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ABSTRACT

Based on a hyperbolic traveltime approximation which depends on three kinematic attributes, the
Common-Reflection-Surface (CRS) stacking method was developed to simulate zero-offset (ZO) sec-
tions. Also, following this new concept of seismic imaging, it was introduced a method to simulate
common-offset (CO) sections from multicoverage data by using a hyperbolic paraxial traveltime ap-
proximation in the vicinity of a reflected central ray with finite-offset (FO). This last traveltime approx-
imation depends on five kinematic attributes. In this work, based on this five-parameters-traveltime
approximation, we obtain a new traveltime approximation for diffraction events, reducing the original
formula to four parameters. We compare both traveltime approximations (reflection and diffraction
events) with true traveltimes for a synthetic model. Based on the traveltime approximation for diffrac-
tions, we also present an algorithm to simulate CO sections from multicoverage data using global and
local optimization methods.

INTRODUCTION

Various macro-velocity model independent methods have been introduced to simulate zero-offset (ZO)
sections from multicoverage dataset. These methods are the Multifocusing (e.g Gelchinsky and Keydar
(1999),Gelchinsky et al. (1999a), Gelchinsky et al. (1999b), Landa et al. (1999)), Polystack (e.g. De Baze-
laire (1988)) and the Common-Reflection-Surface (CRS) (e.g. Müller (1999); Jäger et al. (2001), Garabito
et al. (2001)). The CRS method uses the hyperbolic paraxial traveltime approximation in the vicinity of
a ZO central ray. This formula depends on three parameters that are determined from multicoverage seis-
mic data. The CRS method has provided high-resolution results when compared to conventional stacking
method (NMO/DMO stack). These techniques have been used to stack P-P reflection events in 2-D pre-
stack multicoverage data and to simulate ZO sections. To handle also converted waves in the frame of the
CRS stack, the ZO CRS stack has been generalized to simulate CO sections (Zhang et al., 2001) The FO
CRS stacking operator is constituted by five parameters, which have to be searched-for in a coherence-
based, data-driven way (e.g. Zhang et al. (2001), Bergler et al. (2001c),Zhang et al. (2002)). The FO CRS
stack has demonstrated the applicability not only P-P or S-S reflections, but also to seismic multicoverage
data containing converted reflections, where the emergence angle information provided the FO CRS stack
can be used to reliable separate P-P from P-S reflections. The in-line geometrical spreading factor can, for
instance, be computed from these attributes, which is of help for Amplitude-versus-Offset (AVO) analysis
(Bergler et al., 2001b). The FO CRS stack parameters may be used to determine in a subsequent traveltime
inversion the P-wave velocity and/or S-wave velocity of a layered earth model (Bergler et al., 2001a).
Bergler et al. (2002) demonstrated on a synthetic dataset that the FO CRS stack can be an alternative pre-
stack stacking tool in complex situations such as subsalt imaging. The FO CRS stack is able to produce
interpretable CO sections where ZO simulation methods suffer from bad illumination of target reflectors
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by small-offset reflections.
Chira-Oliva et al. (2003) investigated the sensibility of the FO CRS stacking operator with respect to the
kinematic data-derived attributes. They analyzed the first derivative of this operator with respect to each
one of the searched-for parameters and descried the behavior of the FO CRS stacking surface.
Boelsen and Mann (2004) discussed that the conventional FO CRS stacking operator can handle Ocean-
Bottom-seismic (OBS) acquisition geometries by using a synthetic model. For this model, they compare
the model-and data-derived wavefield attributes and show that the FO CRS stack provides accurate emer-
gence angles and good results for the wavefront curvatures, too. They also present a new approach in order
to process multi-component data and converted waves. This approach is able to distinguish between PP
and PS reflections by combining operator shape and orientation with polarization information and provides
stacked sections and kinematic wavefield attribute sections for both wave types.
Boelsen (2004) presented new hyperbolic traveltime approximations for the FO CRS stack to handle top-
surface topography. He considered two types of topography: rugged and smooth. The formula for a rugged
topography can be used to derive a stacking operator that is in principle to handle a vertical seismic pro-
file (VSP) acquisition geometry as well as reverse VSP and cross-well seismic (e.g. Boelsen and Mann
(2005b),Boelsen and Mann (2005a)). He also proposed an approach to perform redatuming of the FO CRS
stacking section. He show the application of the FO CRS stack and the redatuming algorithm to a synthetic
data set simulated with a smoothly curved measurement surface. The results showed a high-quality FO
CRS stack section and accurately determined emergence angles.
In this work, based on Zhang et al. (2002), we present the particular case of a diffraction point for the FO
CRS stacking operator which depends on four parameters and is called FO Common-Diffraction-Surface
(CDS) stacking operator.
We applied these FO CRS stacking operators for classic configurations: common-shot (CS), common-
receiver (CR), common-midpoint (CMP) and common-offset (CO). Based on these particular formulas,
and considering a diffraction point in depth, we propose a new algorithm to simulate CO sections from
multicoverage data.

THEORETICAL ASPECTS

HYPERBOLIC TRAVELTIME APPROXIMATION ASSOCIATED TO REFLECTED CENTRAL
RAY

Following Bortfeld (1989), Zhang et al. (2001) developed a 2-D hyperbolic traveltime approximation for
paraxial rays in the vicinity of a central ray, considering a finite-offset (FO) between sources and receivers.
Therefore, we consider the situation in which a central ray starts at S, reflects at R on a reflector in subsur-
face, and emerges at the surface in G. The traveltime of paraxial rays that started at S and emerged at G
(Figure 1) are obtained by
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where t0 is the traveltime along the central ray, βS and βG are the emergence angles of the central ray
in the position of the source S and the receiver G, respectively. The dislocations ∆xm = xm − x0 and
∆h = h − h0 correspond to the midpoint and half-offset, respectively, where x0 = (xG + xS)/2 is the
midpoint and h0 = (xG − xS)/2 is the half-offset of the central ray. The coordinates of the sources and
receivers are denoted by xS and xG. The midpoint xm = (xG + xS)/2 and half-offset h = (xG − xS)/2
are the coordinates of an arbitrary paraxial ray with finite-offset, where the coordinates of the source and
receiver are denoted by xS and xG, respectively. The wave velocity at the source S and receiver G are
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Figure 1: 2-D model of three homogeneous layers separated by curved and smooth interfaces, where
xS and xG are the coordinates of the source and receiver of the central ray (green line), with x0 and h0

denoting the midpoint and half-offset coordinates of this ray. xS and xG denote the coordinates of the
source and receiver of a paraxial ray (red line). xm and h denote the midpoint and half-offset coordinates
of this ray. The angles βS and βG denote the emergence angles of the central ray at the source and receiver
with respect to the normal of the measurement surface.

denoted by vS and vG, respectively. In this work, we consider the near surface velocity vS = vG as con-
stant. The quantities, K1, K2 and K3 are wavefront curvatures associated to the central ray (Figure 2a,b),
computed at the respective emergence points. This expression (1) is called FO CRS stacking operator.

The wavefront curvatures (K1,K2,K3) are associated to a real common-shot (CS) experiment and a
hypothetical common-midpoint (CMP) experiment, respectively. In both experiments, the positions of the
source and receiver coincide with the initial and final positions of the central ray. As shown in Figure 2a,
in the CS experiment a source generates a wave in S that propagates downwards along the central ray,
reflects on the second reflector, and propagates towards the surface, where it is measured at G the emerging
wavefront curvature K1 .The propagation associated with the central ray for different instants of time is
depicted in Figure 2a. Figure 2b illustrates an hypothetical CMP experiment, where the propagation of the
wave associated to the central ray is depicted at different instants of time. In this experiment, the wavefront
starts in S with curvature K2, propagates downwards along the central ray, reflects on the second interface
and emerges at G with curvature K3. Curvature K2 has a negative signal according to the convention of
Hubral and Krey (1980), which states when a wavefront is in front of its tangent plane, with respect to the
direction of propagation.

Considering a given velocity model, curvatures K1, K2 and K3, as well as the angles βS and βG as-
sociated to a central ray, can be calculated by forward modeling, using a ray-tracing program (Cerveny
and Psensik, 1988) and applying the transmission and reflection laws of wavefronts, as shown in Hubral
and Krey (1980). To represent the CRS stacking operators associated to a FO central ray, we consider a
synthetic model (lower part of Figure 3) constituted of three separated by curved and smooth interfaces
with velocities vs = vG = v0 = 1500m/s, and v3 = 3700m/s, respectively. By using the ray-tracing al-
gorithm, the traveltimes of primary reflections for different CO (equation 1) are computed. The blue curves
represent the CO traveltimes of primary reflections associated to the second reflector (Figures 3 and 4). For
a central ray with half-offset h0 = 500m and midpoint x0 = 2500m (red lines, lower part of Figure 3), the
parameters K1, K2 and K3 are calculated by forward modeling. Then, associated to this central ray in the
upper part of Figure 3, the red curves represent the CRS operator obtained by expression (1).

The FO CRS stacking operator defined by formula (1) allows to simulate CO sections from multi-
coverage data. As illustrated in Figure 3, for each sampling point P0(x0, h0, t0) in the FO section to be
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Figure 2: 2-D model of three homogeneous layers separated by curved and smooth interfaces: (a) Propa-
gation of the wavefront of the CS experiment at different instants of time, (b) Propagation of hypothetical
wavefronts of a CMP experiment at different instants of time.
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Figure 3: Lower part (front): 2D media with three homogeneous layers separated by homogeneous smooth
interfaces and a finite-offset central ray, where x0 is the midpoint, h0 is the half-offset. Upper part: CO
traveltime curves (blue color) related to primary reflections of the second interface, having the CRS stack-
ing operator (red color) associated to point P0.
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simulated there exists a stacking surface defined by five parameters. The events contained in this surface
will be summed and the result is assigned to the given point P0.

HYPERBOLIC TRAVELTIME APPROXIMATION ASSOCIATED TO DIFFRACTED
CENTRAL RAY

The hyperbolic traveltime approximation (1) considers a reflected central ray and traveltimes of paraxial
rays in the vicinity of this central ray, which are also considered as being primary reflections. To consider
the central ray as a diffracted ray, a new interpretation in the propagation of the wavefronts associated
to the CS and CMP experiments, previously described, must be done. When a point R in subsurface
(Figures 2a,b) is considered as a diffraction point, the Huygens Principle states that this point becomes a
new source of wavefronts as soon as an incidence of wavefronts had just occurred. Under this assumption,
the interpretation of the wave associated to a real CS experiment is the following: the wave generated by a
point source S (origin of the central ray) propagates downwards and is diffracted at the located point in R.
This diffraction point generates a new wavefront that propagates upwards along its central ray, emerging at
G. In the CMP experiment, the wavefront propagation does not differs from the previous situation, but it
must be considered now that R is a diffraction point. Therefore, the wavefront curvature K1 emerging in
G must have the same curvature of wavefront K3, also emerging in G. Using the condition of diffraction,
K1 = K3 in formula (1), to obtain
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Now the hyperbolic traveltime approximation (Equation 2) depends only on four parameters: K2, K3, βS

and βG.

By using the formula (2) we construct the stacking surface (Figure 4). Due to the fact that this operator
(2) is associated to a diffracted central ray, then is called common-diffraction-surface (CDS). To distinguish
the last operator from the present one, we shall denote it as FO CDS operator.

SEISMIC CONFIGURATIONS

In this section we present particular cases of formulas (1) and (2) for the following classical seismic con-
figurations.

CMP gather

For this case, the paraxial source S and receiver G are located symmetrically with respect to the corre-
sponding points S and G, on the central ray. Considering that the midpoint is common to the central and
paraxial ray, the CMP condition reads: ∆xm = 0. Substituting this condition into equation (1), to obtain
the CMP configuration traveltime
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Substituting this same condition in the general equation (2) for a diffraction point, we get the same expres-
sion (3).
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Figure 4: Lower part (front): 2D media with three homogeneous layers separated by curved and smooth
interfaces and a FO central ray, where x0 is the midpoint, h0 is the half-offset. Upper part: CO traveltime
curves (blue color) related to primary reflections of the second interface with the CDS operator (green
color), associate to P0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Offset [km]

Ti
m

e 
[s

]

Common−midpoint (CMP)

Figure 5: CMP section corresponding for the midpoint 2250 m. The red line corresponds to the traveltime
calculated with equation (3) for the second reflector. For this configuration, the traveltime curve is the same
for reflection and diffraction events.
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Figure 6: CO section which offset is 1 km. The red line corresponds to the traveltimes calculated with
equation (4) and the green line corresponds to the traveltime calculated with equation (5).

Common-Offset (CO) gather

In this configuration, the paraxial source S and receiver G are shifted by the same amount and the same
direction with respect to the corresponding points S and G, on the central ray. The CO condition reads:
∆h = 0 . This means that the sources-receiver pairs of the paraxial and central rays have the same half-
offset.

The substitution of the CO condition into equation (1) gives
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Substituting in equation (2) the CO condition, it reads:

t2(∆xm) =
[
t0 + (

sinβG

vG
+

sinβS

vS
) ∆xm

]2
+ t0

[
K3

cos2 βG

vG
−K2

cos2 βS

vS

]
∆x2

m (5)

In Figure 6 the offset of the CO section is 1.0 km. The traveltimes calculated by expressions (4) and (5) are
represented by the red and green lines, respectively.

Common-Shot (CS) gather

For this configuration, the paraxial source always coincides with the source of the central ray. The CS
condition reads: ∆xm = ∆h. The substitution of this condition into equation (1)
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Applying the CS condition into equation (2), it reads:
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Figure 7: CS section: The red line corresponds to the traveltime calculated with equation (6) and the green
line corresponds to the traveltime calculated with equation (7).

In Figure 7 it is shown a CS section where the position of the source is 1.75 km. The minimum offset is
0.0m and maximum offset is 2.0 km. The offset of the central ray is 1.0 km. The positions of the source
and receiver of this central ray are 1.75 and 2.75 km, respectively.

Common-receiver (CR) gather

For this gather, the paraxial receiver always coincides with the receiver of the central ray. The CR condition
reads: ∆xm = −∆h. The substitution of this condition into equation (1) gives
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By considering this condition for a diffracted central ray into equation (2), we obtain
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In Figure 8 is shown the CR section. The fixed receiver is located at 2.75 km. The first source is located at
0.75 km, and the rest of the sources are located for both sides of the first source. The traveltimes calculated
by expressions (8) e (9) are represented by red and green lines, respectively.

SENSIBILITY ANALYSIS OF THE FO CRS STACKING OPERATOR

To define the priority in the parameters search, is necessary investigate the sensibility of the FO CRS
stacking operator with respect to the kinematic data-derived attributes. By analyzing the first derivative
of the FO CRS traveltimes with respect to each one of the searched-for parameters and perturbing each
parameter, we describe the behavior of the FO CRS stacking surface.
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Figure 8: CR section. The red line corresponds to the traveltimes calculated with equation (8) and green
lines correspond the traveltimes calculated with equation (9).

First derivative analysis of the wavefront attributes

The first derivative of the FO CRS operator with respect to the parameters to let us to analyze the sensibility
of this approximation. The derivatives were done by using the FO CRS and CDS CRS stacking operators
with respect the attributes:βS , βG,K1,K2,K3.
These derivatives, are shown in the Figures 10 and 9. We remind that in this analysis we considered a
fixed point P0. We use different half-offsets, as instance h = 0.0km, h = 0.25km, h = 0.5km, h =
0.75km, h = 1.0km . To difference the curves of these derivatives, we use different colors: blue for
h = 0.0km, magenta for h = 0.25km, cyan for h = 0.5km, green for h = 0.75km and red for h = 1km.

In Figure 10, we observe in the vicinity of the central ray x0, the traveltime derivatives with respect pa-
rameters K2 and K3 are sensitives with respect ∆xm and ∆h, while that the parameter K1 is less sensitive
to the changes of ∆xm and ∆h. In Figure 9 for variations along the coordinates ∆xm and ∆h, shows the
derivatives higher sensitives with respect the parameters βS and βG.
For the central point analyzed the traveltime function is very sensitive to the βS and βG, followed of the
parameters K3 and K2. This is an indicator that the parameters can be very well determined by search
processes (optimization). In the case of the parameters K2 and K3, this operator shows a higher degree of
difficulty to determinate them. For the parameter K1, the FO CRS traveltime showed less sensibility. In
this case, this parameter will be determined with difficulty and minor precision.

CO-CRS STACKING STRATEGY

For the simulation of CO sections with the CO-CRS stacking method, is needed to determine five pa-
rameters βS , βG,K1,K2,K3 or wavefront attributes from multicoverage data. Here, we use the FO CRS
operator associated to a certain sampling point P0 in the CO section to determine from multicoverage data
these parameters.
The crucial part of this procedure is the determination of the stacking operator from seismic data to the
optimization process using as an objective function the coherence (semblance) section. In this work, in-
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Figure 11: Lower part (front): 2D media with three homogeneous layers separated by curved and smooth
interfaces and a FO central ray, where x0 is the midpoint, h0 is the half-offset. Upper part: CO traveltime
curves (blue color) related to primary reflections of the second interface with the CDS operator when
K2 = 0 (green color), associate to P0.

stead of using CMP, CO and CS sections to determine the stacking parameters (Zhang et al., 2001), they
are determined using operators or stacking surfaces defined in the domain (∆xm,∆h), which are defined
by three, four and five parameters. Now, we consider the CO-CRS algorithm proposed below, where the
VeryFastSimulatedAnnealing(VFSA) global optimization algorithm for the initial determination of these
parameters is applied. To refine these parameters, we use the Quasi −Newton(QN ) local optimization
algorithm. This strategy is summarized in Figure 12

First step: Three-dimensional search (βS ,βG,K1)

From multicoverage data, using the V FSA algorithm, three parameters (βS ,βG,K1) are determined by
applying a tri-dimensional search. To obtain and to use the stacking operator defined by three parameters,
it is introduced the condition K2 = 0 (Figure 11) into equation (2). This condition is applied due to the
fact of that CO-CRS stacking operator has not shown sensitivity for an sample interval of variation of this
parameter.

Second step: Uni-dimensional search (K2)

Using the parameters determined in the previous step from multicoverage data, also using the VFSA global
optimization algorithm, the parameter K2 is determined for each sampling point of the CO section. In this
step, we use the stacking operator defined by equation (2).

Third step: Uni-dimensional search (K3)

Using the four parameters determined in the previous step from multicoverage data and using the V FSA
global optimization algorithm, the parameter K3 is determined for each sampling point of the CO section.
In this step, the stacking operator is defined by equation (1).
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Fourth step: Refinement of the five parameters (βS ,βG,K1,K2,K3)

To determine the best values of the five parameters simultaneously (βS ,βG,K1,K2,K3) and consequently,
the best CO-CRS stacking operator, the QN local optimization algorithm is applied. As an initial approx-
imation for the local search in the multicoverage data, the five resulting parameters of the two previous
steps are used. In this step, the objective function (semblance) uses the general formula (1) to obtain the
FO CRS stacking operators in the optimization process. The five parameters derived in this step are used
to simulate the final CO section.

CONCLUSIONS AND PERSPECTIVES

From the traveltime formula of reflected paraxial rays in the vicinity of a central ray with finite-offset, it
was derived a particular traveltime formula for paraxial rays in the vicinity of a central ray associated to a
diffraction point in depth. This new approximation depends on four parameters, thus reducing the original
formula in one parameter. Also the stacking operators (equations 1 and 2) have been compared, where it
was verified that this new formula (equation 2) defines a new operator that can be used to simulate CO
sections by means of the CRS stacking technique. Comparisons of reflections and diffractions traveltimes
have also been made, following the main seismic configurations (CMP, CR, CS and CO), where it was
also verified that the paraxial rays traveltimes associated to a diffracted central ray have a good fitting with
respect to the reflected events. This operator (equation 2) is an alternative to simulate CO sections. In this
work it is shown that the traveltime formulas associated to a diffraction point in depth can also be used
to identify and extract diffractions, where it can be used the CO, CS and CR configurations. Finally, we
propose a new strategy to estimate the five parameters in the FO CRS stacking method. The first third steps
use the SA global optimization method. The fourth step uses the QN local optimization algorithm.
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Figure 12: Flowchart of the CO-CRS stacking algorithm.
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