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ABSTRACT

Seismic imaging in depth is limited by the accuracy of velocity model estimation. Slope tomography
uses the slowness components and traveltimes of picked reflection or diffraction events for veloc-
ity model building. The unavoidable data incompleteness requires additional information to assure
stability to inversion. One natural constraint for ray based tomography is a smooth velocity model.
We propose a new, reflection-angle-based kind of smoothness constraint as regularization in slope
tomography and compare its effects to three other, more conventional constraints. The effect of these
constraints are evaluated through angle domain common image gathers, computed with wave-equation
migration using the estimated velocity model. We find the smoothness constraints to have a distinct
effect on the velocity model but a weaker effect on the migrated data. In numerical tests on synthetic
data, the new constraint leads to geologically more consistent models.

INTRODUCTION

The determination of a macrovelocity model is essential for time and depth imaging of seismic reflectors in
the earth. Among the many methods that try to to achieve this aim are so-called tomographic methods that
are based on the inversion of traveltimes of seismic reflection events. One of these is slope tomography,
which uses slowness vector components to improve and stabilize the traveltime inversion. Slope tomogra-
phy was initially proposed by Billette and Lambaré (1998) as a robust tomographic method for estimating
velocity macro models from seismic reflection data. They had recognized the potential efficiency of travel-
time tomography (Bishop et al., 1985; Farra and Madariaga, 1988) but also the difficulties associated with
a highly interpretative picking. The selected events have to be tracked over a large extent of the pre-stack
data cube, which is quite difficult for noisy or complex data. The idea is to use locally coherent events
characterized by their slopes in the pre-stack data volume. Such events can be interpreted as pairs of ray
segments and provide independent information about the velocity model.

However, the data for slope tomography are incomplete (Bishop et al., 1985). Therefore, stability and
convergence can only be achieved if additional information is prescribed. These additional information
contains desirable properties for the solution, reducing ambiguity (Menke, 1989). For ray based inversion,
smoothness is a requirement, because rough models cause the forward problem to break down during linear
iterations. The use of combined smoothness constraints enables an interpretation-oriented inversion while
keeping solutions consistent with the data.

We investigate the effect of different kinds of smoothness constraints in slope tomography. The Mar-
mousoft data set (Billette et al., 2003) is used for this study. Lateral, vertical and isotropic smoothing con-
straints are prescribed in different combinations. Moreover, we propose a structurally motivated smoothing
constraint in the direction of a potential reflector. Angle domain common imaging gathers (ADCIG) are
used to evaluate the quality of the estimated velocity models.

Here, we use a finite-difference implementation, but the correction can also be incorporated into Fourier-
domain implentations like the one of Tessmer (2003).
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METHOD

Slope tomography differs from conventional reflection tomography by the data that are used for the in-
version (Billette et al., 2003). Firstly, the traveltimes are picked from locally coherent events that are
interpreted as primary reflections or diffractions. Secondly, in-line slowness-vector components of these
events, detected in common-shot or common-receiver gathers, are used in addition to source and receiver
positions and traveltimes. Thus, the data space is given by

d = [(xs,xr, ss, sr, T sr)n] (n = 1, . . . , N) , (1)

where xs and xr are the source and receiver positions, T sr are the traveltimes, and ss and sr are the
slowness-vector projections into the receiver line. Moreover, N is the number of selected events.

Slope tomography also uses a different model parameterization than conventional reflection tomog-
raphy. In 2D, the model to be estimated includes: the parameters describing the velocity model, p, the
scattering-point coordinates, X, the emergence angles, θs and θr, and the ray traveltimes, τ s e τ r. In other
words, the model vector is

m = {p, (X, θs, θr, τ s, τ r)n} (n = 1, . . . , N) . (2)

To solve the inverse problem using linear iterations, an initial reference model must be given. In this model
m0, ray tracing is performed to calculate the synthetic data corresponding to equation (1), denoted as dc.
The difference between the observed and calculated data, do − dc, defines the deviation δd.

This deviation is modeled in linear approximation as

δd = DF(m0)δm , (3)

where DF denotes the approximate operator describing the direct problem under variation of the reference
model m0. The operatorDF(m0) is known as the Fréchet derivative (see, e.g., Menke, 1989). The solution
of the linear system in equation (3) determines a new reference model

mnew
0 = m0 + δm. (4)

The process continues iteratively until the norm of the deviation ‖δd‖ is smaller than a given tolerance
value (in case of convergence) or until a maximum number of steps. In this work, we use the standard L2

norm (Menke, 1989).
In our implementation, we construct a model for the square of the medium velocity, which is represented

using the tensor product of third-order B-splines as

p(x1, x3) =
N1∑

α=1

N2∑
β=1

pαβBα(x1)Bβ(x3) , (5)

where the functions Bγ(xj) are the base functions of the interpolator along xj . Moreover, Nj indicates the
number of B-spline nodes in that direction and pαβ are the interpolation coefficients. In other words, the
coefficients pαβ constitute the actual medium parameters that are to be estimated by slope tomography.

Regularization

Due to the incompleteness of the data, additional conditions that take desirable properties of the solution
into account, must be incorporated into the objective function. One necessary condition requires all model-
parameter perturbations, computed in each linear iteration, to be small; other conditions are smoothness
constraints on the velocity model.

Weak constraints are used to enforce smoothness of the solution. These constraints are applied in a
least-squares sense at each node of the B-splines mesh, as indicate below. Several kinds of smoothness
exist, one for lateral homogeneity, one for vertical homogeneity, one for minimum curvature along each
Cartesian coordinate, and finally the minimum Laplacian, which minimizes the curvature of the velocity
model isotropically. The specification of these constraints requires the evaluation of first and second partial
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Figure 1: Position of a potential reflector.

derivatives of the velocity model with respect to the spatial coordinates. Denoting the spatial derivatives in
the x1 and x3 directions by D1 and D3, these derivatives are computed in the form

Dn
1 p(x1, x3) =

N1∑
α=1

N2∑
β=1

pαβ ∂
nBα(x1)
∂xn

1

Bβ(x3) , (6)

and correspondingly for the derivatives with respect to coordinate x3.
Standard regularization of the derivatives along the coordinate directions can be improved by smoothing

along the reflectors. Sinoquet (1993) proposed to use a priori geological information for this purpose
in reflection tomography. In the same spirit, Clapp et al. (2004), who applied reflection tomography in
order to better flatten post-tomography common-image gathers, pointed out the shortcomings of standard
regularization strategies. To overcome these problems, they proposed to use a priori information about the
reflector dip from previous migrations to design smoothing operators along the reflectors. By smoothing
the velocity model along the reflectors, they were able to construct models that were more geologically
reasonable, improved reflector positioning, and led to better focused images.

Actually, the distribution of the scattering points in depth provides a more natural way to enforce a
geologically meaningful smoothing that does not rely on a priori information. Assuming that all events to
be used in the tomographic inversion are reflections, the angle between the normal to the potential reflector
and the vertical direction is (see Figure 1)

α =
θs + θr

2
, (7)

which is available at each iteration of slope tomography. Using this information, we tried to constrain the
velocity model using the reflector geometry, requiring the model to be smooth along the tangent to the
reflector at each scattering point. Computing the velocity gradient at the scattering point, X, we add the
regularization constraint

n(α;X)×∇p(X) = 0 . (8)

This equation constrains the velocity gradient to be perpendicular to potential reflectors, thus smoothing
the velocity model along them. We denote this smoothing operator by Dr. In order to limit the increase
in the size of the problem, we apply this constraint to a fraction of the scattering points. The proposed dip
regularization is different from the approach of Clapp et al. (2004). In our approach, the dip information
is not obtained from a previously migrated image, but from ray-tracing in the reference model during the
inversion. Thus, the smoothing operator is updated at each iteration. The so-obtained dip information can
be used for a futher refinement of the velocity model through residual moveout inversion of common image
gathers.
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Combining these regularizations, we use the objective function

Φ(m;λi) = ‖d− F(m)‖22 + λ2
0‖m−m0‖22

+λ2
1‖D2

1 + D2
3p‖22 + λ2

2‖D2
1p‖22 + λ2

3‖D2
3p‖22

+λ2
4‖D1p‖22 + λ2

5‖D3p‖22 + λ2
6‖Drp‖22 , (9)

where the λi are Lagrangian multipliers that weight the contributions of regularization in the objective
function. At each iteration we need to solve the linear system

DF(m0)
λ0I

λ1(D2
1 + D2

3)
λ2D2

1

λ3D2
3

λ4D1

λ5D3

λ6Dr


δm =



δd
0
0
0
0
0
0
0


. (10)

The prescription of λ1, λ2, λ3, λ4 and λ5 determines the weight of isotropic curvature smoothing, lateral
and vertical curvature smoothing, as well as lateral and vertical homogeneity, respectively. The value of λ6

controls the degree of smoothing along potential reflectors.
This objective function gives us the flexibility to permit different assumptions about the velocity model.

We test some of the possible choices and their effect on the estimated velocity models in the Numerical
Examples section below.

Angle domain common imaging gathers

We use angle domain common imaging gathers (ADCIGs) to measure the quality of the velocity models
estimated for seismic imaging. We compute ADCIGs using wide angle FFD migration with the complex
Padé approximation (Amazonas et al., 2007). Based on the works of Rickett and Sava (2002), Sava and
Fomel (2003), and Biondi (2006), we compute subsurface offset domain common image gathers (SOD-
CIGs) using the imaging condition

I(ξ, h) =
∑
ω

P ∗
s (x− h, z;ω)Pr(x+ h, z;ω) , (11)

where Ps is the source wavefield at the imaging point ξ, P ∗
r is the downward continued receivers wavefield

at ξ, ω is the angular frequency, h is the subsurface offset and (∗) denotes complex conjugate. The ADCIGs
are then computed from the SODCIGs by the slant stack

A(z, tan θ) =
∫
I(z + h tan θ, h) dh , (12)

where θ is the scattering angle at the imaging point.

NUMERICAL EXAMPLES

Model

We use the Marmousoft data (Billette et al., 2003) to evaluate the effect of regularization constraints in
slope tomography. These synthetic data are obtained by Born modeling in a smoothed version of the
original Marmousi model (see Figure 2). The smoothing is done using a Gaussian filter minimizing with
correlation-length τ = 240 m (Billette et al., 2003). A correspondingly smoothed model is depicted in
Figure 3. In these synthetic data, 5490 events were selected by an automated picking code (Billette et al.,
2003). Their traveltimes and local slopes constitute the input data for the stereotomographic inversion in
the numerical examples.



72 Annual WIT report 2007

km/s
1.5 2 2.5 3 3.5 4 4.5

Distance (km)

D
e
p

th
 (

k
m

)

Velocity Model

3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

Figure 2: Exact Marmousi velocity model.

Inversion results

Below, we discuss the results of slope tomography using five kinds of regularization strategies, being (1)
isotropic smoothing of the curvature by minimizing the norm of the Laplacian of the velocity field; (2)
anisotropic smoothing of the curvature by minimizing curvature independently in the lateral and vertical
directions; (3) anisotropic smoothing of the heterogeneity by minimizing the velocity gradient indepen-
dently in lateral and vertical directions; (4) structural smoothing of the heterogeneity by minimizing the
velocity gradient along the reflectors; (5) anisotropic and structural smoothing of the heterogeneity by
minimizing the velocity gradient both along the reflectors and laterally.

Our implementation of slope tomography uses the multigrid approach suggested by Billette et al.
(2003). The inversion is performed initially on a sparse B-spline mesh, with 13× 11 nodes. The nodes are
spaced at 1 km laterally and 0.5 km vertically. The result of this inversion is the initial model for the final
inversion on a dense B-spline mesh, with 61× 51 nodes. Now, the nodes are spaced at 0.2 km laterally and
0.1 km vertically. The damping parameter, λ0 is set to 0.025 for all inversions. We present the results after
30 linear iterations using the dense mesh.

In the first inversion, we only use the Laplacian operator, with λ1 = 0.005. All other λi in equation (10)
except for λ0 are set to zero. The resulting estimated velocity model is shown in Figure 4. In the second
inversion, the regularization minimizes the lateral and vertical curvatures independently, with λ1 = 0.050
and λ2 = 0.010. The estimated velocity model is shown in Figure 5. The third inversion minimizes
heterogeneity, with λ4 = 0.050 and λ5 = 0.010. The resulting velocity model is depicted in Figure 6.
The fourth inversion applies the proposed regularization, with λ6 = 0.050. The estimated velocity model
is shown in Figure 7. Our last inversion combines smoothing along the reflectors with a minimization of
lateral inhomogeneity, with λ4 = 0.005 and λ6 = 0.0025. The estimated velocity model is shown in
Figure 8.

The five estimated velocity models are quite different from the original smoothed Marmousi velocity
model of Figure 3. We can see that the smoothness constraints have a distinctive effect on the estimated
velocity models. The most obvious differences of the models occur in the bottom part where the data
coverage is poorer. The curvature regularizations (Figures 4 and 5) tend to concentrate the high-velocity
zone in the center of the model. The model in Figure 5 has more lateral smoothness than all the others.
The inversions using gradient constraints (Figures 6, 7, and 8) distribute the high velocity over the whole
model. They recover models that are more similar to the smoothed model of Figure 3 than the inversions
using curvature restraints. The inversions that try to incorporate structural information (Figures 7 and 8)
seem to best reconstruct some details of the smoothed model, like the higher velocity at x = 7.2 km and
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Figure 3: Smooth velocity model computed from the exact Marmousi model of Figure 2 by Gaussian
smoothing.

z = 1.6 km, the lower velocity at x = 6.8 km and z = 2.0 km, or even the slightly increased velocity at
x = 2.6 km and z = 1.6 km. Note that no inversion can be expected to recover the model below about
z = 2.2 km, because the ray coverage is too poor.

Prestack migration

As the next step, we compare the migrated sections obtained from depth migrating the Marmousoft data
using the velocity models estimated above. For comparison, we also show the migration result using the
smoothed velocity model (see Figure 9). For the purpose of depth migration, we sampled the velocity
models on a regular mesh with a grid spacing of 12.5 m. The resulting migrated images are depicted in
Figures 10 through 14.

The high quality of the upper part of all migrated images confirms the quality of velocity model inver-
sion by slope tomography. Where high ray coverage is achieved, the recovered model is very good. In these
regions, the particular kind of regularization has not much influence on the inversion. On the other hand,
in regions of low ray coverage, different regularizations lead to different models and, thus, to differences
in the migrated images. The most dramatic difference between the images can be seen in the lower right
corner. Clearly, the failure of the curvature constraints to yield high velocity in that region leads to a major
pull-up of the reflectors (Figures 10 and 11). The migrated images obtained from the gradient constraints
(Figures 12, 13 and 14) look much better. The left salt intrusion is almost perfectly positioned by all three
of them. Even the right salt intrusion looks pretty similar to what it should be. Again, please note that at
the borders of the model, ray coverage is close to zero, so that independently of the chosen regularization,
there is no way for the inversion to recover correct velocities there.

Actually, the last three images present only very subtle differences in the continuity of some reflectors
like the anticlines in the center of the image or the horizontal reflector above the reservoir. The reservoir
itself seems positioned best in the two last images (Figures 13, and 14) that use the structural constraints.
The similarity of the images even in the lower part contrasts with the differences of the velocity models
estimated by slope tomography. This is a clear evidence of nonuniqueness in the inversion on one hand,
and of the tolerance of migration to perturbation in the velocity model on the other hand. It is in these
regions of nonuniqueness where regularization has its main effect.
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Figure 4: Velocity model estimated with λ1 = 0.005.
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Figure 5: Velocity model estimated with λ2 = 0.05 and λ3 = 0.010.

Angle gathers

For a more detailed analysis of the migration results, let us also compare the angle-domain common-image
gathers (ADCIGs) at selected positions of the model. For each (smoothed and estimated) velocity model,
we selected the ADCIGs at coordinates x = 4.0 km, x = 5.0 km, x = 6.0 km, x = 6.5 km, x = 7.0 km,
and x = 7.5 km for display. Figures 15 through 20 show these results. In all these figures, panel (a) is the
ADCIG calculated with the smoothed velocity model, (b) using the Laplacian constraint, (c) the curvature
constraint, (d) horizontal and vertical gradient constraint, (e) the proposed structurally motivated gradient
constraint, and (f) the structural plus horizontal gradient constraint. Note that due to the simulated sailing
direction from left to right, only negative opening angles are illuminated.

As with the migrated images, also the ADCIGs are rather similar. Particularly in the upper part, all
ADCIGs are almost identical and nicely flat, confirming again the high quality of slope tomography in
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Figure 6: Velocity model estimated with λ4 = 0.050 and λ5 = 0.010.

areas with high ray coverage. However, there are some differences visible in the ADCIGs.
All reflectors are reasonably flat in all ADCIGs of Figure 15. Some nonflatness can only be seen in the

deepest reflectors of panel (b). The main differences are in the depth position of the deeper reflectors. The
best positioning is achieved in panels (e) and (f).

The differences in Figure 16 are slightly stronger. In panels (b) and (d), we see already some continuity
problems with the shallow reflector at 0.4 km depth. Again, panels (e) and (f) are closest to panel (a), with
panel (c) achieving good quality down to about 2.0 km.

The panels in Figure 17 are quite similar to each other down to 1.5 km. Again, panels (b) and (d)
present the strongest nonflatness. At this image point, the ADCIGS (e) and (f) actually seem to provide a
better image of the deeper reflectors than the smoothed model in panel (a).

Again, the upper parts of the panels in Figure 18 are very similar. The most significant differences in
Figure 18 concern the reflectors below 2.0 km depth, which are reasonably flat only in panels (e) and (f).

In Figure 19, differences occur already at depths below 1.0 km. At this image point, panel (c) is not
much better than panels (b) and (d). Panel (f) shows the best image of all reflectors below 1.4 km.

Finally, in Figure 20, the mispositioning in depth is the strongest. This image point is already located in
the region where the tomographic inversion had the most problems because of the rather low ray coverage.
Non of the recovered models places the reflectors below 1.2 km at their correct depth. Again, flatness is
best in panels (e) and (f).

Evaluation

The detailed analysis of these and other ADCIGs in the model confirms our experiences from other numer-
ical experiments with different values for the λi in equation (10). In the vast majority of test, a regulariza-
tion with a simple Laplacian constraint leads already to reasonable models where the ray coverage is high.
However, any of the other tested regularization provides better results in regions with low ray coverage.
Independently minimizing both second derivatives was consistently better than minimizing the Laplacian.
Minimization of the horizontal and vertical velocity gradient is generally better than the Laplacian con-
straint but worse than independent curvature minimization. The best results in our numerical examples
were consistently achieved using the structurally motivated minimization of the gradient component in the
direction of a potentially present reflector. In many cases, it is helpful to simultaneously minimize also the
horizontal component.
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Figure 7: Velocity model estimated with λ6 = 0.050.
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Figure 8: Velocity model estimated with λ4 = 0.005 and λ6 = 0.0025.

CONCLUSIONS

In this paper, we have proposed a new smoothness constraint for slope tomography that minimizes the
velocity gradient in the dip direction of a possibly present reflector at an image point. This potential dip
direction can be estimated as the normal to the half-angle direction between the ray branches that connect
sources and receivers to the image point.

To evaluate the quality of the proposed constraint, we have implemented and tested a set of different
types of smoothness constraints in slope tomography. The effect of these constraints on the estimated
velocity model and the corresponding seismic image was investigated with the help of numerical examples
using the Marmousoft data set.

We found a clear effect of the smoothness constraints in the estimated velocity model and a less distinc-
tive effect on the seismic imaging and ADCIGs. In our numerical tests, pure curvature constraints produced
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Figure 9: Post-migration stack for the smoothed velocity model in Figure 3.
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Figure 10: Post-migration stack for the estimated velocity model in Figure 4.
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Figure 11: Post-migration stack for the estimated velocity model in Figure 5.
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Figure 12: Post-migration stack for the estimated velocity model in Figure 6.
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Figure 13: Post-migration stack for the estimated velocity model in Figure 7.
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Figure 14: Post-migration stack for the estimated velocity model in Figure 8.



Annual WIT report 2007 79

0

0.5

1.0

1.5

2.0

2.5

D
e
p
th
�
(k
m
)

-50 0 50
Angle�(degrees)

(a)

0

0.5

1.0

1.5

2.0

2.5

D
e
p
th
�
(k
m
)

-50 0 50
Angle�(degrees)

(b)

0

0.5

1.0

1.5

2.0

2.5

D
e
p
th
�
(k
m
)

-50 0 50
Angle�(degrees)

(c)

0

0.5

1.0

1.5

2.0

2.5

D
e
p
th
�
(k
m
)

-50 0 50
Angle�(degrees)

(d)

0

0.5

1.0

1.5

2.0

2.5

D
e
p
th
�
(k
m
)

-50 0 50
Angle�(degrees)

(e)

0

0.5

1.0

1.5

2.0

2.5

D
e
p
th
�
(k
m
)

-50 0 50
Angle�(degrees)

(f)
Figure 15: ADCIG computed using the velocity models in Figures 3 through 8 at coordinate x = 4.0 km.
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Figure 16: ADCIG computed using the velocity models in Figures 3 through 8 at coordinate x = 5.0 km.
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Figure 17: ADCIG computed using the velocity models in Figures 3 through 8 at coordinate x = 6.0 km.
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Figure 18: ADCIG computed using the velocity models in Figures 3 through 8 at coordinate x = 6.5 km.
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Figure 19: ADCIG computed using the velocity models in Figures 3 through 8 at coordinate x = 7.0 km.
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Figure 20: ADCIG computed using the velocity models in Figures 3 through 8 at coordinate x = 7.5 km.
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worse velocity models than gradient constraints. The proposed gradient constraint in the reflector-dip di-
rection showed a desirable behaviour. On its own or in combination with other gradient constraints, it
helped to improve the obtained velocity model in areas of reduced ray coverage.

Our numerical results also indicate that the final depth-migrated images using these models may be less
sensitive to the smoothness constraints than the models themselves. Not all the differences in the models
actually led to differences in the final depth-migrated images. The reason is that the lower the coverage
with reflection events, the stronger is the dependence of the quality of the inverted velocity model on the
chosen type of smoothness constraints used to stabilize the slope tomography. Therefore, the most visible
model differences will generally occur where few or no events need to be imaged. Moreover, since ray
coverage generally decreases with depth, the influence of regularization increases with depth. Therefore,
the final depth-migrated images will be more prone to show differences due to different regularizations at
greater depth.
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