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ABSTRACT

By reparameterization of the kinematic expressions for remigration in elliptically anisotropic media
using a new ellipticity parameter, we derive a new image wave equation in elliptically anisotropic
media describing the position of the reflector as a function of the medium ellipticity. This image wave
equation, which is a kind of medium-dependent one-way wave equation, can be used for automatically
stretching a time-migrated image in depth until wells are tied or other given geologic criteria are met.
In this way, it is possible to find an estimate of the vertical velocity, which cannot be detected from
time processing only. A simple numerical example confirms the validity of the theory.

INTRODUCTION

Seismic migration aims at correctly positioning images of seismic reflectors in time or depth sections.
For this purpose, a macrovelocity model is needed that is kinematically equivalent to the true velocity
distribution in the earth. If the migration velocity model is incorrect, so will be the positioning of the
reflector images.

When one of the parameters used for the migration process, generally the velocity model, is altered,
the construction of an updated image becomes necessary. This can be achieved either by a new migration
of the original data or by a process called “remigration” applied to the previously constructed image. For
small changes in the velocity model, remigration has become known as “residual migration” (Rocca and
Salvador, 1982; Rothman et al., 1985) or “cascaded migration” (Larner and Beasley, 1987). A continuous
change in migration velocity has been termed “velocity continuation” (Fomel, 1994).

In a set of migrated sections obtained using only slightly different velocity model parameters, the re-
flector images are dislocated only slightly from one to the next. Thus, looking at such a set in fast sequence
creates the impression of looking at snapshots of a propagating wavefront. Under the assumption of a
constant migration velocity, this “propagation” of reflector images can be described by partial differential
equations (Fomel, 1994) that have been termed “image-wave equations” by Hubral et al. (1996).

Since the pioneering work of Fomel (1994), many different image-wave equations for different situa-
tions have been proposed and their applications have been studied Jaya (1997); Jaya et al. (1999); Fomel
(2003b,a). Although their theory is strictly valid only in homogeneous media, image-wave remigration has
been successfully applied in inhomogeneous media (Schleicher et al., 2004; Novais et al., 2005). Recently,
Schleicher and Aleixo (2007) have extended the theory of image-wave remigration to in media with el-
liptical anisotropy, which can be described analytically with one single additional medium parameter (see
also Aleixo and Schleicher, 2004; Schleicher and Aleixo, 2005). They chose the parameter describing
the medium ellipticity to be the ratio between the squares of the vertical and horizontal velocities. Us-
ing this parametrization, they showed that time remigration with image waves in elliptically anisotropic
media is achieved with the isotropic image wave equation, where the migration velocity is substituted by
the horizontal velocity. In other words, the position of a time-migrated reflector image in an elliptically
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inhomogeneous medium is independent of the vertical velocity and depends only on the variation of the
horizontal velocity. This observation is in agreement with the findings of Alkhalifah and Tsvankin (1995).

Based on this observation, it is more reasonable to assume that from time processing, a good estimate of
the horizontal velocity is known, rather than of the vertical velocity. Therefore, in this paper, we reparam-
eterize the equations for elliptical anisotropy. Using a new ellipticity parameter, being the ratio between
vertical and horizontal velocity, we derive a new image wave equation in elliptically anisotropic media.
This image wave equation, which is much simpler than the previous one, can be used for depth stretching
a time-migrated image until given geologic criteria are met.

Of course, elliptic anisotropy is a rather simplistic approximation to the real world. Nonetheless, it can
be considered an ideal link from isotropy to anisotropy. Compared to isotropy, it presents an additional
degree of freedom that should be sufficient in many cases to improve well-ties by simple ellipticity propa-
gation of the migrated image, On the other hand, compared to more realistic types of anisotropy, it has the
advantage that only one additional parameter needs to be determined from the data.

VERTICAL IMAGE WAVES

Seismic remigration tries to establish a relationship between two media of wave propagation in such a
way that identical seismic surveys on their respective surfaces would yield the same seismic data. One of
these media is the wrong velocity model used for the original migration. The other medium represents the
updated model within which a new image of the subsurface needs to be constructed.

Therefore, the kinematic relationship between these two media is established by equaling the travel-
times of a seismic wave in both of them.

In the parametrization of Schleicher and Aleixo (2005, 2007), the traveltime of a zero-offset event with
source and receiver at point (ξ, η, 0) on the surface and reflection point at (x, y, z) in depth in an elliptically
anisotropic medium is given by

T (ξ, η;x, y, z) =
2
v

√
ϕ [(x− ξ)2 + (y − η)2] + z2, (1)

where the parameter describing the medium ellipticity is

ϕ =
v2

u2
. (2)

Here, u and v are the horizontal and vertical velocities, respectively.
Actually, this parametrization would be useful if the vertical velocity v was known and the horizontal

velocity u was unknown. However, time processing in elliptically inhomogeneous media depends only
on the horizontal and not on the vertical velocity (Alkhalifah and Tsvankin, 1995). Therefore, a better
parametrization, reflecting this fact, uses the new ellipticity parameter γ, defined as

γ =
u

v
. (3)

Using this new parametrization, the traveltime (equation 1) can be rewritten as

T (ξ, η;x, y, z) =
2
u

√
(x− ξ)2 + (y − η)2 + γ2z2. (4)

The desired kinematic relationship between two media with different ellipticity γ can now be expressed
by equaling the above traveltime (equation 4) to the corresponding one for a reflection point (x0, y0, z0) in
a medium with identical horizontal velocity u but different ellipticity γ0,

T (ξ, η;x0, y0, z0) =
2
u

√
(x0 − ξ)2 + (y0 − η)2 + γ2

0z2
0 . (5)

The identity of the two traveltimes (equations 4 and 5) yields the expression

F = (x0 − ξ)2 + (y0 − η)2 + γ2
0z2

0 −
[
(x− ξ)2 + (y − η)2 + γ2z2

]
= 0. (6)
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This expression describes, for each pair (ξ, η), the set of points (x, y, z) that have the same traveltime at
the source-receiver position (ξ, η, 0) in a medium with ellipticity γ as the point (x0, y0, z0) in the medium
with ellipticity γ0.

Since this identity must be fulfilled independently of the source coordinates, the derivatives of F with
respect to ξ and η must be zero, too. From these conditions, we immediately obtain

∂F

∂ξ
= 2(ξ − x0)− 2(ξ − x) = 0 (7)

and
∂F

∂η
= 2(η − y0)− 2(η − y) = 0. (8)

The last two equations can be interpreted as envelope conditions, describing the envelope of the family of
curves (equation 6) when varying ξ and η, respectively. These envelopes describe the positions of the so-
called Huygens image waves, because their role for image-wave propagation is the same as that of Huygens
waves for physical wave propagation. Generally these kind of equations will result in stationary values for
ξ and η. Here, they simply provide

x = x0 (9)
y = y0. (10)

From the above equations, we recognize that the Huygens image waves for this type of image-wave
propagations are degenerated to single points moving along the vertical direction. Note that for physical
wave propagation in a homogeneous medium, Huygens waves are spheres around the initial point. For
isotropic velocity continuation to higher and lower velocities, the Huygens image waves are the lower parts
of rotational ellipsoids and hyperboloids, respectively, centered at the surface position (x0, y0, 0) above the
reflection point (x0, y0, z0).

The actual expression for the Huygens image wave is obtained from substitution of these last two
identities back into the expression for F , resulting in

γ2
0z2

0 = γ2z2. (11)

Thus, we can establish the simple relationship between the coordinates of the reflection points in the media
with ellipticities γ0 and γ as

z =
γ0

γ
z0. (12)

Note that the depth stretching relationship (equation 12) is itself an interesting result. It states how
the depth of a reflector changes when the medium ellipticity is changed from γ0 to γ. Thus, we could
reposition the migrated reflector image by picking its depth, calculation the new depth according to the
stretch (equation 12) and replace it accordingly. However, for a whole reflector image, this would be a
tedious task.

Image-wave equation

For the purpose of deriving an image-wave equation that describes the propagation of the reflector image
from one depth to the other for the whole section at once, it is more useful to recast equation 12 into the
form

γ = γ0
z0

z
. (13)

In this form, we can interpret this equation as an expression of the type

γ = Γ(x, y, z), (14)

with Γ(x, y, z) given by
Γ(x, y, z) = γ0

z0

z
. (15)
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The function Γ(x, y, z) corresponds to an eikonal associated with the image-wave propagation. By taking
its derivatives with respect to the coordinates, here due to the simplicity of the eikonal (expression 15) only
with respect to z, we can eliminate the initial conditions z0 and γ0 from equation 13 to obtain

∂Γ
∂z

= −γ0
z0

z2
= −Γ

z
. (16)

Since Γ is the eikonal of the image-wave propagation, this last identity can be understood as the corre-
sponding eikonal equation.

Note that in deriving the eikonal equation (expression 16) from the eikonal (expression 15), we are
inverting the standard flux of derivation. The reason is we want to describe the propagation of the reflector
image by a partial differential equation that is valid for any arbitrary initial conditions, while our above
considerations were carried out for a single reflection point.

In the same spirit of inverted derivation, we conclude now that any partial differential equation of the
type

pz =
γ

z
pγ + F(x, y, z, p) (17)

leads, upon the substitution of a high-frequency (ray-type) ansatz p = p0f [γ − Γ(x, y, z)], in first-order
approximation to exactly the above eikonal equation. Thus, all partial differential equations of this type,
particularly the one with F = 0, correctly describe the kinematics of the image-wave propagation. Since
we are, at this time, not interested in attaching a physical meaning to the amplitudes of image-wave prop-
agation, we can thus choose the simplest of these equations. Therefore, the image-wave equation for
propagation in the ellipticity parameter γ is

pz =
γ

z
pγ . (18)

As shown in the Appendix, this equation remains valid for depth continuation of a migrated image
obtained from offset data.

It is important to observe that the derived image-wave equation does not depend on the lateral coor-
dinates of the reflection point, nor on the actual values of the horizontal and vertical velocities. For this
reason, this equation is very promising even for inhomogeneous media.

FD IMPLEMENTATION

The image-wave equation for propagation of a seismic reflector image in γ (equation 18) is a partial differ-
ential equation of a very simple type. In fact, it is a kind of advection equation or one-dimensional one-way
wave equation with variable propagation velocity c = z/γ. The numerical solution of the advection equa-
tion is probably the best-studied problem in the numerical analysis of partial differential equations. A
second-order finite-difference solution is obtained from approximating the γ derivative with a difference
centered at an intermediate grid point j + 1/2, i.e.,

∂p

∂γ

∣∣∣∣j+1/2

k

≈ p(zk, γj+1)− p(zk, γj)
γj+1 − γj

=
pj+1

k − pj
k

∆γ
, (19)

and the z derivative at the same intermediate point as the mean value between the two centered derivatives
at j and j + 1, i.e.,

∂p

∂z

∣∣∣∣j+1/2

k

≈ 1
2

(
p(zk+1, γj)− p(zk−1, γj)

zk+1 − zk−1
+

p(zk+1, γj+1)− p(zk−1, γj+1)
zk+1 − zk−1

)
(20)

≈ 1
4

(
pj

k+1 − pj
k−1

∆z
+

pj+1
k+1 − pj+1

k−1

∆z

)
. (21)

For consistency, the propagation velocity c = z/γ also needs to be evaluated at the point (k, j + 1/2).
Therefore, we approximate the intermediate value of γ also by its mean, i.e.,

c
j+1/2
k =

z

γ

∣∣∣∣j+1/2

k

≈ zk

(γj + γj+1)/2
=

2zk

γj + γj+1
. (22)
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The resulting FD scheme is known to be stable (Strikwerda, 1989; Thomas, 1995). It is the simple tridiag-
onal implicit scheme given by

A ~pj+1 = B ~pj , (23)

where

A =



1 α1 0 . . . 0
−α2 1 α2 0 . . . 0

0 −α3 1 α3 0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 −αK−2 1 αK−2 0
0 . . . 0 −αK−1 1 αK−1

0 . . . 0 −αK 1


(24)

and

B =



1 −α1 0 . . . 0
α2 1 −α2 0 . . . 0
0 α3 1 −α3 0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 αK−2 1 −αK−2 0
0 . . . 0 αK−1 1 −αK−1

0 . . . 0 αK 1


, (25)

with
αk = −1

2
zk

γj + γj+1

∆γ

∆z
(k = 1, . . . ,K). (26)

This is a scheme that fulfills the requirement of being faster solvable than repeated migrations, since there
are very fast methods for the inversion of tridiagonal matrices.

NUMERICAL EXAMPLE

We have implemented the above FD scheme and tested it for a simple synthetic data example in a homo-
geneous, elliptically anisotropic medium. The horizontal and vertical velocities are u = 4500 m/s and
v = 3000 m/s, respectively. The model is depicted in Figure 1.

The synthetic data (see Figure 2) were generated by acoustic FD modeling where the medium ellipticity
is simulated by an anisotropic density. For image-wave remigration, these synthetic data are the initial
condition as a time-section can be understood as a time-migration with a migration velocity of u = 0.0 m/s.

As a first step, the synthetic data where propagated into the time-migrated domain under variation
of the migration velocity using the FD image-wave remigration code of Novais et al. (2005). From the
theory of Schleicher and Aleixo (2005, 2007), we know that the migration velocity for this propagation
corresponds to the horizontal velocity of our elliptically anisotropic medium. This theory is confirmed
from the resulting sequence of time-migrated images, some of which are depicted in Figures 3 to 8. At the
migration velocities of u = 3000 m/s (Figure 3), u = 3500 m/s (Figure 4), and u = 4000 m/s (Figure 5),
the bow-tie structure has not been fully resolved.

The image corresponding to a velocity value of u = 4400 m/s (Figure 6) is the first where the bow-
tie structure is finally resolved. However, the same is true for velocities u = 4500 m/s (Figure 7) and
u = 4600 m/s (Figure 8). Thus, from the images in Figures 6 to 8 alone, it is impossible to distinguish
which of the corresponding velocity values is the correct one. Still, even from using only zero-offset data,
we can estimate a velocity interval (here 4400 /ms to 4600 m/s) within which the correct migration velocity
must lie. How diffractions can be used to improve this velocity estimate has been shown by Novais et al.
(2005).

Of course, since our data are synthetic, we know the true velocity and the correct position of the time-
migrated image. Figure 9 shows that actually, for the true horizontal velocity, the image is correctly posi-
tioned in time.

From this sequence of time-migrated images, we can draw the following conclusions:

• At the true vertical velocity, the image is out of focus.
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Figure 1: Model for the synthetic data experiment: Acoustic, elliptically anisotropic model, with horizon-
tal and vertical velocities u = 4500 m/s and v = 3000 m/s, respectively.

• Both synclines and anticlines focus at the true horizontal velocity.

• Outside an interval around the true horizontal velocity, synclines or anticlines produce unresolved
bow-tie structures.

• Therefore, a rough velocity estimate within an uncertainty interval is possible from zero-offset data
using the imaging properties of curved reflectors.

• Using the horizontal velocity only, the time-migrated image is correctly positioned.

• Vertical velocities cannot be estimated from time processing of zero-offset data alone.

The last of the above observations remains true even if nonzero-offset data are used for the velocity
analysis (Alkhalifah and Tsvankin, 1995). Therefore, the final time-migrated image of Figure 9 is the
best we can hope for if our velocity analysis has worked perfect. For that reason, if our next step is a
depth conversion using the time-migration velocity, we will end up with the wrong depth image depicted
in Figure 10. Since the true vertical velocity is v = 3000 m/s, the depth of the reflectors is overestimated.
Note that this does not just cause simple vertical shift of the reflector images. The dip of the upper reflector
is represented wrongly, and so are the curvatures of the syncline and anticline structures. In accordance
with the predicted depth stretch (equation 12), the overestimation of the reflector depth is the stronger the
deeper the reflector is.

The isotropic depth-migrated image of Figure 10 has then been used as an initial condition for the
image-wave propagation described by the vertical image-wave equation (equation 18). As for the propa-
gation in horizontal velocity, the FD solution of this image-wave equation allows for the generation of a
very dense sequence of migrated images corresponding to slightly varying values of γ. In this way, the
originally isotropic depth-migrated image is becoming more and more anisotropic.

A subset of the so-obtained anisotropic images is depicted in Figures 11 to 15. We note that the image
at γ = 0.665, which corresponds to a vertical velocity of v = 3000 m/s, images both reflectors at their true
depth (see Figure 14). The distortion of reflector dips and curvatures is correctly removed. In Figure 15,
which corresponds to γ = 0.58 or v = 2610 m/s, the depth stretch has already been overcorrected and the
reflector images are too shallow.

From the sequence of images in Figures 11 to 15, we immediately recognize that a determination of
the ellipticity or vertical velocity of the model from this kind of remigration only is impossible. Without
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Figure 2: FD zero-offset data (correspond to a time migration with migration velocity u = 0.0 m/s):
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Figure 3: Image propagation to u = 3000.0 m/s.
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Figure 4: Image propagation to u = 3500.0 m/s.
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Figure 5: Image propagation to u = 4000.0 m/s.

the knowledge of the true reflector depth, there is no way of knowing which of these images is closest to
the true geologic setting. However, with additional knowledge of the reflector depth at a single point, for
instance at a well bore, a reasonable value of γ that ties the reflector to the well could be detected, thus
resolving the positioning ambiguity.

SUMMARY & CONCLUSIONS

As observed by Fomel (1994) and Hubral et al. (1996), migrated reflector images for different migration
velocities seem to “propagate” when the parameters of the migration velocity model are changed continu-
ously. This effect can be described by partial differential equations, so-called “image wave equations.” In
homogeneous media, image-wave equations have been derived for various problems, describing the image
propagation as a function of migration velocity and ellipticity. Extensions to inhomogeneous isotropic and
anisotropic media have been attempted by Adler (2002) and Iversen (2002).

In this paper, we have derived the image-wave equation for depth remigration as a function of the
unknown medium ellipticity, supposing that the horizontal velocity is known from time processing. In this
situation, the dislocation of the reflector image is purely vertical.

The image-wave equation describing the problem of depth stretch due to the medium ellipticity is a
simple one-dimensional one-way wave equation or advection equation with variable propagation velocity.
As such, it is easy to find a stable FD implementation that simulates the image-wave propagation. The fact
that this image-wave equation does not depend on the horizontal coordinates nor on the actual values of
the horizontal and vertical velocities points towards its high potential of being useful in inhomogeneous
media. Moreover, the equation remains the same for nonzero-offset data and can therefore even applied to
the depth stretching of prestack migrated images.

A simple synthetic data example in a homogeneous, elliptically anisotropic model demonstrates that the
present image-wave equation correctly positions reflector images in depth when the true medium ellipticity
is reached. This can provide an easy means of well-tie improvement with simultaneous repositioning of
the whole reflector image, together with providing an estimate of the medium ellipticity.

Of course, elliptic anisotropy is a rather simplistic approximation to the real world. Nonetheless, it can
be considered an ideal link from isotropy to anisotropy. Compared to isotropy, it presents an additional
degree of freedom that should be sufficient in many cases to improve well-ties by simple ellipticity prop-
agation of the migrated image, On the other hand, compared to more realistic types of anisotropy, it has
the advantage that only one additional parameter needs to be determined from the data. Thus, elliptical
anisotropy should be thought of as a lowest-order approximation to more realistic situations.
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Figure 6: Image propagation to u = 4400.0 m/s.
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Figure 7: Image propagation to u = 4500.0 m/s.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tim
e [

s]

500 1000 1500 2000 2500 3000 3500
Distance [m]

Figure 8: Image propagation to u = 4600.0 m/s.
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Figure 9: Image propagation to u = 4500.0 m/s. Also shown as white lines are the correct positions of the
reflector images in a time-migrated section.
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Figure 13: Image propagation to γ = 0.75, i.e., v = 3380.0 m/s
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Figure 14: Image propagation to γ = 0.665, i.e., v = 3000.0 m/s
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Figure 15: Image propagation to γ = 0.58, i.e., v = 2610.0 m/s
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APPENDIX A

DERIVATION FOR OFFSET DATA

For a source-receiver pair displaced along the x axis with half-offset h from one another, the reflection
traveltime (equation 4) reads

T (ξ, η;x, y, z) =
1
u

(S + R), (27)

where

S =
√

[x− (ξ − h)]2 + (y − η)2 + γ2z2, (28)

R =
√

[x− (ξ + h)]2 + (y − η)2 + γ2z2. (29)

As before, this traveltime must not vary when changing γ to γ0, i.e., T (ξ, η;x, y, z) must be equal to

T (ξ, η;x0, y0, z0) =
1
u

(S0 + R0), (30)

where

S0 =
√

[x0 − (ξ − h)]2 + (y0 − η)2 + γ2
0z2

0 , (31)

R0 =
√

[x0 − (ξ + h)]2 + (y0 − η)2 + γ2
0z2

0 . (32)

Thus, the offset version of equation 6 reads

F = S + R− S0 −R0 = 0. (33)

The condition that the derivatives of F with respect to ξ and η must be zero yields

ξ − h− x

S
+

ξ + h− x

R
=

ξ − h− x0

S0
+

ξ + h− x0

R0
(34)

η − y

S
+

η − y

R
=

η − y0

S0
+

η − y0

R0
. (35)

It is clear that the last three equations are simultaneously fulfilled by the relationships between the coor-
dinates given in equations 9, 10, and 12. Consequently, the remaining considerations remain the same as
discussed in the zero-offset case.
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Alternative derivation

Another way of expressing the independence of the traveltime (equation 27) of γ is by requiring γ to depend
in such a way on the coordinates (x, y, z) of the reflection point that a change in these coordinates does
not imply a change in traveltime. In other words, after substituting the image-wave eikonal γ = Γ(x, y, z)
in the reflection traveltime (equation 27), we must require that the total derivative of T (ξ, η;x, y, z) with
respect to the coordinates be zero, i.e.,

dT

dx
= 0 =

∂T

∂x
+

∂T

∂γ

∂Γ
∂x

, (36)

dT

dy
= 0 =

∂T

∂y
+

∂T

∂γ

∂Γ
∂y

, (37)

dT

dz
= 0 =

∂T

∂z
+

∂T

∂γ

∂Γ
∂z

. (38)

From these identities, we immediately obtain the following expressions for the derivatives of the image-
wave eikonal Γ(x, y, z)

∂Γ
∂x

= − ∂T

∂x

/
∂T

∂γ
, (39)

∂Γ
∂y

= − ∂T

∂y

/
∂T

∂γ
, (40)

∂Γ
∂z

= − ∂T

∂z

/
∂T

∂γ
. (41)

The partial derivatives of T (ξ, η;x, y, z) with respect to γ and the coordinates x, y, and z are easily
calculated as

∂T

∂γ
=

1
u S

Γz2 +
1

u R
Γz2 =

1
u

Γz2

(
1
S

+
1
R

)
, (42)

∂T

∂x
=

x− ξ + h

u S
+

x− ξ − h

u R
, (43)

∂T

∂y
=

1
u S

(y − η) +
1

u R
(y − η) =

y − η

u

(
1
S

+
1
R

)
, (44)

∂T

∂z
=

1
u S

Γ2z +
1

u R
Γ2z =

1
u

Γ2z

(
1
S

+
1
R

)
. (45)

We now need to use these equations to eliminate ξ and η from equations 39 to 41. Though equations
42 to 45 are high-order equations in ξ and η that are hard to solve, this elimination can easily be achieved
by substitution of equations 42 and 45 in expression 41. This yields

∂Γ
∂z

= −Γ
z

, (46)

which is identical to the zero-offset image-wave eikonal equation (equation 16). Therefore, the image-wave
equation for the nonzero-offset case is again given by

pz =
γ

z
pγ . (47)


