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ABSTRACT

Finite-Difference (FD) simulations of elastic wave propagation is an important tool in geophysical
research. As large-scale 3D simulations are only feasible on supercomputers or clusters and even
then the simulations are limited to long periods compared to the model size, 2D FD simulations are
widely-spread. Whereas in generally 3D heterogeneous structures it is not possible to infer the cor-
rect amplitude and waveform from 2D simulations, in 2.5D heterogeneous structures some inferences
are possible. In particular, Vidale and Helmberger (1987) developed an approach that simulates 3D
waveforms using 2D FD experiments only. However, their method requires a special FD source im-
plementation technique which is not any longer used in nowadays FD codes. In this paper we derive a
2D to 3D mapping that can be applied on the computed waveforms from 2D experiments independent
on the particular source implementation technique. The approach assumes that the travel path can be
determined in the geometrical optic limit. Therefore, we present a hybrid modeling procedure involv-
ing 2D FD and ray tracing techniques. The applicability is demonstrated by numerical experiments of
elastic wave propagation for models of different complexity.

INTRODUCTION

Finite-Difference (FD) simulations of wave propagation is a common tool in geophysical research. In seis-
mology, wave propagation for earthquakes is simulated in order to understand the ground motion of past
earthquakes and to estimate the threat of future earthquakes (e.g. Furumura and Kennett, 2005; Miksat
et al., 2005; Graves and Wald, 1998; Olsen, 2000). In exploration seismology the FD method is used for
reservoir modeling, survey planning (e.g.Lecomte et al. (2004)). Despite the growing computer capacities
during the last decade 2D FD simulations are widely used, as 3D simulations are limited to long wave-
length compared to the model size. For example, large scale simulations of earthquake wave propagation
calculated on the world’s largest computers are limited to frequencies below 1 Hz (Furumura and Kennett,
2005), which is far below the range of engineering interest (f< 15 Hz). Hence, 2D FD simulations are
routinely applied to explore a larger frequency range or large scale models (e.g., Furumura and Kennett,
2005; Benites and Olsen, 2005; Kebeasy and Husebye, 2003). However, most of these studies focus on the
simulated travel times and relative amplitudes whereas the calculation of absolute amplitudes is neglected.
This is rooted in the fact that the amplitudes for whole space (3D) wave propagation cannot be directly
simulated with a 2D FD method, because the 3D solution of the equation of motion differs in phase and
geometrical spreading from the 2D solution. However, the calculation of absolute amplitudes is, especially
in seismology, a crucial parameter as the absolute value of ground shaking is related to the resulting dam-
age.
In many instances, the spatial distribution of elastic properties in earth models can be approximated by a
2.5D heterogeneous structure. This fact prompted the idea that 3D seismograms in 2.5D heterogeneous
structures could be obtained from 2D simulations only provided that the difference in the geometrical
spreading is properly accounted for. Using the correspondence between a 2D line source and a 3D point
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source in homogeneous media Vidale and Helmberger (1987) developed a correction procedure which
translates 2D FD seismograms into 3D seismograms. In particular, They derived the following formula to
simulate a displacement seismogram resulting from a point source in 3D, u3D

i , using the 2D FD displace-
ment seismogram, u2D

i :

u3D
i =

1√
r

d

dt

(
1√
t
∗ u2D

i

)
, (1)

where r is the travel path of the wave. However, it is important to note that the method of Vidale and Helm-
berger (1987) is dependent on the source implementation technique, which was invented by Alterman and
Karal (1968) and which was widely used in the first FD codes. This means that eq. (1) is only valid for
the particular source implementation technique used by Vidale et al. (1985) and Vidale and Helmberger
(1987), which imposes the whole space, line source, first term asymptotic GRT (generalized ray theory)
solution on the source grid points. Today, most FD codes do not use this technique. Instead, sources are
implemented by adding displacement or stress tensor components to the corresponding grid nodes (Graves,
1996; Coutant et al., 1995; Karrenbach, 1995; Bohlen, 2002). Consequently, the procedure ofVidale and
Helmberger (1987) cannot be applied without further modification to simulate 3D seismograms. Neverthe-
less, equation (1) is used from time to time to transform 2D into 3D seismograms Igel et al. (2002); Olsen
et al. (1996).
In this paper, we develop a procedure that allows to compute accurate 3D seismograms in 2.5D heteroge-
neous structures from 2D FD calculations with any source implementation technique. Starting from the
equivalence between a point source in 2D space and a line source in 3D space, we derive a time-domain
conversion operator that achieves the desired 2D to 3D conversion. This operator involves the exact travel
path of the wave which can be determined in the geometrical optic approximation. Therefore, we suggest
a hybrid method that combines 2D FD and ray tracing. The latter allows the calculation of the exact travel
path for different phases in the geometrical optic limit. We demonstrate the capability of the method by
various numerical examples. In each example elastic wave propagation is modeled using a point source in
3D (the ’true’ reference experiment) and a point source in 2D (simulated by a line source in 3D). Simulated
point source seismograms in 3D are then obtained by convolving the time-domain conversion operator
with the line source seismograms. The simulated 3D seismograms are compared with the corresponding
3D reference experiments. We give error estimates and discuss the limitations of the method.

THEORY

Seismograms of the displacement or particle velocity due to line sources in 3D space have an infinitely long
tail and the far-field geometrical spreading is proportional to 1/

√
R as compared to 1/R for seismograms

due to point sources in 3D space. It is well-known that in homogeneous elastic media wave propagation
initiated by a point source in 2D corresponds to wave propagation for an line source in 3D. This equivalence
can be exploited in order to derive a mapping between line source and point source seismograms. In order
to do so, we start out with the far field Green’s tensor Gij in the frequency domain for an elastic, isotropic
medium is given by (Hudson, 1980, p. 137):

Gil(ω) =
1

4πρ

[
x̂lx̂i

α2R
eiωR/α +

(δil − x̂ix̂i)
β2R

eiωR/β

]
=

1
4πρ

[
x̂lx̂i

α2R
eikαR +

(δil − x̂ix̂i)
β2R

eikβR

]
, (2)

with the unit vectors x̂l and x̂i in l and i-direction, P -wave speed α, S-wave speed β, travel distance R
and the Kronecker delta notation δil.

For simplicity the 2D to 3D conversion operator is derived for an acoustic medium. However, it is
important to note that the result is also valid for the elastic case because the Green’s functions for both
cases involve the same wave function eikR

R with wavenumber k = ω/c (where c is either α or β).
The Green’s function for the velocity potential Ψ in the Helmholtz equation is given by:

Gpoint_3D(ω) =
eikR

4πR
, (3)
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Figure 1: a: Source location within the applied 3D model. The 3D model is unaltered in y direction. Wave
propagation is simulated for a line source (triangles) with 3D FD in order to get the equivalence to a 2D
simulation for the marked 2D model. Further, 3D FD simulation is performed for a point source (bold
triangle). b: Infinite line source in y direction with grid spacing ∆x between the source nodes.

with distance R between source and receiver in cartesian coordinates:

R =
√
x2 + y2 + z2. (4)

The Green’s function of a line source can be constructed by adding the contributions of an infinite number
of aligned point sources. This is illustrated in In Fig. 1 where a large number of point sources aligned in y-
direction of the computational gird with grid spacing ∆x simulates a line source in y-direction. Therefore,
the discrete Green’s function Gline_3D representing the line source in Fig. 1 is given by:

Gline_3D(ω) =
1
4π

∞∑
n=1

eik
√

r2+y2√
r2 + y2

, (5)

where y = n∆x and r2 = x2 + z2, which is the square of the distance in the xz-plane between source and
receiver. Applying the Fresnel approximation and writing the sum as an integral, eq. (5) transforms into:

Gline_3D(ω) =
eikr

4πr
1

∆x

+∞∫
−∞

e
ikx2
2r dx. (6)

The integral on the right hand side is given by:

+∞∫
−∞

e
iωx2
2cr dx =

e
iπsgn(ω)

4√
|ω|

√
2πcr, (7)

where sgn denotes the signum function. Using eq. (7) the Green’s function for a line source can be repre-
sented as:

Gline_3D(ω) = Gpoint_3D(ω) C−1(ω) , (8)
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where

C−1(ω) =
1

∆x

√
2πcr
|ω|

e
iπsgn(ω)

4 (9)

This means that the 3D line source Green’s function (8) is composed out of the 3D point source Green’s
function (3) multiplied by the function (9). Conversely, multiplying equation (8) by the inverse of C−1(ω),
i.e, C(ω) yields the 3D point source Green’s function expressed in terms of the 3D line source Green’s
function (or, equivalently, in terms of the 2D point source Green’s function). Applying the inverse Fourier
transform to the function C(ω) yields the time domain conversion operator

C̃(t) =
∆x

πr
√

2/t
d

dt

H(t)√
t
, (10)

where H denotes the Heaviside step function. Thus, the 2D FD line source seismogram Ψline2D(t) can be
translated into a 3D point source seismogram Ψpoint_3D by applying operator (10) to Ψline_2D(t):

Ψpoint_3D = C̃(t) ∗Ψline_2D(t) (11)

=
∆x

πr
√

2/t

{
d

dt

H(t)√
t
∗Ψline_2D(t)

}
, (12)

where the asterisk denotes time domain convolution. Equation (12) is exact for a homogeneous acoustic
medium. Equation (12) is also applicable in for the elastodynamic far field if the velocity potential is
replaced by the displacment vector components.
In order to apply (12) to elastic, 2.5D heterogeneous media it requires the knowledge of the exact travel
path the wave takes (r̄). We assume that r̄ can be approximated by the corresponding high-frequency
response, that is, in the geometrical optic limit. Thus, in order to simulate 3D point source seismograms
from 2D finite difference experiments we propose the following formula for the displacement components

upoint_3D
i ≈ ∆x

√
t√

2πr̄

{
d

dt

H(t)√
t
∗ uline_2D

i (t)
}

, (13)

where exact travel path is determined in the geometrical optic limit. This means that in addition to a
2D finite difference solver of the elastodynamic wave equation, a finite difference solver of the eikonal
equation or a ray tracing algorithm is required. We expect that formula (13) remains valid as long as r̄ can
be accurately evaluated in the geometrical optic limit. For an extensive review of the applicability of the
geometrical optic approximation we refer to Kravtsov and Orlov (1990). The applicability of equation (13)
in 2.5D heterogeneous media is demonstrated with help of several examples.

MODELLING TECHNIQUES

The simulations are carried out by applying the 3D FD code of Olsen (1994) which is frequently used
for earthquake wave propagation simulations (e.g., Olsen, 2000; Gottschämmer et al., 2002; Miksat et al.,
2005; Oth et al., 2007). The code is of 4th order in space and 2nd order in time. To validate our proposed
correction method, we apply 3D simulations with line sources in order to generate the equivalent to a 2D
simulation. The results are corrected according to eq. (12) and compared with a 3D FD simulation for a
point source. The 3D models are 2.5D models, as they are not altered in y direction. The line sources are
parallel to the y-axis of the model (see Fig. 1). The considered 2D slice corresponds to the xz plane at grid
node number 201 in y direction. The modeling parameters are given in Table 1. To minimize numerical
dispersion errors, at least 11 points per minimum wavelength are used for the modeling. Consequently, all
seismograms are filtered with a four pole Butterworth lowpass filter with cutoff frequency of 0.5 Hz. A
double couple stress source with a Ricker wavelet is added to the corresponding source grid points.
In order to get the length of the travel path needed in order to apply (12) we use a two-point ray tracing
algorithm.
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Table 1: Modeling parameters
Spatial discretization dx (km) 0.50
Number of grid points (x-direction) 401
Number of grid points (y-direction) 401
Number of grid points (z-direction) 321
Horizontal extension in x-direction (km) 200
Horizontal extension in y-direction (km) 200
Vertical extension in z-direction (km) 159
Temporal discretization dt (ms) 17
Number of time steps 7000
Simulation time (s) 119

EXAMPLES

In this section the derived method is applied to the modeling of wave propagation within four different
structural models. We compare simulated 3D waveforms obtained with the hybrid approach to the results
obtained from 3D FD point source simulations. The 2D to 3D conversion are performed for straight lined
(source-receiver) travel paths and actual paths calculated by the ray tracer. The relative error is calcu-
lated by comparing the maximum phase amplitudes of the 3D FD point source (A3D

max) and the converted
seismograms (Aconv

max ):

relative error =

∣∣Aconv
max −A3D

max

∣∣
|A3D

max|
. (14)

Homogeneous medium

First, we test the correction procedure for the simplest case: a homogeneous structure where all trave paths
are straight lines. The source is located in a depth of 70 km and the seismograms are compared at a surface
point with an offset of 30 km. Consequently, the straight line travel path length is 72.5 km. The comparison
shows an excellent fit (Fig. 2). The small deviations are most probably produced by the discrete nature of
a line source in FD simulations compared to real continuous line sources. By comparing the maximum
amplitudes of the point source and corrected line source, we find deviations of 2%, 1.2% and 5.3 % for
the x-,y- and z-component, respectively. This should be regarded as the intrinsic error of FD algorithm
probably related to numerical dispersion.

Layered structure – internal multiple

Fig. 3 displays the 2D slice of the layered model. The source is located in a depth of 70 km at x = 0
km. First the direct S-phase at station A is examined. Fig. 3 shows the corresponding ray path calculated
with the ray tracer. The length of the straight line travel path is 139 km and144 km for the real ray path.
The resulting seismograms for station A are shown in Fig. 4. In our example, the S wave shows only
on the y-component a clearly visible onset with an amplitude about ten times larger than of the x- and z-
components. For the y-component, the relative error (see 14) is 2.2% for the straight line approximation
and 1.7 % for thhybrid method. There is almost no difference between the correction applied with the
straight line approximation and the real travel path length. Therefore, the straight line approximation is a
valid assumption for small deviations of the travel path from a straight line. Next, we look at a phase which
is trapped in the low velocity channel and is recorded at station B (Fig. 5). In this case the computed length
of the ray path is 136 km and 81 km for a straight line between source and station B. Here, the information
from the ray tracer is crucial in order to perform the correction. For the x- and y-component, which shows
the largest amplitudes for the trapped phase arrival, the correction fits to the 3D results (relative errors of
3.4% and 11 %, respectively). These errors are larger than the intrinsic errors found for the homogeneous
model. This may be explained by the fact that due to the complex underground structure the considered
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z−Component
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1 s

3D simulation
corrected 2D (straight−lined)

Figure 2: Comparison of a simulation of a point source (solid) with the corrected simulation of a line
source (dashed) for a homogeneous model. The relative errors of the maximum amplitudes are 2%, 1.2%
and 5.3 % for the x-,y- and z-component, respectively.

S-phase contains also small P - or S-phases, which traveled different paths but arrive at the same time. In
this case, the assumption made for the conversion is not completely valid.

Lense structure – wavefield focusing

A buried lense structure causes strong deviations from straight line ray paths and such structures are able
to focus rays from different directions. Such an extreme case is examined in this section. Fig. 6 shows the
velocity structure of the model. The source is located in a depth of 130 km and the buried structure are
almost symmetric to the x = 0 km. We test the procedure for a station at x = 0 km, where the marked ray
paths in Fig. 6 coincide. The 3D point source simulation and the corrected 3D line source simulation is
compared in Fig. 7. Here, we compare the direct P -wave arrivals, rather than the S-phases. In Fig. 7 only
the x- and z-components are shown, as there is no P-wave on the y-component for 2D modeling and for
3D modeling with line sources. The relative errors of the maximum amplitudes of the x-component are 13
% for the straight line and 2 % for the hybrid approach. For the z-component the relative error are 7.8 %
(straight line approximation) and 3 % (hybrid method). This example emphasizes the need for the hybrid
method for complex underground structures that strongly deflect the direct ray path.

Real subsurface structure

Here, the correction procedure is tested for a earthquake modeling application. Fig. 8 shows a slice through
the 3D underground structure of Romania based on (Martin et al., 2005). A linear trend is over-imposed on
the known subsurface structures in order to enhance the complexity of the model. An extended study of 2D
FD wave propagation modeling of the strong Vrancea earthquakes in Romania was performed by (Miksat,
2006). The correction is shown for a station at x = 83 km, the ray path is altered by the strong curvature
of the basin structure and for a station at x=83 km. The straight line and real travel paths lengths are 114
km and 109 km, respectively. We compare our conversion (12) with conversion (1) given by Vidale and
Helmberger (1987), which was used by Igel et al. (2002); Olsen et al. (1996). The relative error is 3.8 %,
5.7 % and 6.0 % (x-, y- and z-component) for our hybrid approach and 46 %, 47 % and 47 % (x-, y- and
z-component) for the conversion given by Vidale and Helmberger (1987).
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Figure 3: Model with three horizontal layers. The S-wave velocity of the middle layer is the lower than
for the top and bottom layers. First the correction is examined for the direct S-wave at station A. The
second case evaluates the correction for the S wave which was trapped in the low velocity channel and
finally observed at station B. The solid lines depict the travel paths and the dashed lines their straight line
approximations.
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Figure 4: Comparison of the point source and corrected line source simulations for the direct S-wave at
station A (see Fig. 3). The straight line and real travel path lengths are 139 km and 144 km, respectively. For
such small differences compared to the total travel path length, a straight line travel paths can be adopted
for the correction.
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Figure 5: Comparison for the S-wave that was trapped for one cycle in the velocity channel (see Fig. 3).
The seismograms are evaluated at station B about. The assumption of a straight line path (dotted) fails
here. The correction with the travel path calculated by ray tracing gives a good fit between point (solid)
and corrected line (dashed) source simulations.
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Figure 6: Model with a buried lense like structure. This structure produced large deviations from straight
line ray paths.
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Figure 7: Modeled point source (solid) and corrected line source (dashed and dotted) simulation at 0 km
(see Fig. 6) for the lense like structure. At 0 km, the rays arrive from different directions and coincide. Even
though the fit is good for both cases, straight line (dotted) and real (dashed) travel path, the information
from the ray tracer is crucial in order to obtain an excellent fit.
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Figure 8: The correction procedure is tested for a realistic subsurface structure. This structure is based on
Martin et al. (2006). To enhance the complexity of the model, a linear trend is over-imposed on the known
subsurface structures. The seismograms are evaluated at x = 83 km (Fig. 9).
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Figure 9: Comparison of the point source and corrected line source seismogram after our hybrid approach
and the conversion given by Vidale and Helmberger (1987) at x = 83 km (see Fig. 8) for a realistic subsur-
face structure.

DISCUSSION

The examples show that the proposed method can be applied in a range of scenarios. A general limitation
is the restriction to 2.5D heterogeneous models. Wave propagation within complicated 3D models and
the corresponding 3D effects cannot be modeled with a 2D approach. However, in many cases the real
underground structure can be approximated by a 2.5D structure and in these cases, the correction method
allows a fast calculation of waveforms and absolute amplitudes without time and memory intensive 3D
simulations. For very complicated ray paths, such as trapped or strongly deflected rays, the hybrid approach
of FD and ray tracing allows a reliable calculation of the 3D seismograms. By calculating many different
rays (reflections and refractions) for one location and the corresponding arrival times a 2D FD seismogram
as a whole can be properly corrected. A further limitation is observed for the layered structure. If the
considered phase is contaminated with other phases, the conversion cannot be applied correctly because
the travel paths of these phases differ. In these cases the quality of the conversion procedure depends on
the relative amplitude of the considered phase to the contaminating phases.

CONCLUSIONS

We propose a hybrid modeling method to simulate 3D waveforms and amplitudes based on seismograms
calculated with 2D FD and on the actual ray paths determined by ray tracing. The approach is based on the
equivalence of point sources in 2D FD modeling and line source in 3D modeling. Compared to formerly
published correction procedures there is no limitation on the particular FD code. We showed by comparison
of 3D and corrected 2D seismograms for models of various complexities the applicability of the correction
method to underground structures of realistic velocity contrasts and complexity. As 2D FD full waveform
calculations are less time and computer memory intensive compared to 3D simulations, this method allows
a quick calculation of accurate waveforms and amplitudes for 2.5D heterogeneous structures.
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