4 indicates that around x0 = 0.5 km, the traveltime function is approximately linear
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Figure 5: Percentage of success in finding parameter A in the ZO-section for x0 = 0.5 km: S1 (blue), S2

(green) and S4 (red). From top to bottom the number or traces within the aperture increases: 10, 20, 30, 50
and 70. The ratio aperture/depth also increases: 0.3, 0.5, 0.8, 1.0 and 1.5. In the horizontal axis is indicated
the level of the added noise: 30%, 50%, 100%, and 150%.
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Figure 6: Percentage of success in finding parameter A in the ZO-section for x0 = 0.0 km: S1 (blue), S2

(green) and S4 (red). From top to bottom the number or traces within the aperture increases: 10, 20, 30, 50
and 70. The ratio aperture/depth also increases: 0.3, 0.5, 0.8, 1.0 and 1.5. In the horizontal axis is indicated
the level of the added noise: 30%, 50%, 100%, and 150%.
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over a larger interval. For this example, the aperture of 20 traces is equivalent to about half the depth of the
reflection point.

The final step is the detection of B in the zero-offset section using the estimated values of A. Once
more, we performed one thousand random tests for each of five different sizes of the aperture (number of
traces), 10, 20, 30, 50 and 70, and for each of four noise levels, 30%, 50%, 100% and 150%, respectively,
in the modeled zero-offset section (see Figure 4). Since our interest was in the different performances of
the different semblance functions, we carried out the set of experiments using the exact value for A in the
search for B in order not to let the error in the estimation of A influence the estimation of B. As in the
search for C, we found no significant differences in success rate for B. However, while the search for C
was very robust, yielding high success rates for any of the semblance functions, the search for B is rather
unstable and the success rates are quite low, particularly for high noise levels. Instability of parameter B is
a well-known difficulty encountered by the CRS method.

Behaviour of stacked sections

The second experiment was devised to exemplify the different behaviour of the CRS stacked sections
obtained using the different semblance functions. Due to the rather poor performance of S1 in the statistical
tests, and since the standard procedure is to use S2, we only compare the results using S2 and S4. We
applied the CRS stacking technique to a complete synthetic dataset for a model with three homogeneous
layers separated by one curved and two horizontal interfaces. To study the behaviour of the semblance
functions we simulated two types of noise. In the first test, we added white noise of about 60% of the data
amplitude. For the second test, we used a lower noise level of about 30%, but convolved it with a Ricker
wavelet so as to simulate colored rather than white noise.

Figure 7 shows the CRS stacked sections for the first test data set. The left column shows the results
of using S2 and the right column those of S4. In the top row, we see the stacked sections after the search
for C. Though the first reflector is slightly better visible in the S4 section, the overall impression is of
comparable quality. This is the expected result after the above statistical tests.

In the center row of Figure 7, we see the stacked sections after the search ofA. This search is performed
in the sections shown in the top row. As expected from the statistical analysis, the search for A was much
more successful when using S4. The second and third reflectors are much better visible in the right panel
than in the left one. As the next step, the B values are searched for individually in the center panels.
However, because of the small success rate of the B search, the stacked sections do not change much.

The bottom row of Figure 7 shows the final CRS stacked section after a simultaneous search for the best
triplet of values A, B, and C. The previously detected individual values of A, B, and C are used as initial
values for this search. The higher quality of the right panel is clearly visible. The main reason for the better
quality of the final stacked section are the better initial values for the simultaneous search, particularly
A. The search itself is rather independent of the choice of the semblance function. Simultaneous search
with S2 using the initial values from the S4 individual searches results in a stacked section of comparable
quality.

Figure 8 shows the corresponding results for the second test with colored noise. While the overall
observations remain very similar, we note that even the search for C seems to be more stable with the
fourth-order semblance. Apparently, the presence of colored noise in the data is more of a disturbance to a
standard S2 coherence analysis than to the one using S4.

CONCLUSIONS

In this paper, we have introduced a new fourth-order semblance function. Moreover, we have evaluated
its behaviour in CRS parameter estimation and stack. We have seen that the new fourth-order semblance
function produces comparable results for the searches of the curvature parameters, but superior results for
the linear search. The fourth-order measure is less dependent on aperture and noise level, thus resulting in
reliable estimates of the local slope more often than when using conventional semblance. As a consequence,
the fourth-order-semblance based final CRS stack after the whole search procedure is of better quality than
the corresponding one based on second-order semblance stack.

Another conclusion from our analysis is that the linear search is highly dependent on the chosen aper-
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Figure 7: Stacked sections after the searches, with 60% white noise. Top: C. Center: A. Bottom:
Simultaneous. Left: S2. Right: S4.
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Figure 8: Stacked sections after the searches, with 30% colored noise. Top: C. Center: A. Bottom:
Simultaneous. Left: S2. Right: S4.
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ture. Depending on the curvature of the reflection event in the stacked section, the success rate can decrease
dramatically with increasing aperture. For our examples, an aperture of about half the depth of the reflec-
tion point produced the best results.
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