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ABSTRACT

We describe a fast method for seismic ray tracing in a cellular model, in which cells can have general
polynomial shapes with non-planar bounding faces. The key idea is integration of the ray equations
in terms of local cell coordinates rather than spatial coordinates. This approach allows for efficient
detection of cell boundary crossing events, suppressing the need for costly non-linear equation solvers
in the inner loop.

INTRODUCTION

Seismic simulation is a powerful tool for a number of studies on seismic modeling, imaging and inversion
for exploration and monitoring of oil reservoirs. These include, among others, planning of acquisition
surveys, image interpretation through identification of key reflections, discrimination of primaries and
multiples and amplitude analysis (AVO and AVA).

Among various simulation techniques, ray tracing (Červený, 2001) stands out for its versatility and
computational effectiveness. As a consequence, it plays an important role in some more sophisticated
simulation methods, such as wavefront construction (see, e.g., Vinje et al., 1999), inversion methods, such
as seismic tomography (see, e.g., Duveneck, 2004), and others. Kinematic and dynamic ray tracing produce
qualitative and quantitative information, namely images, traveltimes, amplitudes and phase shapes that
relate various aspects of the wave propagation within the medium under investigation and can, thus, help
to understand and interpret the seismic data.

Seismic simulation requires a computer model that captures the geometry of layer structures and inter-
faces, as well as the lithology of the subsurface region of interest. Subsurface models that are adequate for
ray tracing calculations are typically layered structures, which smoothly varying parameters (velocities and
density) within the layers. The layer boundaries are typically piecewise smooth surfaces, across which the
parameters may have jumps.

Grid-based models, as generally used in tomographic and migration studies, cover the region of interest
by a dense uniform grid and assign physical properties to each node of the grid. These models are simple
and flexible but space consuming and do not adequately model certain phenomena such as sharp interfaces
and narrow intrusions, which are extremely important for seismic ray tracing.

Layer-based models partition the region of interest into layers by surfaces which are modeled as meshes
of simple patches (see Gjøystdal et al., 1983). Layer-based models can naturally represent sharp interfaces
but require complex and costly point-mesh location algorithms to detect ray-interface intersections.

Cell-based models partition the region of interest into a number of blocks, whose relatively simple
geometric shapes are described by a few parameters (see, e.g., Konig, 1995; Wang, 2000). The shape is
usually described by polynomials that map some simple geometric solid to Cartesian space. Ray-interface
tests are replaced by simpler tests of a ray against the boundary faces of the current block.

Realistic subsurface models which are suitable for ray tracing must be able to represent interfaces with
complex shapes, which considerably increase the difficulty of model construction and seismic simulation.
Cell-based models, in particular, require blocks with non-planar faces in order to represent smooth layer
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interfaces. Ray tracing in such models requires a conversion of Cartesian coordinates to local coordinates
to detect the ray intersection with the block boundary. This demands solving a system of polynomial
equations, which, in general, requires expensive iterative numerical methods such as Newton or Newton-
Ramphson (see, e.g., Press et al., 1986).

In this paper, we propose a new approach for ray tracing in cell-based models, that guarantees efficient
test for boundary crossing detection. The key is performing the ray integration in terms of the block’s
domain coordinates instead of Cartesian coordinates.

KINEMATIC RAY TRACING

In the high-frequency approximation, the elastodynamic equation produces a non-linear first-order partial
differential equation for the traveltime which is usually called the eikonal equation. This equation can be
written using the Hamiltonian formalism as

H(xc, p) = 0 (1)

where H is the Hamiltonian function, p = ∇T and T = T (x) is the traveltime from the ray’s origin to the
point x within the subsurface model. Many suitable formulations for H can be used (see Červený, 2001).
The one chosen here is

H(x, p) = ln(v||p||). (2)

Application of the method of characteristics (see, e.g., Herzberger,1958) to equation (2) provides three-
dimensional trajectories, called rays, along which the eikonal equation (1) is satisfied. Each ray is described
by the evolution of the ray state consisting of a position function x = x(T ) and a slowness function
p = p(T ) of the time, T , chosen as the running parameter to describe the ray. The slowness vector,
p (which, in isotropic media, is orthogonal to the wavefront) is related to the so-called phase velocity,
v = v(x) by the relationship |p| = 1/v. The ray evolution is described by the characteristic equations
(Herzberger,1958)

dx

dT
= ∇pH = v2p ,

dp

dT
= −∇xH = −1

v
∇xv. (3)

Here, we use the notation ∇x = (∂/∂x1, · · · , ∂/∂xn) and ∇p = (∂/∂p1, · · · , ∂/∂pn), where n is the
dimension of the subsurface model (2 or 3).

The O.D.E. system (3) can, in principle, be numerically solved by any integration method such as
Runge-Kutta (Press et al., 1986).

Equations (3) are only valid as long as the ray is traveling in a medium where v(x) varies smoothly with
x (finite derivatives), which is assumed to be the case within the geological layers. When the ray is about
to leave a layer, the intersection point with the layer’s boundary must be calculated. At this intersection
point, the ray splits into new rays, reflected and/or transmitted. Each new ray changes direction relative to
the original ray depending on the ray’s angle of incidence at the interface, and the velocity contrast across
the interface, according to Snell’s law (Červený, 2001). Each new ray is then traced through the next layer.
In order to limit the complexity of the simulation, it is general practice to specify the desired wavemodes
of the rays along each traversed layer, the so called signature of the ray (see Červený, 2001).

GEOLOGICAL MODEL

We assume that the geological model is a partition of space into a finite number of blocks or cells. Each
block is a simple geometric solid (cube, triangular prism or tetrahedron) deformed by polynomial transfor-
mations. Adjacent blocks need not share whole faces. Physical properties are assumed to vary smoothly
within each block. These concepts are defined formally below

Simplicies and Simploids

We define a canonical simplex of dimension n ≥ 0 as

∆n = {(u0, · · · , un) ∈ Rn+1
∣∣ ui ≥ 0 ∧

n∑
i=0

ui = 1} (4)
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The canonical simplices with dimension 1,2 and 3 are the canonical segment, triangle and tetrahedron,
illustrated in figure 1. Note that u0, · · · , un are the barycentric coordinates relative to the simplex (see
Farin, 1992).

∆
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Figure 1: Canonical simplices.

The canonical simploid of kind (h1, · · · , hk), denoted by S(h1,··· ,hk) is defined as the Cartesian product
of simplices ∆h1 × · · · ×∆hk (see deRose et al., 1993). Figure 2 illustrates some simploids.

Figure 2: Canonical simploids.

Affine extension of domains

By extending the canonical simplex to include points with negative coordinates we obtain the affine exten-
sion of ∆n; which is the affine space with dimension n,

An = {u ∈ Rn+1
∣∣ n∑

i=0

ui = 1}. (5)

Similarly, we define the affine extension of a simploid S(h1,··· ,hk) as the multi-affine space

Ah1,··· ,hk = Ah1 × · · · × Ahk . (6)

Simplicial and Simploidal polynomials

We say that a function F from An to R is a simplicial polynomial function of degree g if it is a homogeneous
polynomial function of degree g from Rn+1 to R restricted to An.

Let u(1), · · · , u(k) be points of Ah1 , · · · ,Ahk , respectively. We define the ith transversal section of
Ah1,··· ,hk at u = (u(1), · · · , u(k)) ∈ Ah1,··· ,hk , denoted by Ah1,··· ,hk

∣∣
i
(u), as

{u(1)} × · · · {u(i−1)} × Ahi × {u(i+1)} · · · {u(k)} (7)
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Note that there is a bijection from A(h1,··· ,hk)
∣∣
i
(u) to Ahi .

A simploidal polynomial function of type h1, · · · , hk and degree g = (g1, · · · , gk) is a function F from
Ah1,··· ,hk to R such that when restricted to any transversal section Ah1,··· ,hk

∣∣
i
(u), i ∈ {1, · · · , k} equals

a simplicial polynomial function of degree gi from Ahi to R. Note that F cannot, in general, be factored
into the product of k simplicial polynomial functions.

Geophysical block

We define a geophysical block with n-dimensional domain and m-dimensional range, or a (n,m)block, as
a pair (D, F ) where D (the domain space) is an n-dimensional canonical simploid and F is a simploidal
polynomial function from D̂ to Rm, where D̂ is the natural extension of D.

Bézier representation of a block

Let B = (D, F ) be a (n,m)-block whose domain D equals S(h1,··· ,hk). Observe that the domain is
completely defined by the k-uple (h1, · · · , hk). The simploidal polynomial function F can be expressed
in terms of its Bézier coefficients (see deRose et al., 1993).

In the special case where D is a simplex ∆n, the representation of F of degree g consists of f =
(
g+n

n

)
Bézier coefficients which are vectors of Rm. We denote these coefficients by ci where i ranges over Ig

n, the
set of all (n+ 1) tuples (i0, · · · , in) of natural numbers whose sum is g (see the example in figure 3). The
function F can be expressed as

F (u) =
∑
i∈Ig

n

ciBn,g
i (u) (8)

where Bn,g
i is the Bernstein-Bézier polynomial of dimension n, degree g and index i, defined as

Bn,g
i (u) =

g

i0! · · · in!
ui0

0 · · ·uin
n .

Figure 3: Bézier representation of a (2, 3)-block (D, F ). The domain D is ∆2 and F has 3 components,
X,Y, Z, each a simplicial polynomial of degree 3.

The computation of F (u) by formula (8) can be performed in
(
g+n
n+1

)
n-dimension linear interpolation

steps by the DeCastejau algorithm (see Peters, 1994).
Now suppose the domain D is S(h1,··· ,hk) and F is a simploidal polynomial function of degree g =

(g1, · · · , gk) (see figure 4). The Bézier representation of F consists of
∏k

j=1

(
gj+hj

hj

)
Bézier coefficients;

The value of F at a point u = (u(1), · · · , u(k)) of D̂ is given by

F (u) =
∑

i1∈I
g1
h1

...
ik∈I

gk
hk

ci1,··· ,ik
Bg1,h1

i1
(u(1)) · · · Bgk,hk

ik
(u(k)). (9)

where ci1···ik
are Bézier coefficients.
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(a) (b)

Figure 4: Bézier representation of simploidal polynomial functions whose domains are (a) S1,1 and (b)
S1,1,1.

Cellular Model

For this paper, we define a geophysical model as a collection of (n,m)-blocks whose union covers the
region of interest G and whose interiors are disjoint. See figure 5.

Figure 5: Example of a cellular model.

The cellular model includes also topological relations among blocks (adjacences, incidences, etc.)
which aim to increase the effectiveness of navigation inside the model; and domain coordinate corre-
spondences between adjacent blocks. Namely, for each pair of (n,m)-blocks B′ = (D′, F ′) and B′′ =
(D′′, F ′′) that are adjacent through a common face E we store an affine (1st degree) correspondence be-
tween the coordinates of D̂′ and D̂′′. The correspondence is represented by two affine maps Θ′ and Θ′′

from D̂′ and D̂′′ to Rn such that the images Θ′(D′) and Θ′′(D′′) have disjoint interiors but share the face
E. Figure 6 illustrates such correspondence.

Figure 6: Domain coordinate correspondence.
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CELL RAY TRACING IN BLOCK LOCAL COORDINATES

In our proposed adaptation of ray tracing, the ray equations (3) are expressed and integrated in terms of
block’s local coordinates (see Figure 7). More precisely, we replace the state [x, p] by [α, p] where α are
the local coordinates of the point x in the current block. Note that the slowness vector remains in global
(Cartesian) space coordinates.
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Figure 7: Illustration of parametric ray tracing

For this purposes, we define the simplicial local coordinates α = (α1, · · · , αn) of ∆n as an arbitrary
affine mapping from the affine extension of An to Rn. An obvious choice would be αi = ui for i =
1, · · · , n (discarding u0). For a simploid Sh1,··· ,hk the local coordinates are obtained by concatenating the
local coordinates of the constituent simplices ∆h1 , · · · ,∆hk .

System (3) is then rewritten as

dα

dT
= W−1v2p

dp

dT
= −W−1 1

v
∇αv (10)

where W is the Jacobian of the block’s shape functions.

Wij =
∂xi

∂αj
(11)

The Jacobian W describes the change from the block’s local coordinates to global Cartesian coordi-
nates. The ∇α operator denotes (∂/∂α1, · · · , ∂/∂αn) and ∇p denotes (∂/∂p1, · · · , ∂/∂pn); where n is
the domain simploid dimension, and pi is the ith Cartesian coordinate of the slowness vector p. Each
partial derivative is a polynomial simploidal function whose Bézier coefficients are easily and efficiently
calculated from the block’s Bézier coefficients.

System (10) is not valid when the matrix W is singular. However, the absence of such singularities is a
basic requirement for a well formed cell-based geometric model.

The main advantage of this formulation is that detection of the current block limits becomes a set of
trivial tests (αi = 0) or 1st degree tests (α1 + · · ·+ αn = 1) on the local coordinates.

MODELLING OF PHYSICAL PROPERTIES

The usual approach to modelling space-varying physical properties is what we call decoupled modelling.
In this approach, space-varying physical properties are specified for each layer by mathematical functions
of the Cartesian coordinates (e.g., B-splines) defined over a fixed 3D mesh that is unrelated to the model’s
layers and cells. A drawback of this approach is the necessity of a second package of spline/mesh modeling
software, with its own data structures, libraries, and editors. Another drawback is that it does not guarantee
matching of physical properties with layer shape.

We propose a coupled model where the relevant physical properties are modelled by polynomial func-
tions of the domain coordinates inside each block. Typically, for a three-dimensional model, we use (3,m)-
blocks with m > 3 where the shape of each block (D, F ) is described by the first three components of F ,
while the other m − 3 components define the rock’s physical properties. This approach does not require
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separate data structures, libraries or editors for physical property modelling. Additionally, the unified pa-
rameterization ensures a perfect match between shape and properties (see Figure 8).

Figure 8: Illustration of a two-dimensional cell-based model with coupled physical modelling. The cells
are (2, 3)-blocks whose domains are the canonical triangle S(2) = ∆2 and whose geometry (black lines)
and velocity (color scale) are defined by three simplicial polynomial functions F (u) = (X(u), Y (u), v(u))
of degree 3.

Our proposed ray-tracing method is compatible with both approaches for property modelling. Formula-
tion (10) assumes our coupled physical modelling. For the decoupled model, we simply replace W−1∇αv
by ∇xv.

Integration of system (10) requires the evaluation of dα/dT and dp/dT , which, in turn require evaluat-
ing v,∇αv and the jacobianW at o point with given local coordinates α. The velocity v can be obtained by
applying the DeCastlejau algorithm to the v component of the current block’s function F . For the gradient
∇αv, we can precompute the Bézier coefficients of ∂v/∂α1, · · · , ∂v/∂αn for the current block (Farin,
1992). These derivatives are polynomials of degree g − 1 where g is the degree of F . Then, ∇αv can be
computed for any given α by n applications of DeCastlejau. The Jacobian element Wij can be computed
in the same way, from the Bézier coefficients of the X,Y, Z components of F .

Observe that the computation of the JacobianWij and of the productsW−1
ij ∇αv andW−1

ij v2p does not
require iteration or recursive subdivision, and is therefore faster in general than the ray-boundary tests that
are eliminated by our ray tracing approach.

PROTOTYPE EDITOR

Some illustrations in this article were produced with Mod2B, a prototype editor that allows interactive
construction of a limited class of bidimensional geologic models according to our framework. It is available
in http://peruibe.ime.unicamp.br/˜lucas/demos.html

In this editor, the model’s geometry is specified by drawing an arbitrary number of geologic interfaces
as curved lines that begins and end at a fixed set of vertical guide-lines (see Figure 9). The interfaces are
cubic splines that can be either C2 or C1. In the former case, the user can specify the set of points at which
the interface crosses the guide-lines. In the latter, the user can also specify the shape of the interface at
these points.

The user can specify the wave velocity for each layer between two interfaces. The velocity is either
constant, or varies linearly with depth between two given values, one for the upper boundary and other for
the lower boundary.

Once the interfaces are determined, the user triggers a subdivision module (shred button), which
decomposes each geologic layer into geophysical blocks. In Mod2B, each block B = (D, F ) is restricted
to be a simplicial geophysical block whose domain D is the canonical triangle. The function F has three
components, each being a simplicial polynomial function. Components F0 and F1, of degree 3, are the
Cartesian coordinates x and y of the modelled region, and thus define the block’s shape. Component F2,
of degree 1, is the wave velocity.

http://peruibe.ime.unicamp.br/%CB%9Clucas/demos.html
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Figure 9: Drawing geological interfaces in Mod2B.

Each block spans the abscissa interval between two consecutive guidelines and one side of the block is
a vertical segment of a guideline. For each block, the horizontal coordinates of the control points are fixed
and equally spaced, while the vertical coordinates are arbitrary (see Figure 10). The subdivision module
also supplies block incidence and concordance information.

Ray tracing module

The Mod2B also includes a simple prototype ray tracing module that simulates a fan of rays emanating
from a point source at the model surface (see Figure 10) through the shredded model, as described in pre-
vious sections. The module performs simple kinematic ray tracing . The module could be easily extender
to perform dynamic integration.

CONCLUSIONS AND FUTURE WORK

Integrating ray equations in terms of local coordinates (equation (10) ) reduces considerably the cost of
boundary tests when integrating the ray propagation O.D.E. We plan further improvements by detecting
whether system (10) has analytical solution in the current block, which would allow us to cross that block
in a single step.
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