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ABSTRACT

For cases where time migration yields well-focused images, we introduce a procedure for mapping
and imaging, respectively, selected events and complete time-migrated data to the depth domain. A
basic assumption is the existence of an appropriate field of time-migration velocities. We utilize the
image-ray concept, invented by Hubral in 1977, for the transformation of events or seismograms from
the time-migrated domain to the depth domain. The calculation of image rays relies on the knowledge
of ray velocities while the available input velocities in this context are given in the form of a time-
migration velocity field. The required ray velocities are obtained from the given migration velocity
field by means of the classical Dix algorithm and elements of the ray propagator matrix, i.e., paraxial
ray-tracing matrices corresponding to a plane wavefront and a point source in the starting point of
the image ray. The numerical integration is formulated as an independent process for each image
ray and makes use of ordinary differential equations for the position/slowness vectors (kinematic
ray-tracing equations) and the ray propagator matrix expressed in ray-centered coordinates (dynamic
ray-tracing equations). Integration of the ray differential equations provides a field of image-ray points
and corresponding ray velocities belonging to the depth domain. For each available image ray, one
can image an entire seismic trace or map a number of selected events from the time-migrated domain
to the depth domain. A final step of the proposed time-to-depth conversion procedure is to perform
regularization of the estimated ray-velocity field, mapped seismic events, and imaged seismic data
with respect to the depth-domain coordinates.

INTRODUCTION

Time migration is a well-established and routinely applied procedure to obtain time-domain images from
seismic reflection data. The main advantages of the time-migration procedure is that it is fast, inexpensive
and, except for strong lateral velocity variations, very robust with respect to inaccuracies of the time-
domain velocity model. This is to be compared with the much more involved depth migration, especially
prestack, which requires, besides a well designed depth-domain velocity model, also significantly more
computational effort.

As compared to common-midpoint (CMP) stacking, which essentially produces sections of seismic data
corresponding to a simulated zero offset (ZO) acquisition, the time migration process generates sections
with features that are more easily identified with structures in the depth domain. In particular, triplications
typical for unmigrated images of synclinal structures naturally unfold to synclinals after time migration.

For any time-domain imaging procedure, the image of a reflector is called a "reflecting horizon". For the
same reflector in the depth domain, the overall characteristics, kinematic and dynamic, of its corresponding
reflecting horizon will be strongly dependent on the acquisition configuration and imaging procedure that
is employed.
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In accordance to the ray-theoretical methods that will be used throughout, we envisage the reflector
as a continuum of independent point scatterers (or point diffractors), which, due to seismic illumination,
are excited and emit energy towards the surface. Under this formulation, the image of a reflector can be
understood as the ensemble of the individual (time-domain) images of the point scatterers that constitute
the (depth-domain) reflector.

The basic goal of time migration is to focus the seismic energy into interpretable images in the time
domain of the seismic data. In this respect, time migration has a very useful property, as opposed to depth
migration, in that a well-focused image can often be obtained even for a very simple velocity model. More-
over, this focusing property of the time-migration process is quite robust with respect to perturbations of
the time-migration velocity model. However, since time migration is commonly based on a hyperbolic
traveltime approximation, its applicability is limited to velocity models with slow lateral variations (Yil-
maz, 2000). Historically speaking, "ideal" or "complete" time migration has been considered as a process
positioning the reflecting horizons "vertically above" their corresponding depth-domain reflectors. More
specifically, the horizontal coordinates of each point scatterer on a reflector would then coincide with the
horizontal coordinates (trace location) of its associated time-migrated image. For this idealized process,
it is assumed that the connection between each point scatterer at the reflector and its trace location at the
surface can be realized by a vertical ray. As a consequence, the transformation of the traveltime coordinate
of a point on a time-migrated reflecting horizon and the depth coordinate of its associated point scatterer
at the reflector (the so-called time-to-depth conversion) would be achieved by a simple scaling operation,
namely, the multiplication of half the traveltime by an appropriate (average) medium velocity along the
vertical ray.

The above concept of a complete time migration, although useful as a theoretical framework, is not
possible to be realized. As explained in Hubral (1977) , the closest feasible alternative is to have a trans-
formation that uses image rays (and not vertical rays) to connect the point scatterers at the reflector to their
corresponding trace locations at the surface. For an arbitrary point scatterer on the depth-domain reflector,
the image ray can be defined as a ray connecting the scatterer to the measurement surface in such a way that
the slowness vector is normal to that surface. This definition allows the medium below the measurement
surface to be either isotropic or anisotropic. Likewise, the normal ray can be defined as a ray connecting
the point scatterer to the measurement surface in such a way that the slowness vector is normal to the
depth-domain reflector (Iversen, 2006). As also described in Hubral (1977), assuming an isotropic velocity
model, the following analogy exists between normal rays and image rays that connect the surface measure-
ment to a given reflector scatterer: the former is normal to the reflector, whereas the latter is normal to the
measurement surface.

Kirchhoff depth migration: A good understanding on how time migration can be actually realized can
be gained by examining its relationship to Kirchhoff depth migration, as applied to a single stacked section.
Such a procedure is referred to as 2D Kirchhoff poststack depth migration. For a given depth-domain
macro-velocity model and also a given point in the depth domain, M , to be imaged, the Kirchhoff depth
migration operation basically consists of a weighted sum of data samples along the diffraction time surface
associated to M , the result of that sum being assigned at M . Under the assumption that a stacked section
well approximates (or simulates) a ZO section, the diffraction time surface associated to the fixed point
M is given by the two-way times along the rays that connect M to the varying coincident (ZO) source-
receiver points at the measurement surface. According to the theory of Kirchhoff migration (see, e.g.,
Tygel et al., 1996), for a sufficiently accurate macro-velocity model, the summing operation along the
diffraction time surface that is associated to a point at a reflector will be (approximately) tangent to its
corresponding reflecting horizon in the stacked section. As a consequence, the Kirchhoff summation will
provide significant values at the image points, M , which lie at (or are very close to) a reflector. For image
points, M , away from the reflectors, the corresponding summation values will find negligible values. The
migrated depth-domain section is obtained by applying the above described Kirchhoff summation to a
previously defined dense grid of image points, M .

The above considerations show that the Kirchhoff process realizes, for any individual depth reflector,
a correspondence (or mapping) between each point scatterer on the reflector and the tangency point where
the diffraction traveltime surface associated with the point scatterer meets the reflecting horizon in the
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stacked section. Hubral (1977) refers to these tangency points as “scattering centers for seismic waves".
The Kirchhoff migration associates, thus, each scatterer on the reflector to its corresponding scattering
center at the reflecting horizon. We finally observe that any point scatterer on the reflector is connected to
the projection on the measurement surface of its corresponding scattering center by the normal ray.

For an isotropic depth velocity model with no lateral variations and horizontal interfaces, it is clear that,
for each point scatterer on a reflector, the normal and image rays coincide, being both vertical. In this case,
the stacked section also coincides with the time-migrated section, and that also represents a “complete"
time migration, which corresponds to vertical image rays. Apart from this extremely simple situation, we
have that stacking and time migration are bound to yield very different images of the same depth model.

Kirchhoff time migration: Time migration can be realized by a simple modification to the above de-
scribed Kirchhoff poststack depth migration. After stacking along the diffraction traveltime surface of a
given depth point, M , all we need to do is to assign the stacking result (the migration output) at the apex
of the diffraction traveltime source, instead of assigning it to the original depth point M , as would be done
in the Kirchhoff depth migration counterpart. The reasoning for the above approach is simple: the apex of
the diffraction traveltime surface from a point scatterer M represents the least traveltime from that point to
the measurement surface. As a consequence, the image ray from M is the one that realizes that minimum
traveltime.

An underlying assumption of the procedure is that the diffraction traveltime surface is sufficiently well
behaved, so that a clear apex exists. In the absence of abrupt lateral velocity variations, each diffraction
traveltime surface can be well approximated by a hyperboloid in the vicinity of its apex. Based on the
above considerations, it is now possible to formulate a time migration procedure that is based on time-
domain computations only, so that the dependency on a depth-domain macro-velocity can be avoided. As
well known in the literature (see, e.g., Hubral and Krey, 1980), one way to do it is to apply on the stacked
seismic data a so-called migration velocity analysis and stacking procedure. Consider for simplicity a
single (say, post stack), time-migrated section where the in-line coordinate is the scalar xM and the two-
way time is denoted as tM . For each given point (xM , tM ) in the time-migrated section to be constructed,
we consider the hyperbolic traveltime

t2 = (tM )2 +
4

(VM )2
(x− xM )2 (1)

defined for each trial migration velocity, VM , and along which samples, (x, t), in the given post stack (ZO)
section are stacked. If the point (xM , tM ) actually belongs to a time-migrated reflecting horizon, a migra-
tion velocity, VM would exist such that the time t(x) in equation (1) would well approximate a diffraction
traveltime function for a certain point scatterer on a depth reflector. As such, the traveltime function t(x)
in equation (1) would be tangent to the reflecting horizon in the stacked section that relates to that depth-
domain reflector. Based on the above considerations, coherence analysis may be applied to determine the
migration velocity VM associated to a point (xM , tM ) in the time-migrated section. Note that the described
migration-velocity analysis is much related to its counterpart common-midpoint (CMP) velocity analysis
designed to obtain the normal-moveout (NMO) velocity field and its corresponding stacked (ZO) section.

As a result of migration-velocity analysis and stacking applied to the unmigrated section, one obtains,
besides a time-migrated section, also a migration velocity field. An in-depth description of the various
methods to perform Kirchhoff time migration and migration-velocity analysis is away from the scope of
the present paper. For that, the reader is referred to, e.g., Yilmaz (2000) and the references therein. Here
we only briefly indicate how the migration velocity can be obtained: one option frequently used in the
past was to use the stacking (NMO) velocity that has previously been determined for obtaining the CMP-
stacked stacked section and eventually apply an ad hoc scaling factor to it. For dipping structures, an
approach often considered as more adequate is to use as migration velocity an NMO velocity that has
been properly corrected for dip-moveout (DMO), see Hale (1984). Finally, as an example of a modern,
automated, migration-velocity estimation approach, we refer the reader to Fomel (2003).

Time-do-depth conversion: The final aim of (kinematic) seismic imaging is to position reflectors cor-
rectly in the depth domain. In this way, time-domain images such as CMP-stacked or time-migrated
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sections represent intermediate, although very useful, results. A subsequent operation that transforms a
time-domain seismic data set into its corresponding depth-domain data set is referred to as time-to-depth
migration or time-to-depth conversion. The terminology time-to-depth mapping is also employed when
only selected time-domain horizons are migrated into the depth domain.

Assume, for simplicity, that the measurement surface is a horizontal plane, located at zero depth. More-
over, let the unmigrated data set be described by the coordinates (xU

1 , xU
2 , tU ), where the first two coordi-

nates, xU
1 and xU

2 , specify the location of the CMP on the measurement surface and the third coordinate, tU ,
is time. The superscript U signifies that the coordinates belong to the "unmigrated time domain". Time-to-
depth conversion of an unmigrated data set requires that normal rays can be traced from the measurement
surface. This is possible if information from the the time-domain data set, as well as adequate structural
assumptions for the subsurface, allows one to derive a suitable depth-domain velocity model and, in ad-
dition, the initial directions of the normal rays. In this situation, time-to-depth conversion means to move
the event located at the point (xU

1 , xU
2 , tU ) along a normal ray that starts at the CMP and proceeds to its

endpoint, determined by the criterion that half of the given time, tU/2, is consumed.
Under the assumption of a 3D iso-velocity layered model with smoothly curved interfaces, Hubral

and Krey (1980) proposed a recursive algorithm to recover the layer velocities, as well as the positions and
curvatures of the interfaces, from the knowledge of the traveltime function and the first two derivatives with
respect to the coincident source-receiver horizontal location of each reflecting horizon in the unmigrated
data set. Geometrically, the first derivative of traveltime is related to the angle of incidence of the normal
ray. The second derivative is related to the radius of curvature of the so-called NIP wave at the emergence
point of the normal ray.

In an analogous manner to the previous considerations, time-to-depth conversion of time-migrated seis-
mic data will be possible if the information in the time-domain data allows one to trace image rays in
the depth domain. An advantage of such a process, as compared to the previous case involving the un-
migrated data set, is that image rays have a known initial condition, namely, that the initial slowness
vector is perpendicular to the measurement surface. For each point (xM

1 , xM
2 , tM ) in the time-migrated

domain, the time-to-depth conversion moves the event at this point along the image ray that starts at
(x1 = xM

1 , x2 = xM
2 , x3 = 0) on the measurement surface and proceeds into the depth domain until

half of the given time, T = tM/2, is consumed. For a 3D iso-velocity layered macro-velocity model in
the depth domain, Hubral and Krey (1980) described an algorithm to transform along image rays the lo-
cations, dips, and curvatures for horizon points in the time-migrated domain to corresponding locations,
dips, and curvatures for horizon points in the depth domain. A generalization of this algorithm to include
heterogeneous layers was described by Iversen et al. (1987) and Iversen et al. (1988).

In this paper we present a method to convert a given time-migrated section, for which the time-migration
velocity is known, into its corresponding depth section. The procedure uses image rays that are traced into
depth using solely the time-migration velocities. Our approach has much in common with the very recent
works of Filpo and Portugal (2006) and Cameron et al. ( 2006), however with significant differences. The
presented approach can better accommodate lateral velocity variations than in Filpo and Portugal (2006)
and also uses a full 3D formulation, as opposed to the 2D approach presented in Cameron et al. (2006).

NOMENCLATURE

In order to facilitate following the mathematical derivations and also the appreciation of the obtained re-
sults, we list below the notation that is used throughout. Lower and upper case letters, i and I , used as
subscripts may have the values i = 1, 2, 3, and I = 1, 2, respectively. For three-component vectors we
use standard notation, e.g., a, while for two-component vectors a bar is written above the symbol, e.g., ā.
Vectors are equivalently considered as column matrices. To distinguish between matrices of size 3× 3 and
2× 2, we use the notations Â and A, respectively. The notation AT is used for the transpose of the matrix
A, while A−T is a shorthand notation for A−1T . In cases where ambiguity may arise, a superscript in the
form (q) on vectors/matrices serves as a label for the coordinate system under consideration. The 3 × 3
matrix containing the second-order partial derivatives of a scalar field V is written in the form

∂2V

∂x2
=
(

∂2V

∂xi∂xj

)
. (2)
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Symbol Meaning
x = (x1, x2, x3 = z) Point in depth-domain Cartesian coordinates

γM = (xM
1 , xM

2 , xM
3 = tM ) Point in time-migration domain Cartesian coordinates

γ = (γM
1 = xM

1 , γM
2 = xM

2 , T = tM/2) Ray coordinates to specify a point along the image ray
V (x) Depth-domain velocity field

VM (γM ) Time-migration velocity field
VM

dix(γ) Time-migration interval velocity field
V(γ) Ray velocity along the image ray
F (γ) Migration velocity spreading factor

x(γ),p(γ) Position and slowness vectors along the image ray
Q̂(x)(γ) First paraxial 3× 3 matrix, in depth-domain Cartesian coordinates
Q̂(q)(γ) Ray-centered first paraxial 3× 3 matrix along the image ray

Q
(q)
I (γ),P

(q)
I (γ) Ray-centered first and second paraxial 2× 2 matrices along the image ray

Q1 The "11" element of matrix Q
(q)
1

P1 The "11" element of matrix P
(q)
1

Q2 The "11" element of matrix Q
(q)
2

P2 The "11" element of matrix P
(q)
2

THEORY

To describe the time-to-depth conversion algorithm that is proposed here, we start by specifying the input
data that is needed to initialize the process.

Input data: As input to the combined velocity estimation and time-to-depth-conversion procedure, we
assume the knowledge of a migration-velocity function for one particular seismic profile direction, VM =
VM (xM

1 , xM
2 , tM ), where (xM

1 , xM
2 ) are horizontal coordinates within the datum plane, i.e., coordinates

specifying a trace in the time-migrated data set, and tM denotes the (two-way) migration time. Val-
ues of the migration-velocity function shall be available on a regular grid in the time-migration domain
coordinates xM

1 , xM
2 , and tM . In the following, we also introduce the ray-domain coordinate vector,

γ = (xM
1 , xM

2 , T = tM/2)T , with the understanding that the time-migrated domain is a natural ray do-
main for image rays. Each image ray, x = x(γ), is specified by setting the first two ray parameters, xM

1 and
xM

2 , constant and having T as a variable along the ray. The velocity along the image ray will be denoted
as V = V(γ) and referred to as the ray velocity.

Ray velocities as a function of ray-domain coordinates: Our first task in the time-to-depth conversion
method that is presented here is to find the relationship between the given time-migration velocities and
the velocities that will be assigned to the image rays as they are traced into depth. In other words, we need
to convert the given time-migration velocity field to a corresponding image-ray velocity field in depth. At
first, the image-ray velocity field will be given in the image-ray coordinates, V(γ). As a next stage, that
velocity field will be transformed into a velocity field in depth-domain Cartesian coordinates, V (x), in a
natural way.

To accomplish this task, we follow Cameron et al. (2006) and recognize that the required relationship
for a 2D procedure is based on the time-migration equation 1. For the 3D procedure described in this paper,
equation 1 is still relevant, given that the distance, x− xM , and the migration velocity, V M , correspond to
an arbitrary horizontal unit direction vector,

ū = (cos θ, sin θ)T , (3)

specified by a profile angle, θ. Using the concepts and results of ray propagator matrices as provided in
Hubral et al. (1992) and Iversen (2006), we show in Appendix A that

V(γ) = VM
dix(γ)F (γ), (4)

where VM
dix is the Dix velocity (time-migration interval velocity)

VM
dix(γ) =

{
d

dTM
[TM (VM )2]

}1/2

=
{

d

dT
[T (VM )2]

}1/2

, (5)
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and F is the factor

F (γ) =
ūT I∗Q(q)

1

T
Q(q)

2

−T
I∗ū{

ūT I∗Q(q)
2

−1
Q(q)

2

−T
I∗ū
}1/2

. (6)

In the above formula, Q(q)
1 and Q(q)

2 are the plane-wave and point-source first paraxial ray-tracing 2 × 2
matrices in the downward direction along the image ray, ū is the unitary profile direction vector given in
equation 3, and I∗ is the matrix

I∗ =
(
−1 0

0 1

)
. (7)

In the 2D situation, the factor F reduces to the simple formula

F (γ) = Q1, (8)

which is the one given in Cameron et al. (2006).

Relationships between ray- and depth-domain velocity fields: It is our aim to convert the ray-domain
velocity field, V(γ), into a corresponding depth-domain velocity field, V (x), in which the image rays will
be traced. The relationship between the ray- and depth-domain velocity fields is defined by

V (x) = V (x(γ)) = V(γ). (9)

Here, x = x(γ) denotes the depth-domain trajectory of the image ray specified by the ray coordinates γ.
For our purposes of tracing the image rays that will accomplish the proposed time-to-depth conversion

procedure, we shall need, besides the relationship 9 between the ray- and depth-domain velocity fields, also
the corresponding relationships between the first and second derivatives of these two velocity fields. The
required relationships can be obtained by applying the chain rule of advanced calculus to equation 9 twice.
The first application gives, in matrix form

∂V

∂x
= (Q̂(x))−T ∂V

∂γ
, (10)

under the assumption that inverse matrix (Q̂(x))−1 = (∂γi/∂xj) exists. We introduced the first paraxial
ray-tracing matrix Q̂(x) = (∂xi/∂γj) in depth-domain Cartesian coordinates and also the notations

∂V
∂γ

= (
∂V
∂γ1

,
∂V
∂γ2

,
∂V
∂γ3

)T and
∂V

∂x
= (

∂V

∂x1
,

∂V

∂x2
,

∂V

∂x3
)T . (11)

The existence of the inverse matrix (Q̂(x))−1 for all considered values of the ray coordinate vector γ
ensures a one-to-one correspondence between ray- and depth-domain coordinates, x = x(γ) and γ =
γ(x). This means, in particular, that each point in the depth domain can be connected to the measurement
surface by at most one image ray only. This also means that the image-ray field cannot contain caustic
points. As a final observation, the relationship between ray- and depth-domain velocity fields

V(γ) = V(γ(x)) = V (x), (12)

which is the inverse to the one given by equation 9, is also valid.
The 3x3 matrix Q̂(x) is one of two paraxial ray-tracing matrices with elements constituting the depen-

dent variables of the dynamic ray-tracing system in Cartesian coordinates. The other one is the matrix P̂(x)

with elements P
(x)
ij = ∂pi/∂γj , but this matrix is, however, not needed specifically in the following. To

obtain the relationship between the second derivatives of the ray- and depth-domain velocities, we apply
once more the chain rule, this time to equation 10. We get, also in matrix form

∂2V

∂x2
= (Q̂(x))−T ∂2V

∂γ2
(Q̂(x))−1 . (13)

Equations 9, 10 and 13 provide the link between the (unknown) depth-domain velocity field and its first and
second derivatives to their (known) corresponding ray velocity counterparts, by means of the (unknown)
first paraxial ray-tracing matrix Q̂(x). As seen in the next section, this link will be crucial for the image-ray
tracing and time-to-depth conversion algorithm that is proposed here.
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Ray-tracing procedure: We suppose that a three-component (ray) coordinate vector, γ, parameterizes
the position and slowness vectors along the ray, x = x(γ) and p = p(γ). The ray is described by setting
fixed the two first ray coordinates (γ1, γ2) and having the third ray coordinate, γ3, as the running variable.
In our case, the fixed coordinates, γ1 = xM

1 and γ2 = xM
2 specify a trace location in the time-migrated

section. The variable coordinate, γ3 = T represents one-way migration time of the image ray that departs
from that specified trace location.

Kinematic ray tracing: A basis for kinematic ray tracing in 3D isotropic elastic media can be formulated
by the ordinary differential equations (see, e.g., Červený, 2001)

dx
dT

= V 2(x)p,

dp
dT

= − V −1(x)
∂V

∂x
.

(14)

Evaluation of the above kinematic ray-tracing equations require the knowledge of the velocity and its first
derivatives at points in the depth domain, which we do not immediately have. This information is needed,
however, only at the depth-domain points along the image ray that is being traced. More specifically, the
velocity and its first derivatives are required only at the points x = x(γ), for varying γ. In view of the
relationships 9 and 10, the kinematic ray-tracing equations can be recast in the form

dx
dT

= V2(γ)p,

dp
dT

= − V−1(γ)(Q̂(x))−T ∂V
∂γ

.

(15)

In its new form, the ray-tracing system still cannot be solved because of the introduction of the unknown
paraxial ray-tracing matrix Q̂(x). The computation of that matrix can, however, be performed by dynamic
ray tracing.

Dynamic ray tracing: We consider a fixed image ray (called the central ray) in a 3D isotropic medium,
as well as a family of image rays in its close vicinity (called paraxial rays). To parameterize the family of
paraxial rays, we shall use the ray-centered coordinate system, determined by the central ray. As described,
e.g., in Červený (2001), this consists of moving a Cartesian (qI , q3) coordinate system along the central
ray. The time coordinate, q3 = T , specifies the origin, O, on the central ray, of the attached Cartesian
system, for which the q3-axis points in the direction parallel to the slowness vector of the central ray at O.
The remaining coordinate axes specify a 2D Cartesian system on the plane normal to the slowness vector
of the central ray at O. The two first ray-centered coordinates, qI , determine a paraxial point, P , on that
normal plane.

For each coordinate, qi, of the ray-centered coordinate system, we associate a corresponding unit basis
vector, ei. These unit vectors constitute the columns of an orthonormal transformation matrix,

Ĥ =
(

e1 e2 e3

)
. (16)

The matrix Ĥ can be computed in any point along the ray if we include within the system of ray differential
equations the following equation,

de1

dT
= −V 2(e1 ·

dp
dT

)p , (17)

where dp/dT is given by the second relation in equation 15. Knowing the vector e3 = p/‖p‖ and in
addition the vector e1 resulting from numerical integration including equation 17, the vector e2 is easily
obtained by the cross product

e2 = e3 × e1 . (18)
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In the following, we use the standard formulation of complete dynamic ray tracing in terms of 4 × 4
matrices in ray-centered coordinates,

dΠ
dT

= SΠ . (19)

Here, Π is the ray propagator matrix with sub-matrices of size 2× 2,

Π =

(
Q(q)

1 Q(q)
2

P(q)
1 P(q)

2

)
, (20)

and matrix S has the definition

S =
(

0 V 2I
−V −1V(q) 0

)
, where V

(q)
IJ =

∂V

∂qI∂qJ
. (21)

By defining a 3× 2 sub-matrix of Ĥ,
H̄ =

(
e1 e2

)
, (22)

we relate the 2× 2 matrix V(q) in equation 21 to the 3× 3 matrix ∂2V /∂x2 in equation 13 by

V(q) = H̄T ∂2V

∂x2
H̄ . (23)

We can now form the sought first paraxial ray tracing matrix Q̂(x) in depth-domain Cartesian coordi-
nates by the transformation

Q̂(x) = ĤQ̂(q) , where Q̂(q) =

 Q(q)
1

0
0

0 0 V

 . (24)

Furthermore, combination of equations 13 and 24 leads to a useful relation for transformation of second
derivatives of velocity,

V(q) = (Q(q)
1 )−T ∂2V

∂γ̄2
(Q(q)

1 )−1 . (25)

where γ̄ = (γ1, γ2)T . Collecting results, the final set of ordinary differential equations to be integrated
along the image ray is specified by equations 15, 17, and 19. An important part of the procedure is on-
the-fly transformation of function values, first derivatives, and second derivatives belonging to the time-
migration interval velocity field, VM

dix(γ), to corresponding quantities in the ray-velocity field along the
image ray, V(γ). For details concerning such transformations, see Appendix B.

Initial conditions for tracing of the image ray: In order solve the kinematic and dynamic ray-tracing
systems, initial conditions have to be provided. These consist of initial values, x0, p0, e1

0, and Π0, given
for the initial ray coordinate vector γ0 = (γ0

1 , γ0
2 , γ0

3). Assuming, for simplicity, a planar horizontal datum
surface, x3 = 0, for the time-migrated data, we set γ0

1 = xM0
1 , γ0

1 = xM0
2 as the horizontal coordinates

of the starting point of the image ray. The given pair (xM0
1 , xM0

2 ), also specifies the trace location in the
time-migrated data set that corresponds to the image ray to be constructed. The initial traveltime of the
image ray is γ0

3 = T 0 = 0.
Since the initial slowness vector of an image ray, p0, is always perpendicular to the measurement

surface, the two horizontal slowness vector components will both be zero, i.e., p0
1 = p0

2 = 0. The ver-
tical slowness vector component is given by the inverse ray velocity, p0

3 = 1/V0, at the trace location
(xM0

1 , xM0
2 ) and zero migration time, tM0 = 2T 0 = 0. Furthermore, one can show (Appendix B) that the

factor F in equation 6 has the limit one when the migration time approaches zero; hence, equation 4 yields
the initial ray velocity as

V0 = VM
dix(γ0) . (26)



100 Annual WIT report 2006

Given the above specifications, the kinematic initial conditions for the image ray read

x0 = (xM0
1 , xM0

2 , 0)T and p0 = (0, 0,
1
V0

)T . (27)

The initial unit vector e1
0 of the ray-centered coordinate system can be chosen quite freely within the

horizontal plane. We shall choose it to be aligned with the profile direction, in other words, e1
0 =

(cos θ, sin θ, 0)T . Finally, the initial ray propagator matrix, Π0, is the 4× 4 identity matrix

Π0 =
(

I 0
0 I

)
. (28)

IMPLEMENTATION

A prototype version of the ray-tracing procedure has been implemented in NORSAR’s ray-tracing mod-
elling software system (http://www.norsar.com). In the current version of the code, we are able to construct
image rays directly from the time-migration interval velocity field, VM

dix. Moreover, horizons belonging
to the time-migrated domain may be mapped to the depth domain either by the image-ray method or by
stretching along vertical lines. Regularization of the depth-domain velocity field and time-to-depth migra-
tion of the full seismic (section/volume) data set based on the image rays have not yet been implemented.
An essential part of the implementation is to ensure that the first paraxial ray-tracing matrix Q̂(x) stays
non-singular along the image ray. We do this by monitoring the determinant detQ̂(x) as the ray is inte-
grated. If the determinant drops below some predefined limit, currently set to 5% of the initial value, the
tracing of the ray is terminated.

EXAMPLES

The theory described above pertains to a three-dimensional subsurface. In this section, we consider, as
a first illustration of the method, 2D examples based on a synthetic seismic data set. Since we did not
have access to the exact depth-domain macro-velocity model used for generation of the synthetic data,
the experiments were, in practice, carried out as blind tests. As a further simplification, we have set the
migration velocity spreading factor, F , equal to one. In other words, we have considered that the velocity
along the image ray equals the time-migration interval velocity. It is one of our aims in the near future to
evaluate the impact of approximate and correct velocity spreading in the obtained images, in 2D and 3D.
For our numerical test, we considered the time-migrated section and time-migration velocity field shown in
Figure 1. The latter velocity field was converted to a time-migration interval velocity field using equation 5.
As we see, this time-migration interval velocity field has drastic variations in the lower central part. The
resulting image rays are shown in Figure 2 (top left). Strong focusing occurs in parts of the ray field, which
lead to termination of image rays in accordance with the the criterion imposed on the determinant of the
matrix Q̂(x).

In the time-migrated section (Figure 1), three key horizons were picked manually and thereafter mapped
to the depth domain using the image rays. Figure 2 (bottom left) shows the resulting depth-domain points
(blue). In addition, we performed the time-to-depth mapping along vertical lines. For the upper horizon,
the output points (red) from the vertical scaling process are almost identical to the output points from the
image-ray mapping. There are, however, significant differences for the dipping parts of the middle and
lower horizons.

The variations of the time-migration interval velocity field in Figure 1 were interpreted by the authors
as potentially unrealistic. To investigate this further, we did a second experiment based on a modified time-
migration interval velocity field (Figure 2, right) for which the drastic variations within the lower central
part were replaced by a constant velocity (3.3 km/s). As a result, image rays could be generated without the
presence of caustics (Figure 3, top left), which, in turn, made the estimated depth-domain reflectors appear
without missing data points (Figure 3, bottom left). As with the more complicated time-migration velocity
model, the results of image-ray mapping and vertical scaling are almost identical for the upper reflector,
but there are noticeable differences for the flanks of the two lowermost reflectors.
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Figure 1: Left: A section in the time-migrated domain. Right: Velocity field VM used for migration.

Figure 2: Top left: Image rays (black) and image-ray wavefronts (blue) obtained by applying the ray-
tracing procedure to the time-migration interval velocity field in Figure 1. The increment between plotted
wavefronts is 0.1s. Bottom left: Depth-domain horizons resulting from time-to-depth mapping along image
rays (blue) and vertical lines (red). Right: Time-migration interval velocity field VM

dix, obtained from the
migration velocity field in Figure 1 by use of Dix’s formula.

DISCUSSION AND CONCLUSIONS

In this paper, we have presented an efficient method to convert selected events or a full time-migrated
seismic data set from the time domain to the depth domain. Besides the time-migrated data, all that is
needed to initialize the method is the existence of a given migration velocity field, which is transformed
into a corresponding field of interval velocities using Dix’s algorithm. The resulting time-migration interval
velocities are then used to trace image rays in the depth domain and, at the same time, to obtain a depth-
domain velocity field along the image rays.

The ray-tracing procedure makes use of ordinary differential equations for position/slowness vectors
(kinematic ray-tracing equations) and for the ray propagator matrix expressed in ray-centered coordinates
(dynamic ray-tracing equations). The system of differential equations is formulated in such a way that
transformations of velocities and their first- and second-order derivatives between coordinate systems for
the time-migrated domain and the depth domain are performed on the fly. Thus, as output we get a field
of image-ray points and corresponding ray velocities belonging to the depth domain. For each available
image ray, one can image an entire seismic trace or map a number of selected events from the time-migrated
domain to the depth domain. A final required step is to perform regularization of the estimated ray-velocity
field, mapped seismic events, and imaged seismic data with respect to the depth-domain coordinates. The
new ray-tracing procedure has been demonstrated for a 2D synthetic data set. The first results indicate
the good potential of the method for more complex situations and field data in 2D and 3D. The present
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Figure 3: Top left: Image rays (black) and image-ray wavefronts (blue) obtained by the ray-tracing pro-
cedure to the edited time-migration interval velocity field in Figure 2. The increment between plotted
wavefronts is 0.1s. Bottom left: Depth-domain horizons resulting from time-to-depth mapping along im-
age rays (blue) and along vertical lines (red). Right: An edited version of the time-migration interval
velocity field in Figure 2, where velocities in the lower central part have been replaced by a constant value,
VM

dix = 3.3 km/s.

method is bound to yield best results whenever time migration provides sufficient focusing and also when
appropriate time-migration velocities are known. As main advantages, it provides a direct estimation of the
depth-domain velocity, with a minimum of user interaction/intervention. The method is very efficient, as
compared, for example, to full prestack depth migration and associated estimation of depth-domain velocity
parameters. The constraints or limitations of the proposed procedure are the ones basically inherited by
the use of the ray method and also Dix’s type velocity inversions. For example, for adequate ray-tracing
implementation, the time-migration velocity field needs to be "sufficiently smooth" and, moreover, the
resolution in the estimation of ray velocity is expected to be poor for deep and/or thin "layers". As an
additional condition for effective implementation, care should be taken such that the image-ray field has
no triplications and caustics. The 3D approach described in this paper is related, although with some
fundamental methodological and implementation differences, to corresponding 2D approaches recently
reported by E. Filpo and R. S. Portugal, as well as by M. Cameron, S. Fomel and J. Sethian, which also
include applications to field data. In particular, one can observe striking differences between 2D and 3D
formulations in the involved complexity of the migration velocity spreading factor and in the closely related
dynamic ray tracing procedure. For the 2D situation, it is sufficient to perform dynamic ray tracing only
for the plane-wave initial condition, while a proper solution to the 3D problem requires integration also for
a point-source solution, which means that the complete ray propagator matrix needs to be computed along
the image ray.
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APPENDIX A

APPENDIX A: VELOCITY SPREADING FACTOR FOR THE IMAGE RAY

In this appendix, we derive equation 6 for the velocity spreading factor, F . Since all matrices considered
here belong to ray-centered coordinates, we have skipped the superscript (q) for clarity. Our starting point
is an equation relating the (azimuth-dependent) migration velocity, VM , to the 2×2 matrix, M↑

2, of second
derivatives of one-way, upward, traveltime

T (VM )2 =
1

ūT M↑
2ū

. (A-1)

In the above equation, T , is the one-way, downward, migrated time and ū is the direction vector along the
profile used to obtain the migration velocity, VM . Substituting equation A-1 into the Dix velocity equation
5, we obtain the important relation

(VM
dix)2 = − 1

(ūT M↑
2ū)2

[
ūT dM↑

2

dT
ū

]
. (A-2)

It is our aim to express the matrices M↑
2 and dM↑

2/dT in terms of downgoing matrices that can be obtained
in the image-ray tracing that we have in mind. Following standard theory of paraxial ray-tracing matrices
(see, e.g., Červený, 2001), the matrix M↑

2 can be expressed in terms of the paraxial ray-tracing matrices
Q↑

2 and P↑
2 of size 2× 2,

M↑
2 = P↑

2Q
↑
2

−1
. (A-3)
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Furthermore, following Iversen (2006), the upward propagation matrices, Q↑
2 and P↑

2, can be expressed in
term of downward propagation counterparts as

Q↑
2 = I∗Q↓

2

T
I∗ and P↑

2 = I∗Q↓
1

T
I∗ , (A-4)

where I∗ is the matrix previously given by equation 7. Substituting into equation A-3 and applying the
derivative with respect to T yields

M↑
2 = I∗Q↓

1

T
Q↓

2

−T
I∗ and

dM↑
2

dT
= I∗

d

dT
[Q↓

1

T
Q↓

2

−T
]I∗ . (A-5)

We also observe that, for an isotropic medium, the differential equation for paraxial ray-tracing matrix Q↓
I ,

for I = 1, 2, is
dQ↓

I

dT
= V 2P↓

I and also
dQ↓

I

−1

dT
= − V 2Q↓

I

−1
P↓

IQ
↓
I

−1
. (A-6)

The rightmost equation was obtained under the application of the generic formula

dA−1

dT
= − A−1 dA

dT
A−1 , (A-7)

which results from differentiating both sides of the identity A−1A = I, followed by the application of the
leftmost equation A-6. Using the chain rule and also taking into account equations A-6, we get

d

dT
[Q↓

1

T
Q↓

2

−T
] = V2

{[
P↓

1

T
−Q↓

1

−T
Q↓

2

−T
P↓

2

T
]
Q↓

2

−T
}

, (A-8)

where we observed that, along the image ray, V (x) = V(γ). Taking into account the identities

Q↓
2

−T
P↓

2

T
= P↓

2Q
↓
2

−1
and Q↓

1

T
P↓

2 −P↓
1

T
Q↓

2 = I , (A-9)

which are properties of the ray propagator matrix (Červený, 2001), we find that

d

dT
[Q↓

1

T
Q↓

2

−T
] = V2

{[
P↓

1

T
Q↓

2 −Q↓
1

−T
P↓

2

T
]
Q↓

2

−1
Q↓

2

−T
}

= − V2Q↓
2

−1
Q↓

2

−T
. (A-10)

Substitution into equation A-5 and further into the Dix velocity formula A-2 yields

(VM
dix)2 = − 1

(ūT M↑
2ū)2

[
ūT dM↑

2

dT
ū

]
= V2

{
ūT I∗Q↓

2

−1
Q↓

2

−T
I∗ū

(ūT I∗Q↓
1

T
Q↓

2

−T
I∗ū)2

}
. (A-11)

We conclude that

F 2 =
V2

(VM
dix)2

=
(ūT I∗Q↓

1

T
Q↓

2

−T
I∗ū)2

ūT I∗Q↓
2

−1
Q↓

2

−T
I∗ū

, (A-12)

which is equivalent to equation 6 given in the main text.

APPENDIX B: COMPUTATION OF VELOCITY DERIVATIVES

In this appendix, we describe an approach for computation of the first and second derivatives, dV/dγ and
d2V/dγ2 at each ray coordinate, γ, that are required for our image-ray tracing scheme. Observe that we
write here the paraxial ray-tracing matrices without the superscript (q). Twice differentiation of equation 4
yields

∂V
∂γi

=
∂VM

dix

∂γi
F + VM

dix

∂F

∂γi
(B-1)

and
∂2V

∂γi∂γj
=

∂2VM
dix

∂γi∂γj
F +

[
∂VM

dix

∂γi

∂F

∂γj
+

∂VM
dix

∂γj

∂F

∂γi

]
+ VM

dix

∂2F

∂γi∂γj
. (B-2)
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Since VM
dix and its derivatives are known, our problem reduces to find the derivatives of the factor F , which

has the form
F =

A

B1/2
, (B-3)

where
A = ūT I∗QT

1 Q−T
2 I∗ū , B = ūT I∗Q−1

2 Q−T
2 I∗ū . (B-4)

Using equation B-3, we find the following relations between first- and second-order derivatives of the
factors F , A, and B,

∂F

∂γi
=

1
2B3/2

(2B
∂A

∂γi
−A

∂B

∂γi
) , (B-5)

∂2F

∂γi∂γj
=

1
2B5/2

[
(A

∂B

∂γi
−B

∂A

∂γi
)
∂B

∂γj
+ B(2B

∂2A

∂γi∂γj
−A

∂2B

∂γi∂γj
)
]

. (B-6)

Here, the derivatives of A and B can be obtained by straightforward differentiation of equation B-4. Note,
however, that since the factors A, B, and thus also F , depend on all three ray coordinates γ1, γ2, and γ3,
an exact solution for the factor F cannot, in general, be obtained by numerical integration along a single
ray subjected to the standard second-order traveltime approximation.

Based on the above, we propose three alternative approximations for the factor F and its derivatives
which all can be incorporated in a time-to-depth conversion strategy where computations along one ray are
independent of those along neighboring rays. The first, simplest, alternative is to assume that the factor
F is one along the whole image ray. As a second alternative, we assume that the factor F is only locally
constant, which means that all partial derivatives of F will be ignored in the computations. Finally, as the
the third approximation, we assume that F is a function of the traveltime, γ3 = T , only. In this case, only
the derivatives of F with respect to T in equations B-5-B-6 survive, and equations B-1-B-2 can therefore
be restated as

∂V
∂γI

=
∂VM

dix

∂γI
F ,

∂V
∂T

=
∂VM

dix

∂T
F + VM

dix

∂F

∂T
, (B-7)

∂2V
∂γI∂γJ

=
∂2VM

dix

∂γI∂γJ
F ,

∂2V
∂T 2

=
∂2VM

dix

∂T 2
F + 2

∂VM
dix

∂T

∂F

∂T
+ VM

dix

∂2F

∂T 2
. (B-8)

One can show, however, that our integration procedure does not rely on the second derivatives ∂2V/∂T 2,
which means that calculation of the second derivative ∂2F/∂T 2, as specified by equation B-6, is not
required. Considering equation B-5, the first derivative of F with respect to time is

∂F

∂T
=

1
2B3/2

(2B
∂A

∂T
−A

∂B

∂T
) . (B-9)

Differentiation of the two relations in equation B-4 yields

∂A

∂T
= ūT I∗

(
∂QT

1

∂T
Q−T

2 + QT
1

∂Q−T
2

∂T

)
I∗ū ,

∂B

∂T
= 2ūT I∗

(
∂Q−1

2

∂T
Q−T

2

)
I∗ū , (B-10)

where the derivative of the inverse matrix is given by

∂Q−1
2

∂T
= −Q−1

2

∂Q2

∂T
Q−1

2 . (B-11)

For calculation of derivatives of matrices QI with respect to traveltime, see equation 19.
It must be noted that the above formulas for factor F and its derivatives cannot be used for zero migra-

tion time, for which B = 0. We find, however, that a second-order approximation for the factor F in the
vicinity of T = 0 is given by

F = 1− 1
2
VT 2ūT I∗

∂2V
∂γ̄2

I∗ū , (B-12)

which yields, at T = 0,

F = 1 ,
∂F

∂T
= 0 . (B-13)
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In the 2D situation, we have

F = Q1 ,
∂F

∂T
=

∂Q1

∂T
= V2P1 , (B-14)

which is reduced to equation B-13 in the limit of zero time (Q1 = 1; P1 = 0).


