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ABSTRACT

In this paper, a new inversion scheme for the determination of migration depth velocity models is
presented. The method explicitly enforces the kinematic equivalence between common image gathers
and common reflection point gathers. The use of diffraction traveltime operators as moveout functions
allows to extract differences in time dip with respect to the illumination angle along the CRP trajec-
tory. The minimization of these time dip residuals in combination with traveltime residuals leads to a
consistent geological dip for all offsets or scattering angles which might not be obtained by flattening
either common image gathers or common reflection point gathers only. The inversion scheme will be
presented in detail and the results of a first application to a synthetic data example will be shown.

INTRODUCTION

A common way to determine a suitable velocity model for depth migration is based on the analysis of
the flatness of common image gathers (CIG). This is done either for selected analysis locations or horizon
based in a layer stripping fashion. Knowing the geological dip, the picked depth residuals may be converted
to traveltime misfits which may be used for a tomographic update of the velocity model (see, e. g., Stork,
1992). The basic assumption behind this approach is that a CIG contains all information stemming from
the same depth point. However, this only holds when the true velocity model is known. Generally, a
CIG deviates kinematically from a common reflection point (CRP) gather, which contains all information
stemming from a selected depth point in a specified velocity model. The CRP gather may be obtained by
selecting all traces from the prestack data with source and receiver locations determined by ray tracing in
the current depth model, consisting of the velocity itself, the depth position of interest, and the geological
dip at that position. Thus, the CRP gather is model dependent. If the depth model is consistent with the
prestack data for that position, the CRP gather and the CIG must be kinematically identical. This condition
ensures that all traces in the CRP gather are traces containing a stationary point, i. e. a point of tangency
between the diffraction traveltime operator and the actual diffraction/reflection event in the prestack data.
The kinematic equivalence between CRP gather and CIG not only implies a flat CIG but also the same
geological dip in all depth migrated common offset or common scattering angle sections. Only then an
accurate focusing of the migrated energy can be obtained.

In this paper, I present a method to enforce the kinematic equivalence between CRP gather and CIG in
a tomographic inversion scheme for the 2D case. The method uses sparse analysis locations selected in the
zero offset (ZO) poststack time domain. Each pick location is assumed to be on an unconverted primary
event. These pick locations, described by their trace location, the two-way ZO traveltime and the ZO time
dip are transformed into depth positions by normal ray depth migration in an initial velocity model. In this
way, an initial estimate of the geological dip at these depth points is obtained. Then traveltime residuals
and dip difference between diffraction traveltime operator and the event in the prestack data are extracted
using the diffraction traveltime operator as a moveout function. This procedure is described in detail later
on. The time and time dip residuals are used for a tomographic update of the depth model.
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Figure 1: Relationship between time and depth domain for the ZO case. See main text for details.

DIFFRACTION TRAVELTIMES AS MOVEOUT FUNCTION

The core of the presented method is the use of diffraction traveltime operators as moveout functions. The
diffraction traveltime operator for a specific depth point is used in Kirchhoff depth migration as surface
along which all energy is summed up to be assigned to the corresponding depth position. If there exists a
point of tangency between the diffraction traveltime operator and an event in the prestack data, this summa-
tion is constructive. The point of tangency is called stationary point. Any selected, at least locally coherent
event in the ZO poststack time domain describes an estimate of the ZO stationary point, characterized by
the ZO two-way traveltime, the trace position, and the time dip in the ZO section. The corresponding depth
position and geological dip may be found by normal ray depth map migration. Performing ray tracing in
the opposite direction the ZO stationary point is forward-modeled again. Note that this holds in principal
for any velocity model. This means that for ZO the kinematic equivalence between CRP gather and CIG
may be assured any time. In Figure 1 the relationship between time and depth domain is depicted for the
ZO case. The locally coherent event N in the time domain (solid line in the upper half-space) is described
by its lateral position ξ0, the ZO two-way time t0 = 2 T0 and the time dip 2 pξ0 , where pξ0 denotes the
horizontal component of the slowness vector and T0 is the ZO one-way traveltime. Associated with event
N is point M located on a reflector in the depth domain where the ZO ray (indicated by the dashed line
connecting ξ0 and M) hits the reflector normally. The dashed half-circle in the depth domain indicates the
ZO isochron, i. e. the line of equal two-way traveltime t0 which is tangent to the reflector at point M. The
counterpart to the isochron is the ZO diffraction traveltime curve depicted as dashed curved line in the time
domain. The diffraction traveltime curve is tangent to the locally coherent event at the stationary point N.
The local geological dip at point M is given by Θ0. It is measured from the normal ray to the vertical with
the vertical pointing upwards and, thus, against the depth axis. This definition is used in this paper for all
rays starting at point M. The angle between an arbitrary ray and the vertical will be denoted by γ. Angles
are defined to be positive if they are measured counterclockwise and vice versa. This definition ensures
that the sign of the initial horizontal slowness component of a ray starting at point M equals the sign of the
angle between the ray and the vertical, i. e. px(M) = sin(γ)/v(M), where v(M) is the wave propagation
velocity at point M.

Once the depth position corresponding to a selected pick in the ZO section has been found the diffraction
traveltime operator for that position can be forward-modeled using ray tracing. Alternatively, it may be
extracted from a Greens function table (GFT) for Kirchhoff migration. The diffraction traveltime function
τM for point M is given by traveltimes along all ray pairs connecting a source S with a receiver G, both
at the surface, through point M. This means that the diffraction traveltimes are a function of source and
receiver coordinates, i. e. τM = τM (xS , xG). These, in turn, are functions of the corresponding take-off
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Figure 2: Definition of illumination and scattering angle. See main text for details.

angles γS and γG. Defining the scattering angle Φ and the illumination angle Θ to be

Φ = (γS − γG)/2 , Θ = (γS + γG)/2 , (1)

the diffraction traveltime operator becomes a function of these angles: τM = τM (Θ,Φ). For a graphical
explanation of Θ and Φ see Figure 2. Note the analogy between the angle domain and the commonly
used midpoint-offset domain: shot and receiver coordinates at the surface correspond to take-off angles in
depth, the midpoint coordinate ξ = (xS + xG)/2 corresponds to illumination angle Θ, and the half-offset
h = (xS − xG)/2 corresponds to scattering angle Φ. This, in general, non-linear relation is described in
detail below.

For using τM as moveout function the diffraction traveltime operator is defined as surface of travel-
time zero. In that way, every trace within the migration aperture is associated with a different delay time
and traveltime is measured with respect to the diffraction traveltime. This means that directly traveltime
residuals are measured. This transformation is unique for a selected depth position and velocity model. It
changes for different depth positions and different velocity models.

As an example, I demonstrate this transformation using a simple model: point M is located at x = 0 m
and z = 3500 m on a reflector with a dip of 15◦ and a homogeneous overburden with a wave propagation
velocity of 2000 m/s. Traveltime as a function of midpoint and offset of the corresponding reflection event
in the prestack data is shown in Figure 3(a). In Figure 3(b) the same traveltimes are shown as a function
of scattering and illumination angle. Whereas the traveltimes correspond to specular reflections occurring
anywhere on the reflector the angles correspond to mostly non-specular rays which all start at point M.
These are the angles of the ray pairs building the diffraction traveltime operator of point M which is shown
in Figure 3(c) in the midpoint-offset domain and in Figure 3(d) in the angle domain. Figure 3(e) and 3(f)
show the difference between reflection and diffraction traveltimes in the midpoint-offset and angle domain,
respectively. In all Figures, the CRP trajectory is highlighted as dashed-dotted line. The CRP trajectory
is given as that line along which the traveltime difference vanishes. Generally, it is a curved line in the
midpoint-offset domain. In the angle domain it simplifies to a straight line because the illumination angle
must equal the geological dip. This can clearly be seen in Figure 3(f). Figure 4 shows time dips, i.e. the first
partial derivative of traveltime with respect to midpoint and illumination angle, respectively. Sub-figures
are ordered the same way as in Figure 3. As the CRP trajectory is built of specular reflections, not only the
traveltime difference but also the time dip difference vanishes along it as can be seen in Figure 4(e) and
Figure 4(f). Vanishing time and time dip difference between reflection and diffraction traveltime surface
along the CRP trajectory is a necessary condition for correct subsurface imaging. This simply states that
the CRP trajectory has to be a trajectory of stationary points. Note that the difference between time dip
with respect to offset and scattering angle vanishes as soon as there is no difference between reflection and
diffraction traveltimes.

Figures 5 and 6 show the same quantities for a wrong depth model. The velocity has been changed to
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Figure 3: Correct velocity model: traveltime distribution [s] along the reflection event (a) in the midpoint-
offset domain and (b) in the angle domain. Traveltime distribution along the diffraction traveltime operator
(c) in the midpoint-offset domain and (d) in the angle domain. Traveltime difference between reflection
event and diffraction traveltime operator (e) in the midpoint-offset domain and (f) in the angle domain.
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Figure 4: Correct velocity model: time dip distribution along the reflection event (a) in the midpoint-offset
domain [s/km] and (b) in the angle domain [s/◦]. Time dip distribution along the diffraction traveltime
operator (c) in the midpoint-offset domain and (d) in the angle domain. Time dip difference between
reflection event and diffraction traveltime operator (e) in the midpoint-offset domain and (f) in the angle
domain.
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2300 m/s. Point M has been chosen such that the ZO stationary point remains unchanged. Therefore, the
CIG and CRP gather are kinematically equivalent for ZO. However, this no longer holds for finite offsets
and finite scattering angles. In a wrong depth model the time and time dip difference no longer vanishes
along the CRP trajectory. This is depicted in Figures 5(e) and 5(f) for the time difference and in Figures 6(e)
and 6(f) for the time dip difference. The reflection traveltimes are fixed as they depend on the true velocity
model. Diffraction traveltimes, angles, and the CRP trajectory are model dependent quantities. Thus, they
have changed in the wrong model. This leads to the deviation of the CRP trajectory from a trajectory of
stationary points.

THE IMAGING CONDITION

If point M corresponding to a ZO stationary point is positioned on a reflector the specular ray pairs are
constrained to Θ = Θ0, the traveltimes t along these ray pairs are given by the subset t = τM (Θ = Θ0,Φ)
of the diffraction traveltime function. Source and receiver positions together with these traveltimes build
up the CRP trajectory along which the energy stemming from point M can be found in the prestack data.
However, for migrating this energy to point M it is not sufficient to find a velocity model, depth position
and geological dip which explains the CRP trajectory only. It is also necessary that on each point on the
CRP trajectory the diffraction traveltime function and the event in the prestack data have the same time dip
with respect to the midpoint or illumination angle, respectively. Only then a constructive summation can be
performed and all stationary points are aligned along the CRP trajectory. The goal of the inversion scheme
presented below is to make the CRP trajectory and the CIG corresponding to each picked ZO stationary
point kinematically equivalent.

THE INVERSION SCHEME

The determination of a subsurface velocity model states a nonlinear inverse problem. Here, I will use time
and time dip residuals in an iterative tomographic inversion scheme for the determination of such a velocity
model. The scheme tries to minimize a cost-function which is formulated in the least-squares sense.

Data and model components

The inversion starts with the selection of a number of picks in a ZO section which can be obtained by any
stacking procedure. For each pick all quantities describing the ZO stationary point have to be determined.
Corresponding initial estimates of the depth position and geological dip are determined in the initial ve-
locity model using normal ray tracing. For the implementation I have chosen the same two dimensional
B-spline representation (de Boor, 1978) of the velocity model as described in Duveneck (2002). This,
together with a similar description of the ZO picks, makes the method presented in Duveneck (2002) and
Duveneck (2004) ideal for the determination of an initial velocity model for the method presented here.
The complete model description consists of all depth positions, geological dips and the B-spline coeffi-
cients representing the velocity distribution. All model components are summarized in the model vector
m:

m = (xi, zi,Θ0i , vjk)T , i = 1, . . . , ndata , j = 1, . . . , nx , k = 1, . . . , nz , (2)

where ndata is the number of picks in the ZO section. The number of B-spline nodes in horizontal and
vertical direction is given by nx and nz , respectively.

For each depth point the diffraction traveltime operator is computed using ray tracing in the current
velocity model. All traces within a user-given aperture are time shifted as described above. In this way, a
small time-shifted prestack data cube in the angle domain is created for each pick. Inside these cubes time
and time dip residuals for all scattering angles are extracted along the model based CRP trajectory. The
necessary picking strategy is described below. Generally, this leads to a different number of picks in each
cube which are summarized in a data misfit vector:

∆dCubei =
(

∆tl,

[
∆

∂t

∂Θ

]
l

)T

i

, i = 1, . . . , ndata , l = 1, . . . , npick , (3)
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Figure 5: Wrong velocity model: traveltime distribution [s] along the reflection event (a) in the midpoint-
offset domain and (b) in the angle domain. Traveltime distribution along the diffraction traveltime operator
(c) in the midpoint-offset domain and (d) in the angle domain. Traveltime difference between reflection
event and diffraction traveltime operator (e) in the midpoint-offset domain and (f) in the angle domain.
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Figure 6: Wrong velocity model: time dip distribution along the reflection event (a) in the midpoint-offset
domain [s/km] and (b) in the angle domain [s/◦]. Time dip distribution along the diffraction traveltime
operator (c) in the midpoint-offset domain and (d) in the angle domain. Time dip difference between
reflection event and diffraction traveltime operator (e) in the midpoint-offset domain and (f) in the angle
domain.
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where npick denotes the number of picks in the i-th cube. These data misfits are used to update the depth
model. This update is performed iteratively because of the nonlinearity of the corresponding inverse prob-
lem. Once a new model has been found the ZO picks may be used to obtain new estimates of the depth
positions and geological dips by normal ray tracing. Alternatively, the estimates obtained by the inversion
can be used. This means to allow errors in the ZO data components. Therefore, the ZO data misfit

∆dZOi
= (∆T0,∆pξ0 ,∆ξ0)T

i , i = 1, . . . , ndata , (4)

is part of the complete data misfit vector given by

∆d = (∆dZOi ,∆dCubei)
T
i , i = 1, . . . , ndata . (5)

Note that only the ZO data itself are known. All finite offset quantities are picked directly as data misfits.
The true finite-offset data do not need to be known for the formulation of the inverse problem. The ZO data
misfits are easily obtained by forward modeling using normal ray tracing.

The inverse problem and its solution

With the model and data misfit vectors defined above, the inverse problem may be formulated as follows:
Given a total number of ndata picks of stationary points in a ZO section, find a model described by model

vector (2) in which the misfit between the picked ZO data components and the forward modeled ones as
well as the picked time and time dip residuals in all time-shifted prestack data cubes is minimized. This
problem is formulated as a least-squares problem (Menke, 1984; Tarantola, 1987). The optimum model is
found by minimizing the cost-function

S(m) =
1
2
‖∆d(m)‖2 =

1
2
∆dT (m)C−1

D ∆d(m) , (6)

where CD denotes a symmetric, positive definite matrix weighting the different data components in the
computation of S.

The data misfit vector ∆d may be expressed as the difference between the true data vector d and the
forward modeled data vector:

∆d = d− f(m) (7)

where f(m) denotes the model dependent forward modeling operator. This operator is nonlinear due to
the nonlinear dependence of ray tracing results on model parameters. For the iterative minimization of cost
function S, it is assumed that the forward modeling operator may be linearized in the vicinity of the current
model vector mn of the n-th iteration:

f(mn + ∆m) = f(mn) + F∆m . (8)

Matrix F contains the first partial derivatives of the data components with respect to the model components,
also known as Fréchet derivatives.

A necessary condition for a minimum of S is

∇S = 0 . (9)

For a derivation of the resulting system of equations the reader is referred toDuveneck (2004). The solution
of that system implies the computation of a matrix inverse. In order to compute this inverse in a stable way,
the problem has to be regularized. This is done minimizing the second spatial derivatives of the velocity
model in the same way as described in Duveneck (2004). In each iteration a model update vector ∆m is
computed. The updated model for the next iteration is given by

mn+1 = mn + λ∆m , (10)

where the factor λ controls the length of the applied model update vector. The matrix to be inverted is
sparse as each pick in the ZO section is independent of all others. To account for this sparseness the model
update vector is computed using the LSQR algorithm (Paige and Saunders, 1982a,b).
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Figure 7: Time shifted (a) CRP gather and (b) common scattering angle gather in a wrong model. Zero
dip in (b) coincides with the estimate of the geological dip.

Computation of Fréchet derivatives

The computation of the first partial derivatives of the traveltime along a ray, the horizontal slowness at
the surface, as well as the emergence location of that ray with respect to that ray’s initial position and
take-off direction as well as with respect to the B-spline coefficients is described for the ZO case in detail
in Duveneck (2004). All corresponding derivatives for the finite-offset case are obtained by adding the
ones for source and receiver rays. However, instead of horizontal slowness misfits at the surface, time dip
residuals ∆ ∂t/∂Θ are used here. There exists a close relationship between both which makes it possible
to use the Fréchet derivatives for horizontal slowness found in Duveneck (2002) and Duveneck (2004).

Picking of time and time dip residuals

Most standard applications parameterize residual moveout by an analytic function, e. g. a parabola, which
can then be determined by coherence analysis. However, if the residual moveout deviates from an analytic
shape wrong results are obtained. Such a deviation is common in complex models and we observe it in
Figure 7(a) which shows a CRP gather taken from the data example presented below. For that reason,
I propose a different picking strategy: each trace in the CRP gather is cross-correlated with a part of
the ZO trace centered around the picked stationary point. It is assumed that the ZO trace provides a
suitable estimate of the wavelet. Picking the maximum in the cross-correlation panel directly gives the
time residuals for all scattering angles. This cross-correlation is facilitated by the fact that the CRP gather
shows no pulse stretch with increasing scattering angle as it would be observed in a conventional CIG. This
is due to the fact that in the time shifting the original sampling of the prestack data is preserved.

Once the traveltime residuals have been determined for all scattering angles the corresponding time dip
residuals may be measured by semblance analysis (Neidell and Taner, 1971) along straight lines centered
around the a priori geological dip and the picked traveltime misfit in a common-scattering-angle gather
(Figure 7(b)).

RELATIONSHIP BETWEEN TIME DIP RESIDUALS IN THE ANGLE DOMAIN AND IN THE
MIDPOINT-OFFSET DOMAIN

The diffraction traveltime function τ(Θ,Φ) can be decomposed into source and receiver parts:

τ(Θ,Φ) = τS(Θ,Φ) + τG(Θ,Φ) . (11)
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Using the definition (1) the first partial derivative of τ with respect to the illumination angle Θ reads

∂τ

∂Θ
=

∂τS

∂Θ
+

∂τG

∂Θ
=

∂τS

∂γS

∂γS

∂Θ
+

∂τG

∂γG

∂γG

∂Θ
=

∂τS

∂γS
+

∂τG

∂γG
. (12)

The emergence locations xS and xG of shot and receiver ray are functions of the corresponding take-off
angle. Therefore, equation (12) may be rewritten in a form relating time dip with respect to illumination
angle Θ and horizontal slowness components at source and receiver locations:

∂τ

∂Θ
=

∂τS

∂xS

∂xS

∂γS
+

∂τG

∂xG

∂xG

∂γG
= πS

∂xS

∂γS
+ πG

∂xG

∂γG
, (13)

where πS and πG denote the horizontal slowness of source and receiver ray building the diffraction travel-
time operator. The same derivation can be performed for ∂τ/∂Φ yielding

∂τ

∂Φ
=

∂τS

∂xS

∂xS

∂γS
− ∂τG

∂xG

∂xG

∂γG
= πS

∂xS

∂γS
− πG

∂xG

∂γG
. (14)

Analogous derivatives may be computed for reflection traveltimes. However, these derivatives are taken
with respect to non-specular angles as already stated above. Using the horizontal slowness components pS

and pG the derivatives of reflection traveltime t with respect to illumination angle Θ and scattering angle
Φ read

∂t

∂Θ
= pS

∂xS

∂γS
+ pG

∂xG

∂γG
and

∂t

∂Φ
= pS

∂xS

∂γS
− pG

∂xG

∂γG
. (15)

Note the same analogy between angle and midpoint-offset domain already seen in the definition of illu-
mination and scattering angle: the time dip with respect to the illumination angle is the sum of shot and
receiver slowness each scaled by a model dependent transformation factor. This is similar to the time dip
with respect to the midpoint coordinate which is simply given as sum of shot and receiver slowness. The
same analogy is found between time dip with respect to scattering angle and offset. The model dependent
factor is the transformation between surface coordinates and ray coordinates defined at the origin of the ray
in depth. They are easily computed using dynamic ray-tracing (Červený, 2001).

The difference in time dip with respect to illumination angle Θ between reflection event and diffraction
traveltime operator may be written as

∂

∂Θ
∆t(Θ,Φ) =

∂

∂Θ
t(Θ,Φ)− ∂

∂Θ
τ(Θ,Φ) =

(pS − πS)
∂xS

∂γS
+ (pG − πG)

∂xG

∂γG
= ∆pS

∂xS

∂γS
+ ∆pG

∂xG

∂γG
. (16)

A similar expression is derived in the same way for the time dip difference with respect to scattering angle
Φ:

∂

∂Φ
∆t(Θ,Φ) =

∂

∂Φ
t(Θ,Φ)− ∂

∂Φ
τ(Θ,Φ) =

(pS − πS)
∂xS

∂γS
− (pG − πG)

∂xG

∂γG
= ∆pS

∂xS

∂γS
−∆pG

∂xG

∂γG
. (17)

To obtain these time dip differences along the CRP trajectory, all derivatives in equation (16) and equa-
tion (17) have to be taken at the geological dip Θ = Θ0.

DATA EXAMPLE

The first data example is as sparse as possible. It makes use of only one pick in a ZO section. I will not
show the inverted velocity model because it can not be assumed that a reasonable model is obtained under
such circumstances. However, this example clearly demonstrates the meaning of fitting a CIG and a CRP
gather kinematically.

Starting from the same initial model, three different inversions have been performed, each with two
iterations. For the first one I used only ZO data and traveltime residuals picked in a CIG. For the second
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Figure 8: Inversion results using traveltime residuals picked in a CIG, no dip residuals included in the
inversion: (a) flat CIG, (b) depth migrated reflector segment for offset 0 m, (c) CRP gather, (d) depth
migrated reflector segment for offset 3800 m

one I used only ZO data and traveltime residuals picked in a CRP gather. No time dip residuals have been
used in these inversions. In the third one the inversion scheme presented above has been applied. The
inversion results are summarized in Figures 8, 9, and 10, respectively. Each figure shows the CRP gather
and the CIG associated with the ZO pick. The CIG has been obtained applying the necessary half time
derivative to the time shifted prestack data cube and summing over the illumination angle. Additionally,
depth migrated common offset sections are shown. They are centered around the depth position obtained
in the corresponding inversion. Note that this position is different in all three inversion results.

After the first inversion the CIG is flat. However, the CRP gather is non-flat. Thus, CIG and CRP gather
are not kinematically equivalent. This results in different dips of the reflector segment associated with the
ZO pick in common offset depth migrated sections.

After the second inversion the CRP gather is flat whereas the CIG shows significant residual moveout.
This results not only in different dips for different offsets of the reflector segment associated with the ZO
pick, but also the depth location after migration differs from offset to offset.

Applying the inversion scheme as presented in this paper a result is obtained where the CIG and the
CRP gather are kinematically equivalent, both are flat. This is due to the use of time dip residuals in
the inversion. Minimization of the time dip residuals leads to a consistent geological dip of the reflector
segment. Although the obtained velocity model, depth position, and geological dip are not the true values,
a model has been obtained which is kinematically consistent with the prestack data. This, of course, holds
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Figure 9: Inversion results using traveltime residuals picked in a CRP gather, no dip residuals included in
the inversion: (a) CIG, (b) depth migrated reflector segment for offset 0 m, (c) flat CRP gather, (d) depth
migrated reflector segment for offset 3800 m

only for the selected ZO location.
The second data example uses a complete synthetic prestack data set with offsets up to 4000 m. For

this data a ZO section has been obtained by application of the common-reflection-surface (CRS) stack
technique (see, e. g., Jäger, 1999). In this section, 412 pick locations have been selected automatically
using the technique presented in Klüver and Mann (2005). The CRS stacked section together with the pick
locations is shown in Figure 11. For each pick location the quantities characterizing the ZO stationary
point have been extracted and calculated from the CRS attribute sections. The velocity model has been
described by 29 nodes in horizontal direction with a spacing of 400 m and 18 nodes in vertical direction
with a spacing of 200 m. The velocity at the surface has been set to the true value of 2000 m/s and a constant
vertical gradient of 0.67 s−1 has been applied initially. All pick locations have been mapped to depth by
normal ray tracing to obtain the corresponding initial estimates of depth position and geological dip. Then,
six iterations of the presented inversion scheme have been performed. In all iterations the depth locations
and geological dips obtained in the previous iteration have been used; no recalculation of these quantities
by normal ray tracing has been applied. Figure 12 shows the obtained depth positions on top of the true,
blocky velocity model used for modeling the prestack data. The obtained depth positions fit the reflector
structure quite well. The same holds for the prestack depth migration result. It has been overlaid on the true
velocity model in Figure 14. Figure 13 shows the smooth velocity model obtained by the inversion. On top,
the prestack migration result is displayed again. The smooth velocity distribution fits the reflector structure
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Figure 10: (a) flat CIG, (b) depth migrated reflector segment for offset 0 m, (c) flat CRP gather, (d) depth
migrated reflector segment for offset 3800 m

quite well. Generally, a large degree of similarity can be observed comparing the true velocity model and
the inversion result. Figure 15 shows selected CIGs obtained by conventional Kirchhoff prestack depth
migration. They are all reasonably flat. All these results demonstrate the success of the presented method.

CONCLUSIONS

In this paper, I have presented a new inversion scheme which provides smooth depth velocity models
leading to accurate migration results. The method uses isolated picks identified in a poststack ZO section.
Each pick represents an estimate of a ZO stationary point. Using the associated diffraction traveltime
operators as moveout function, time and time dip residuals are determined. These residuals represent
quantities defined in the post-migrated domain. However, the presented technique allows to extract them
without performing a complete prestack depth migration. Time and time dip residuals are picked in a
non-parametric way. Therefore, the method has no intrinsic limitation regarding the complexity of residual
moveout. Equations have been derived which relate the time dip difference with respect to the illumination
angle between the forward-modeled diffraction traveltime operator and the reflection event in the prestack
data to slowness misfits at the source and receiver locations. A first test on a synthetic data example clearly
demonstrates the potential of the presented method.



Annual WIT report 2006 89

Figure 11: ZO section with 412 selected pick locations.
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Figure 12: Inverted depth locations plotted into the true, blocky velocity model.

Figure 13: Inverted smooth velocity model overlaid with prestack depth migration result.

Figure 14: Prestack depth migrated section using inverted velocity model on top of the true, blocky velocity
model.
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Figure 15: Selected CIGs.


