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ABSTRACT

The polarization of the Rayleigh wave in the simple case of an isotropic halfspace is known to be in the
plane of propagation. Here we demontrate, based on previous work, that the solution of the equations
of motion for this problem also contains transverse components. This is theoretically derived for the
case of a horizontal single point force at the surface. We confirm this prediction using numerical
modelling results for this case and make statements here: The amplitudes of these extra components
are about 100 times smaller compared to the ordinary Rayleigh waves. Moreover, their amplitude
decay with distance is faster.

INTRODUCTION

The Rayleigh wave propagates along the surface of an isotropic elastic halfspace without any dispersion.
Its amplitude decays exponentially with depth. In the classical solution the Rayleigh wave is polarized in
the plane of propagation and does not exhibit a transverse component.

However, in Kiselev (2004) a formal solution of the equation of motion was constructed which in addi-
tion to the classical case of Rayleigh wave polarization, e.g. Aki and Richards (1980), contains transverse
components outside of the propagation plane. These transverse components have a lower frequency content
compared to the main components of the Rayleigh wave. In the frame of the ray theory these components
can be considered as additional components of the displacement of first order of the ray approximation.
This paper, however, does not deal with ray theory.

In this paper the full theory of the Rayleigh wave is given for the example of the exact solution of
the wavefield for the isotropic halfspace which explains these additional components, where the source is
a horizontal single point force applied at the free surface. The derivation provides physical insight to the
formal solution of Kiselev (2004). The wavefield of the Rayleigh wave is derived by calculation of residues
of the exact solution. The analytical solution was tested by a Chebyshev forward modelling method (see,
e.g. Kosloff et al. (1990), Tessmer (1995)). The additional transverse components of the Rayleigh wave
are observed for certain directions in the synthetic modelling results.

In Appendix A the classical solution of Rayleigh wave propagation is constructed. Based on this the
short derivation of the result from Kiselev (2004) is repeated in Appendix B. In Appendix C the derivation
of the exact solution for a horizontal force in an elastic halfspace is presented.

A HORIZONTAL FORCE APPLIED TO AN ISOTROPIC HOMOGENEOUS HALF-SPACE

The source is introduced by the following condition at the free surface (x1, x2-plane):

~T (x1, x2) = δ(x1, x2)~i1eiωt.

Here ~T is the stress vector due to the source and ~i1 is the unit vector in x-direction. These boundary
conditions define the unit horizontal force in x-direction. In Appendix C it is shown that the wavefield
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from this kind of a source is obtained by the following equations in cylindrical coordinates (r, ϕ, x3 ≡ z):

ur =
ρω cosϕ

2π

∫ ∞

−∞

ζαs

R
e−ωαpx3H

(2)
0 (ωζr)dζ

− ρ cosϕ
2π

∫ ∞

−∞

ζαs

R
e−ωαpx3

1
ζr
H

(2)
1 (ωζr)dζ

− cosϕ
2π

∫ ∞

0

ζ

µαs
e−ωαsx3

1
ζr
H

(2)
1 (ωζr)dζ,

(1)

uϕ = −ρ sinϕ
2π

∫ ∞

−∞

ζαs

R
e−ωαpx3

1
ζr
H

(2)
1 (ωζr)]dζ

+
ω sinϕ

2π

∫ ∞

−∞

ζ

µαs
e−ωαsx3H

(2)
0 (ωζr)dζ

− sinϕ
2π

∫ ∞

−∞

ζ

µαs
e−ωαsx3

1
ζr
H

(2)
1 (ωζr)dζ,

(2)

u3 = −ω cosϕ
2π

∫ ∞

−∞
ζ2 2µαpαs

R
e−ωαpx3H

(2)
1 (ωζr)dζ

+
ω cosϕ

2π

∫ ∞

−∞
ζ2 2µζ2 − ρ

R
e−ωαsx3H

(2)
1 (ωζr)dζ.

(3)

In the solution (1)-(3) ur, uϕ, and u3 are the components of displacement ~u in cylindrical coordinates, ω
is the angular frequency, H(k)

i are Hankel functions of order i and kind k. ζ is the horizontal slowness and
αp,s =

√
ζ2 − 1

v2
p,s

is the vertical slowness, where vp,s is either P -wave velocity vp or S-wave velocity vs,

respectively.
The Rayleigh equation is given by:

R(ζ) = ζ2αpαs − (
1
v2

s

− 2ζ2)2. (4)

ρ, vp, vs, µ = ρv2
s are the elastic parameters of the halfspace.

The Rayleigh wave is described as the residue of the exact solution at the Rayleigh pole, i.e., the root of
the Rayleigh equation. The components of the Rayleigh wave in cylindrical coordinates are given by

u(R)
r =

ρω cosϕ
i

[ζαs

R′ e
−ωαpx3

]
(ζR)H(2)

0 (ωζRr)

− ρ cosϕ
ir

[αs

R′ e
−ωαpx3

]
(ζR)H(2)

1 (ωζRr),
(5)

u(R)
ϕ = −ρ sinϕ

ir

[αs

R′ e
−ωαpx3

]
(ζR)H(2)

1 (ωζRr)], (6)

u
(R)
3 = −ω2µ cosϕ

i

[
ζ2αpαs

R′ e−ωαpx3

]
(ζR)H(2)

1 (ωζRr)

+
ω cosϕ

i

[
ζ2 2µζ2 − ρ

R′ e−ωαsx3

]
(ζR)H(2)

1 (ωζRr).
(7)

In Eqs. (5)-(7) R′ is the derivative of the Rayleigh equation, and ζR is the horizontal slowness of the
Rayleigh wave.

From the integral representation and in Eq. (1) for the radial component ur and Eq. (2) for the azimuthal
component uϕ we find an interesting phenomenon: Setting φ = 0, which means that we consider the
direction in which the force is directed, we can see from Eq. 1 (third term) that there is a contribution of the
S-wave in the wavefield. Therefore we have a wave which propagates with S-wave velocity. It is polarized
like a P -wave, i.e. in radial direction.
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We obtain a similar phenomenon for ϕ = π
2 . This is the direction orthogonal to the force direction. We

see from Eq. 2 (first term) that there is a contribution by the P -wave. We see a wave which propagates with
P -wave velocity, which is polarized parallel to the wave front. In both cases these ‘anormal‘ waves show
r−1 decay with distance. Their frequency content is lower compared to the usual waves. This can be seen
from the missing factor ω in front of the respective integrals.

In the next section we will confirm these conclusions derived from the analytical solution by numerical
modelling using a pseudo-spectral Chebyshev method.

NUMERICAL MODELLING

Numerical modelling was performed using the pseudo-spectral Chebyshev method (Kosloff et al. (1990),
Tessmer (1995)). The method delivers a solution to the equations of dynamic elasticity in a forward mod-
elling manner. Spatial derivatives of the partial differential equations are calculated in the wave number
domain using FFTs in the horizontal directions. The derivative with respect to the vertical direction are
calculated in the Chebyshev transform space, also using FFTs. The time integration is based on a forth
order Taylor expansion. The subsurface structure consists of a homogeneous elastic halfspace. The 3-D
model is discretized on a numerical grid of 315 × 315 × 181 grid points with a grid spacing of 10 m. The
P - and S-wave velocities are 2000 m/s and 1155 m/s, respectively. The horizontal single point force has a
Ricker-like time history with 50 Hz cut-off frequency (dominant frequency is 25 Hz). It is directed in the
(horizontal) x-direction. The time step size of the modelling is 1.5 ms. The total propagation time is 1.8 s.

The source is located at grid location (105,105,3). It is located away from the lateral model boundaries
to avoid contamination of the primary wavefield with boundary reflections. The source was placed slightly
below the free surface, i.e. 3.6 m, to avoid numerical artifacts.

The wavefield was recorded at any grid node at the free surface for all time steps. The seismograms
shown consist of ten traces covering an azimuth of 90o at 1750 m lateral distance from the source. Since the
modelling was done using a rectangular grid it was necessary to interpolate wavefield values between grid
nodes to maintain the exact source-receiver distance. Interpolation was done by a 2D Fourier transform
applying its shift property. Using the Fourier transform for interpolation is the most natural way, since the
modelling algorithm is based on trigonometric expansion of the wavefield.
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Figure 1: Geometry of source and receivers at various azimuths φ with a constant observation distance of
1750 m. The receiver azimuth increment is 10o.

Basically, the wavefield is represented by three Cartesian components of the particle velocity (vx, vy, vz).
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Figure 2: Seismograms recorded at 1750 m distance from the source with 10o azimuth increments. Left:
radial component; right: tangential component
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Figure 3: As Fig. 2, but time-windowed for S- and Rayleigh wave events.

In the seismogram displays we show only the horizontal components. They were rotated into the radial
and tangential components. Ten seismograms with a 10o azimuth increment are displayed in each section,
where the azimuths are measured against the x-axis.

In Fig. 1 we show the geometrical setup of source and receiver positions. Fig. 2 shows the entire
seismograms of the radial and tangential components of the surface recordings, where the amplification of
the traces is scaled to the maximum value. In the radial component display the first and the later arrival
correspond to the P - and Rayleigh wave, respectively. In the azimuthal component display only the S-
wave event is visible. Fig. 3 shows the time window of the seismograms of Fig. 2, where the S-wave
(earlier arrival) and the Rayleigh wave (later arrival) appear. Fig. 4 shows the same as Fig. 3, but with 10×
amplification. In the radial component there is a low-amplitude precursor (S-wave) before the Rayleigh
wave event. In the azimuthal component a low-amplitude Rayleigh wave event is visible after the S-wave
event.

Further amplified seismograms are shown in Fig. 5. Here the amplification compared to Fig. 3 is 100.
In the tangential component seismogram at 90o azimuth, the contribution in the tangential component of
the additional term of the Rayleigh wave can be observed. It decays with decreasing azimuths. On the
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Figure 4: As Fig. 3, but 10x amplified.
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Figure 5: As Fig. 3, but 100x amplified.

other hand, in the radial component seismogram at 0o azimuth, the contribution of the additional term of
the S-wave can be observed. It decays with increasing azimuths.

The above described features of the wavefield can also be observed in the xy-plane snapshots (top view)
at the surface. In Fig. 6 a snapshot of the x-component of the particle velocity field is shown at time 1.7625
s. The P -wave has already left the modelling area. Note the small amplitudes of the S-wave (outer wave
front) in the x-direction and of the Rayleigh wave (strong next inner wave front) in the y-direction. The
inner wave front is an undesired artifact which is a P -wave reflection form the bottom of the numerical
grid. Other artifacts are due to imperfectly functioning absorbing boundary conditions.

A similar phenomenon as for S- and Rayleigh waves can also be observed on the P -wave front. In
Fig. 7 a snapshot of the x-component of the particle velocity field is shown at time 0.4874 s. Note the small
(but not vanishing) amplitudes of the P -wave (outer wave front) in the x-direction. The amplitudes of the
additional terms of the P -wave are by an order of magnitude smaller than those of the S- and Rayleigh
waves in this case.
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Figure 6: Snapshot of the x-component of the particle velocity at time=1.7625 s. Here small (but not
vanishing) amplitudes of the S-wave in the x-direction (black arrow) and of the Rayleigh wave in the y-
direction (white arrow) can be observed. The source location is indicated by a white asterisk. The other
weak wavefronts are undesired artifacts.
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Figure 7: Snapshot of the x-component of the particle velocity at time=0.4875 s. Here small (but not
vanishing) amplitudes of the P -wave in the y-direction can be observed (white arrow).



CONCLUSIONS

We examined the case of wave propagation in an isotropic elastic halfspace due to a horizontal single point
force. The radial and tangential components of the Rayleigh wave have a main term and additional terms. In
a certain direction the Rayleigh wave comprises only the additional term. Therefore, the Rayleigh wave is
transversely polarized in this situation. In general the additional terms have considerably lower amplitudes
than the main terms (in the examined case by a factor of 100) and they decay faster with distance. They
also display lower frequency content.
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APPENDIX A

CLASSICAL RAYLEIGH WAVE

We start from the equations of motion

ρ
∂2~u

∂t2
= (λ+ µ) grad (div ~u) + µ∆~u (8)

and Hooke’s law

tik = λδik div ~u+ µ(
∂uk

∂xi
+
∂ui

∂xk
), i, k = 1, 2, 3, (9)

for an isotropic elastic medium.
The stationary solution of Eq. (8) with the time dependence eiωt satisfies the following system of

equations, if it does not depend on the x2-coordinate:

(λ+ 2µ)
∂2u1

∂x2
1

+ (λ+ µ)
∂2u3

∂x1∂x3
+ µ

∂2u1

∂x2
3

+ ρω2u1 = 0,

(λ+ 2µ)
∂2u3

∂x2
3

+ (λ+ µ)
∂2u1

∂x1∂x3
+ µ

∂2u3

∂x2
1

+ ρω2u3 = 0,

µ
∂2u2

∂x2
1

+ µ
∂2u2

∂x2
3

+ ρω2u2 = 0.

(10)

We are looking for the vector solution of the system of equations (10), where u2 vanishes:(
u1

u3

)
=
(
A1

rA3

)
e−ωαx3e−iωp1x1 . (11)
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This solution represents a wave propagating in x1-direction with the velocity 1/p1. It decays with depth in
the halfspace x3 ≥ 0. One can show that there is no solution with a non-vanishing u2-component which
satisfies the free surface conditions. Substituting (11) into the system (10) leads to the linear homogeneous
system for components A1 and A3 of the polarization vector:[

(λ+ 2µ)(−)p2
1 + ρ+ µα2

]
A1 + (λ+ µ)αip1A3 =0,[

(λ+ 2µ)α2 − µp2
1 + ρ

]
A3 + (λ+ µ)αip1A1 =0.

(12)

A non-trivial solution of the system (12) requires that its determinant vanishes. This leads to the vertical
slownesses of the P - and S-waves:

αp = ±
√
p2
1 −

ρ

λ+ 2µ
, αs = ±

√
p2
1 −

ρ

µ
. (13)

The corresponding polarization vectors for P - and SV -waves are(
A

(p)
1

A
(p)
3

)
=
(

p1

−iαp

)
and (

A
(s)
1

A
(s)
3

)
=
(
iαs

p1

)
,

respectively.
Therefore, the general solution of the system (Eq. 12) which satisfies the radiation conditions, i.e. the

wave decays with the depth or propagates in the positive x3 direction, can be written in the form(
u1

u3

)
= Cp

(
p1

−iαp

)
e−ωαpx3e−iωp1x1 + Cs

(
iαs

p1

)
e−ωαsx3e−iωp1x1 , (14)

where the unknown factors Cp and Cs can be determined from the free surface conditions, i.e. zero stress
on the free surface (x3 = 0) of the isotropic elastic halfspace.

According to Hooke’s law (Eq. (9)) the components of the stress vector ~T at the surface with the unit
normal vector~i3 can be calculated using:

T3 = t33 = (λ+ 2µ)
∂u3

∂x3
+ λ

∂u1

∂x1
,

T1 = t31 = µ
∂u3

∂x1
+ µ

∂u1

∂x3
.

T2 = t32 = µ
∂u3

∂x2
+ µ

∂u2

∂x3
.

(15)

If we insert Eq. (14) into the free surface conditions

T1 = t31(x3 = 0) = T3 = t33(x3 = 0) = 0,

then in order to find non-zero amplitude factors Cp and Cs, we have to solve the algebraic homogeneous
system

iω(2µp2
1 − ρ)Cp − 2µαsp1ωCs = 0,

−2αpωp1Cp + iCsω(
1
v2

s

− 2p2
1) = 0.

(16)

A solution only exists if the determinant of the system vanishes:

(
1
v2

s

− 2p2
1)

2 − 4p2
1αpαs = 0. (17)
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The real root of Eq. (17) determines the velocity vr = 1
p1R

of the Rayleigh wave, and we find the relation

Cs =
−i

2p1αs
(

1
v2

s

− 2p2
1)Cp (18)

between the components of the polarization vector of the Rayleigh wave. Relation (18) expresses the fact
that the Rayleigh wave is elliptically polarized.

It is easy to show that the components of Rayleigh wave (Eq. (14)) with the relation (18) satisfy to the
following equation

∂u1

∂x3
(x3 = 0) = u3(x3 = 0)iωp1, (19)

which will be used in appendix B.

APPENDIX B

RAYLEIGH WAVE WITH COMPONENTS OUT OF THE PLANE OF PROPAGATION

Let us rewrite the Rayleigh solution (Eq. 14) in the following form:

~u(R)(x1, x3) = u
(R)
1 (x1, x3)~i1 + u

(R)
3 (x1, x3)~i3. (20)

From Appendix A follows that this solution satisfies the free surface condition for a homogeneous elastic
halfspace (x3 ≥ 0):

t33(~u(R))(x3 = 0) = 0, t31(~u(R))(x3 = 0) = 0, t32(~u(R)) ≡ 0,

where the components of the stress tensor are calculated by Eqs. (15).
Let us introduce two vector functions

~u(0)(x1, x2, x3) = x2~u
(R)(x1, x3),

~u(1)(x1, x3) = Cu
(R)
1 (x1, x3)~i2,

(21)

where u(R)
1 (x1, x3) and u(R)

3 (x1, x3) are the components of the Rayleigh wave of Eq. (20).
It is easy to show that the vector functions (21) satisfy the equations of motion (Eq. 10). Using formulas

(15), the components of the stress vector for these two functions are given by the following equations:

T
(0)
3 = t33(~u(0)) = x2t33(~u(R)),

T
(0)
1 = t31(~u(0)) = x2t31(~u(R)),

T
(0)
2 = t32(~u(0)) = µu

(R)
3 ,

T
(1)
3 = t33(~u(1)) ≡ 0,

T
(1)
1 = t31(~u(1)) ≡ 0,

T
(1)
2 = t32(~u(1)) = Cµ

∂u
(R)
1

∂x3
.

(22)

Therefore, it is evident that the vector function

~u = ~u(0) + ~u(1)

satisfies the free surface conditions:

t33(~u)(x3 = 0) = t33(~u(0))(x3 = 0) + t33(~u(1))(x3 = 0) = 0,
t31(~u)(x3 = 0) = t31(~u(0))(x3 = 0) + t31(~u(1))(x3 = 0) = 0,
t32(~u)(x3 = 0) = t32(~u(0))(x3 = 0) + t32(~u(1))(x3 = 0)
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= Cµ
∂u

(R)
1

∂x3
(x3 = 0) + µu

(R)
3 (x3 = 0).

If the constant C in Eqs. (21) and (22) is chosen to be

C =
−1
iωp1

,

and if we use Eq. (19), the vector function

~u(x1, x2, x3) = x2~u
(R)(x1, x3) +

−1
iωp1

u
(R)
1 (x1, x3)~i2 (23)

satisfies the free surface conditions. From this one can determine the wave which propagates with Rayleigh
wave velocity. It has a main component and additional component, which is oriented out of the plane of
propagation. The additional component has lower frequency content than the main component.

Formula (23) is the main result of Kiselev (2004). However, this result is of formal character only.
It does not describe the real physical problem of elastic wave propagation. To overcome this deficiency
we describe the full solution for the wave field due to tangential point source in an elastic halfspace in
Appendix C.

APPENDIX C

WAVEFIELD DUE TO A HORIZONTAL FORCE APPLIED TO AN ISOTROPIC
HOMOGENEOUS ELASTIC HALFSPACE

If a horizontal force is applied to the elastic halfspace (x3 ≥ 0) axial symmetry is no longer given. There-
fore, we will solve our problem in Cartesian coordinates (x1, x2, x3). We start from the 3D stationary
elastic equations

(λ+ 2µ)
∂2u1

∂x2
1

+ (λ+ µ)(
∂2u2

∂x1∂x2
+

∂2u3

∂x1∂x3
) + µ(

∂2u1

∂x2
2

+
∂2u1

∂x2
3

) + ρω2u1 = 0,

(λ+ 2µ)
∂2u2

∂x2
2

+ (λ+ µ)(
∂2u1

∂x1∂x2
+

∂2u3

∂x2∂x3
) + µ(

∂2u2

∂x2
1

+
∂2u2

∂x2
3

) + ρω2u2 = 0,

(λ+ 2µ)
∂2u3

∂x2
3

+ (λ+ µ)(
∂2u1

∂x1∂x3
+

∂2u2

∂x2∂x3
) + µ(

∂2u3

∂x2
1

+
∂2u3

∂x2
2

) + ρω2u3 = 0.

(24)

The source is introduced using boundary conditions for the stress vector at the surface (x3 = 0):

~T = δ(x1, x2)~i1 ≡ δ(x, y)~i1,

where the stress vector Ti = ti3, (i = 1, 2, 3) at the surface is given by:

T1 = µ(
∂u1

∂x3
+
∂u3

∂x1
),

T2 = µ(
∂u2

∂x3
+
∂u3

∂x2
),

T3 = (λ+ 2µ)
∂u3

∂x3
+ λ(

∂u1

∂x1
+
∂u2

∂x2
).

(25)

We need to find the vector solution of the Eq. (24) which satisfies the following conditions at the surface:

µ(
∂u1

∂x3
+
∂u3

∂x1
)(x3 = 0) = δ(x1, x2),

µ(
∂u2

∂x3
+
∂u3

∂x2
)(x3 = 0) = 0,

(λ+ 2µ)
∂u3

∂x3
+ λ(

∂u1

∂x1
+
∂u2

∂x2
)(x3 = 0) = 0.

(26)
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We are looking for the solution in the form of a Fourier transform in the horizontal plane (x1, x2):

uj(x1, x2, x3) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Vj(k1, k2, x3)e−i(k1x1+k2x2)dk1dk2, j = 1, 2, 3. (27)

For a delta function δ(x1, x2) we use a similar representation:

δ(x1, x2) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(k1x1+k2x2)dk1dk2.

By using representation (27) we obtain the homogeneous system in the (k1, k2, x3)-space

µ
d2V1

dx2
3

− ik1(λ+ µ)
dV3

dx3
+ [ρω2 − (λ+ 2µ)k2

1 − µk2
2]V1 − (λ+ µ)k1k2V2 = 0,

µ
d2V2

dx2
3

− ik2(λ+ µ)
dV3

dx3
+ [ρω2 − (λ+ 2µ)k2

2 − µk2
1]V2 − (λ+ µ)k1k2V1 = 0,

(λ+ 2µ)
d2V3

dx2
3

− i(λ+ µ)(k1
dV1

dx3
+ k2

dV2

dx3
) + [ρω2 − µ(k2

2 + k2
1)]V3 = 0,

(28)

which, using the substitution V1

V2

V3

 = eαx3

A1

A2

A3

 , (29)

results in the following linear algebraic homogeneous system of equations with respect to A1, A2, and A3:

[µα2 + ρω2 − (λ+ 2µ)k2
1 − µk2

2]A1 − (λ+ µ)k1k2A2−ik1α(λ+ µ)A3 = 0,

−(λ+ µ)k1k2A1 + [µα2 + ρω2 − (λ+ 2µ)k2
2 − µk2

1]A2 − ik2α(λ+ µ)A3 = 0,

−iα(λ+ µ)(k1A1 + k2A2) + [(λ+ 2µ)α2 + ρω2 − µ(k2
1 + k2

2)]A3 = 0.

(30)

Let us construct three independent solutions of system (30) on the basis of plane wave theory by fixing the
polarization of the waves.

We consider a SH-wave with the polarizationA1

A2

A3

 ≈

 k2

−k1

0

 . (31)

This corresponds to the requirement that the SH-wave is polarized in the horizontal (x1, x2)-plane polar-
ized. If Eq. (31) is substituted into Eqs. (30) we can solve for α of Eq. (29) for the SH-wave:

α2 +
ρ

µ
ω2 = k2

1 + k2
2:αs =

√
k2 − ρ

µ
ω2 (32)

Here and in the following k denotes the horizontal wavenumber (k2
1 + k2

2)
1
2 .

We calculate the radical αs from Eq. (32) on the real axis of the complex plane k by the following radiation
condition:

αs = i|αs| if − ω

vs
< k <

ω

vs
,

αs = |αs| if |k| > ω

vs
.

For arbitrary values of k in the complex plane the radical αs is calculated by analytical continuation from
the real axis. The same applies for the calculation of αp later on.



Annual WIT report 2007 237

Let us consider P -SV -waves. We choose the polarization orthogonal to the polarization of the SH-
wave such that it is a superposition of two linear independent vectors with unknown coefficients a and
b: A1

A2

A3

 = a

0
0
1

+ b

 k2

−k1

0

 (33)

If representation (33) for the P -SV polarization vectors is put into system (30) the unknown coefficients a
and b are a solution of the following system of equations:

[µα2 + ρω2 − (λ+ 2µ)k2]b− iα(λ+ µ)a = 0,

−iα(λ+ µ)k2b+ [α2(λ+ 2µ) + ρω2 − µk2]a = 0.
(34)

Now we consider the SV -wave. If we insert

α2 +
ρ

µ
ω2 = k2

into system (34), then the polarization of the SV -wave can be chosen asA1

A2

A3

 =

αsk1

αsk2

ik2

 .

We proceed analogously for the P -wave. If we insert

α2 +
ρ

λ+ 2µ
ω2 = k2:αp =

√
k2 − ρ

λ+ 2µ
ω2.

into system (34), then the polarization of the P -wave can be chosen asA1

A2

A3

 =

 k1

k2

iαp

 .

In this way we constructed three independent solutions which satisfy the radiation conditions in the halfs-
pace (x3 ≥ 0):

e−αpx3

 k1

k2

−iαp

 , e−αsx3

 k2

−k1

0

 , e−αsx3

−αsk1

−αsk2

ik2

 .

Finally the general solution of the system (30) is a linear superposition of the formV1

V2

V3

 = C1e
−αpx3

 k1

k2

−iαp

+ C2e
−αsx3

 k2

−k1

0

+ C3e
−αsx3

−αsk1

−αsk2

ik2

 . (35)

It can easily be verified that conditions (26) are satisfied at the free surface if the integrands of representation
(27) fulfil the corresponding conditions

µ
(dV1

dx3
− ik1V3

)
(x3 = 0) = 1,

µ
(dV2

dx3
− ik2V3

)
(x3 = 0) = 0,

(λ+ 2µ)
dV3

dx3
− iλ[k1V1 + k2V2](x3 = 0) = 0,

(36)
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which lead to the system

−2µk1αpC1 + k1C3(2µk2 − ρω2)− C2µk2αs = 1,

−2µk2αpC1 + µk1αsC2 + k2C3(2µk2 − ρω2) = 0,

C1(2µk2 − ρω2)− C3αsk
22µ = 0.

(37)

From system (37) we can determine the factors C1, C2, and C3 of the general solution (35):

C1 =
2µαsk1

(2µk2 − ρω2)2 − 4µ2αpαs
,

C2 = − k2

µk2αs
,

C3 =
k1(2µk2 − ρω2)

k2[(2µk2 − ρω2)2 − 4µ2αpαs]
.

Therefore, the components of the wave field in Cartesian coordinates in the k-space are defined by the
following expressions:

V1 =
2µαsk

2
1

(2µk2 − ρω2)2 − 4µ2αpαs
e−αpx3 − k2

2

µk2αs
e−αsx3

− k2
1αs(2µk2 − ρω2)

k2[(2µk2 − ρω2)2 − 4µ2αpαs]
e−αsx3 ,

V2 =
2µαsk1k2

(2µk2 − ρω2)2 − 4µ2αpαs
e−αpx3 +

k2k1

µk2αs
e−αsx3

− k1k2αs(2µk2 − ρω2)
k2[(2µk2 − ρω2)2 − 4µ2αpαs]

e−αsx3 ,

V3 = − 2µiαpαsk1

(2µk2 − ρω2)2 − 4µ2αpαs
e−αpx3 +

ik2k1(2µk2 − ρω2)
k2[(2µk2 − ρω2)2 − 4µ2αpαs]

e−αsx3 .

(38)

We denote the Rayleigh denominator by

R = (2µk2 − ρω2)2 − 4µ2αpαs

and introduce the polar coordinates

x1 = r cosϕ x2 = r sinϕ
k1 = k cos θ k2 = k sin θ

in x- and k-spaces. We calculate the Cartesian components of the displacements as functions of cylindrical
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coordinates r, ϕ, z ≡ x3 in the form of repeated integrals over the modulus k and angle θ:

u1 =
1

(2π)2

∫ ∞

0

k3dk
2µαs

R
e−αpx3

∫ 2π

0

cos2 θe−ikr cos(θ−ϕ)dθ

− 1
(2π)2

∫ ∞

0

kdk
1
µαs

e−αsx3

∫ 2π

0

sin2 θe−ikr cos(θ−ϕ)dθ

− 1
(2π)2

∫ ∞

0

kdk
αs(2µk2 − ρω2)

R
e−αsx3

∫ 2π

0

cos2 θe−ikr cos(θ−ϕ)dθ

u2 =
1

(2π)2

∫ ∞

0

k3dk
2µαs

R
e−αpx3

∫ 2π

0

cos θ sin θe−ikr cos(θ−ϕ)dθ

+
1

(2π)2

∫ ∞

0

kdk
1
µαs

e−αsx3

∫ 2π

0

sin θ cos θe−ikr cos(θ−ϕ)dθ

− 1
(2π)2

∫ ∞

0

kdk
αs(2µk2 − ρω2)

R
e−αsx3

∫ 2π

0

cos θ sin θe−ikr cos(θ−ϕ)dθ

u3 = − 1
(2π)2

∫ ∞

0

k2dk
2µiαpαs

R
e−αpx3

∫ 2π

0

cos θe−ikr cos(θ−ϕ)dθ

+
1

(2π)2

∫ ∞

0

ik2dk
2µk2 − ρω2

R
e−αsx3

∫ 2π

0

cos θe−ikr cos(θ−ϕ)dθ

(39)

The integration over θ in the integrals over θ and k can be computed analytically. Therefore, only the single
integration over k is left in the solution.

Evaluation of special integrals

We intend to evaluate integrals of the form

I1 =
∫ 2π

0

sin θ cos θe−ikr cos(θ−ϕ)dθ.

We introduce the new variable u = θ − ϕ. Then

I1 = cos 2ϕ
∫ 2π

0

sinu cosue−ikr cos udu+ sinϕ cosϕ
∫ 2π

0

(2 cos2 u− 1)e−ikr cos udu.

The first integral vanishes. Therefore,

I1 = 2 sinϕ cosϕ
∫ 2π

0

cos2 ue−ikr cos udu− sinϕ cosϕ
∫ 2π

0

e−ikr cos udu

= −4π sinϕ cosϕ
d2J0(kr)
d(kr)2

− 2π sinϕ cosϕ J0(kr).

In the same way the remaining integrals in (39) are calculated:

I2 =
∫ 2π

0

cos θe−ikr cos(θ−ϕ)dθ = −i2π cosϕ J1(kr),

I3 =
∫ 2π

0

cos2 θe−ikr cos(θ−ϕ)dθ = −2π cos2 ϕ
d2J0(kr)
d2(kr)

+ 2π sin2 ϕ J0(kr) + 2π sin2 ϕ
d2J0(kr)
d2(kr)

,

I4 =
∫ 2π

0

sin2 θe−ikr cos(θ−ϕ)dθ = 2π cos2 ϕJ0(kr) + 2π cos2 ϕ
d2J0(kr)
d(kr)2

− 2π sin2 ϕ
d2J0(kr)
d(kr)2

.
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Finally we transform the horizontal displacement into polar coordinates using

ur = u1 cosϕ+ u2 sinϕ,
uϕ = −u1 sinϕ+ u2 cosϕ.

Then the components of the wave field are given in cylindrical coordinates:

ur = −ρω
2 cosϕ
2π

∫ ∞

0

kαs

R
e−αpx3

d2J0(kr)
d2(kr)

dk − cosϕ
2π

∫ ∞

0

k

µαs
e−αsx3 [J0(kr) +

d2J0(kr)
d2(kr)

]dk,

uϕ = −ρω
2 sinϕ
2π

∫ ∞

0

kαs

R
e−αpx3 [

d2J0(kr)
d2(kr)

+ J0(kr)]dk −
sinϕ
2π

∫ ∞

0

k

µαs
e−αsx3

d2J0(kr)
d2(kr)

dk,

u3 = −cosϕ
2π

∫ ∞

0

k2 2µαpαs

R
e−αpx3J1(kr)dk +

cosϕ
2π

∫ ∞

0

k2 2µk2 − ρω2

R
e−αsx3J1(kr)dk,

(40)

where J0 and J1 are 0th and 1st oder Bessel-functions, respectively. In the following we convert half-
infinite intervals of integration in the representations (40) into the integration over the whole k-axis. For
this purpose we use the relation

d2J0(kr)
d2(kr)

+ J0(kr) =
1
kr
J1(kr)

and rewrite our solution (40) in the following the form:

ur =
ρω2 cosϕ

2π

∫ ∞

0

kαs

R
e−αpx3J0(kr)dk −

ρω2 cosϕ
2π

∫ ∞

0

kαs

R
e−αpx3

1
kr
J1(kr)dk

− cosϕ
2π

∫ ∞

0

k

µαs
e−αsx3

1
kr
J1(kr)dk,

uϕ = −ρω
2 sinϕ
2π

∫ ∞

0

kαs

R
e−αpx3

1
kr
J1(kr)]dk +

sinϕ
2π

∫ ∞

0

k

µαs
e−αsx3J0(kr)dk

− sinϕ
2π

∫ ∞

0

k

µαs
e−αsx3

1
kr
J1(kr)dk,

u3 = −cosϕ
2π

∫ ∞

0

k2 2µαpαs

R
e−αpx3J1(kr)dk +

cosϕ
2π

∫ ∞

0

k2 2µk2 − ρω2

R
e−αsx3J1(kr)dk.

(41)

For the conversion into a two-sided infinite interval of integration we use the relation

Jn(z) =
1
2

[
H(2)

n (z) +H(1)
n (z)

]
and formulas for the analytic continuation of Hankel’s functions (Abramowitz and Stegun (1968), 9.1.39,
p. 361). The result is:

ur =
ρω2 cosϕ

2π

∫ ∞

−∞

kαs

R
e−αpx3H

(2)
0 (kr)dk − ρω2 cosϕ

2π

∫ ∞

−∞

kαs

R
e−αpx3

1
kr
H

(2)
1 (kr)dk

− cosϕ
2π

∫ ∞

−∞

k

µαs
e−αsx3

1
kr
H

(2)
1 (kr)dk,

uϕ = −ρω
2 sinϕ
2π

∫ ∞

−∞

kαs

R
e−αpx3

1
kr
H

(2)
1 (kr)]dk +

sinϕ
2π

∫ ∞

−∞

k

µαs
e−αsx3H

(2)
0 (kr)dk

− sinϕ
2π

∫ ∞

−∞

k

µαs
e−αsx3

1
kr
H

(2)
1 (kr)dk,

u3 = −cosϕ
2π

∫ ∞

−∞
k2 2µαpαs

R
e−αpx3H

(2)
1 (kr)dk +

cosϕ
2π

∫ ∞

−∞
k2 2µk2 − ρω2

R
e−αsx3H

(2)
1 (kr)dk.

(42)
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Finally we change the variable ωζ = k with the slowness ζ and arrive at the final result:

ur =
ρω cosϕ

2π

∫ ∞

−∞

ζαs

R
e−ωαpx3H

(2)
0 (ωζr)dζ

− ρ cosϕ
2π

∫ ∞

−∞

ζαs

R
e−ωαpx3

1
ζr
H

(2)
1 (ωζr)dζ − cosϕ

2π

∫ ∞

0

ζ

µαs
e−ωαsx3

1
ζr
H

(2)
1 (ωζr)dζ,

uϕ = −ρ sinϕ
2π

∫ ∞

−∞

ζαs

R
e−ωαpx3

1
ζr
H

(2)
1 (ωζr)]dζ +

ω sinϕ
2π

∫ ∞

−∞

ζ

µαs
e−ωαsx3H

(2)
0 (ωζr)dζ

− sinϕ
2π

∫ ∞

−∞

ζ

µαs
e−ωαsx3

1
ζr
H

(2)
1 (ωζr)dζ,

u3 = −ω cosϕ
2π

∫ ∞

−∞
ζ2 2µαpαs

R
e−ωαpx3H

(2)
1 (ωζr)dζ

+
ω cosϕ

2π

∫ ∞

−∞
ζ2 2µζ2 − ρ

R
e−ωαsx3H

(2)
1 (ωζr)dζ.

(43)


