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ABSTRACT

Stereotomography is extended to general anisotropic models and implemented for elliptical and anel-
liptical anisotropy. Elliptical and anelliptical models depend on three parameters only, which makes
them less sensitive to ambiguity due to limited coverage of surface seismic experiments than trans-
versely isotropic or orthorhombic models. The corresponding approximations of the slowness surface
restrict the validity of the present approach to qP events and mild anisotropy. Numerical experiments
show the potential and the limitations of stereotomography for estimating macrovelocity models in
the presence of anisotropy as well as the importance of transmission events from multiple-offset VSP
experiments for the success of the approach.

INTRODUCTION

The determination of a macrovelocity model is essential for time and depth imaging of seismic reflectors in
the earth. Among the many methods that try to to achieve this aim are so-called tomographic methods that
are based on the inversion of traveltimes of seismic reflection events. One of these is stereotomography,
which uses slowness vector components to improve and stabilize the traveltime inversion. Stereotomogra-
phy was initially proposed by Billette and Lambaré (1998) as a robust tomographic method for estimating
velocity macro models from seismic reflection data. They had recognized the potential efficiency of travel-
time tomography (Bishop et al., 1985; Farra and Madariaga, 1988) but also the difficulties associated with
a highly interpretative picking. The selected events have to be tracked over a large extent of the pre-stack
data cube, which is quite difficult for noisy or complex data. The idea is to use locally coherent events
characterized by their slopes in the pre-stack data-volume. Such events can be interpreted as pairs of ray
segments and provide independent information about the velocity model.

Recently, Billette et al. (2003) demonstrated the successful use of stereotomography to recover isotropic
background media. According to Gosselet et al. (2005), the use of reflection events only is insufficient to
recover anisotropic models. Here, we study the limitations of stereotomography applied in anisotropic
media, using reflected and transmitted events. For this purpose, we use approximations for weak elliptic
and anelliptic anisotropy that are valid for qP waves.

Any tomographic method is based on ray theory. Our approach follows the lines of Farra and Madariaga
(1987) who applied perturbation theory to the Hamiltonian systems that describe the rays in media with
arbitrary anisotropy (Goldstein, 1980). Perturbation theory allows to calculate linear approximations to the
observed data, the so-called Fréchet derivatives. Here, we extend the work of Farra and Madariaga (1987)
to arbitrary anisotropy and restrict it later on for application purposes to elliptic and anelliptic media.

STEREOTOMOGRAPHY IN ANISOTROPIC MEDIA

Stereotomography differs from conventional reflection tomography by the data that are used for the in-
version (Billette et al., 2003). Firstly, the traveltimes are picked from locally coherent events that are
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interpreted as primary reflections or diffractions. Secondly, in-line slowness vectors components of these
events, detected in common-shot or common-receiver gathers, are used in addition to positions and travel-
times of sources and receivers. Thus, the data space is given by

d = [(xs,xr, ss, sr, T sr)n] (n = 1, . . . , N) . (1)

where xs and xr are the source and receiver positions, T sr are the traveltimes, and ss and sr are the
slowness-vector projections into the receiver line. Moreover, N is the number of selected events.

Stereotomography also uses a different model parameterization than conventional reflection tomogra-
phy. In 2D, the model to be estimated includes: the parameters describing the velocity model, p, the
scattering-point coordinates, X, the emergence angles, θs and θr, and the ray traveltimes, τ s e τ r. In other
words, the model vector is

m = {p, (X, θs, θr, τ s, τ r)n} (n = 1, . . . , N) . (2)

To solve the inverse problem using linear iterations, an initial reference model must be given. In this model
m0, ray tracing is performed to calculate the synthetic data, equation (1), denoted as dc. The difference
between the observed and calculated data, do − dc, defines the deviation δd.

This deviation is modeled in linear approximation as

δd = DF(m0)δm , (3)

where DF denotes the approximate operator describing the direct problem under variation of the reference
model m0. The operatorDF(m0) is known as the Fréchet derivative (see, e.g., Menke, 1989). The solution
of the linear system in equation (3) determines a new reference model

mnew
0 = m0 + δm. (4)

The process continues iteratively until the norm of the deviation ‖δd‖ is smaller than a given tolerance
value (in case of convergence) or until a maximum number of steps. In this work, we use the standard L2

norm (Menke, 1989).

Rays in anisotropic media

The ray tracing system in generally anisotropic media can be represented as (Červený, 2001)

dx
dτ

= ∇sH ,
ds
dτ

= −∇xH , (5)

where ∇x and ∇s represent the gradients with respect to the position and slowness vectors, x and s,
respectively, and where τ is the traveltime along the ray. Moreover, H(x, s;p) = 0 along the ray. In
tomographic applications, this system (5) is solved numerically.

Upon perturbation of the medium parameters p, the position and slowness vectors of a ray get perturbed.
Retaining only first-order effects in these perturbations δp, δx and δs, the system becomes

d

dτ

 δx

δs

 =

 ∇s∇T
xH ∇s∇T

s H

−∇x∇T
xH −∇x∇T

s H

 δx

δs


+

 ∇s∇T
pHδp

−∇x(∇T
pHδp)

 . (6)

Initial conditions

Initial conditions for δx e δs can be established upon requiring that the first-order perturbations of the
Hamiltonian at the starting point must be zero. This condition guarantees that the paraxial rays satisfy,
to the first order, the Hamiltonian equations. For stereotomography, it is necessary to integrate the above
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system (6) for one initial condition for each possible perturbations. Therefore, the determination can be
reduced to three cases:
(1) Perturbation of the slowness direction:

δs = s

(
I− n∇T

s H
∇T

s Hn

)
dn
dθ

δθ . (7)

(2) Perturbation of the diffraction point position:

δs = − ∇sH
‖∇sH‖

∇T
xHδX
‖∇sH‖

, (8)

(3) Perturbation of the elastic parameters:

δs = − ∇sH
‖∇sH‖

∇T
pHδp/‖∇sH‖. (9)

With these initial conditions, the system in equation (6) can be integrated along a ray in the reference
medium. In this way, the Fréchet derivatives with respect to the perturbations of the initial position, initial
angle, and elastic parameters can be numerically evaluated. System (6) can be efficiently solved for each
choice of initial conditions by means of the propagator method (Červený, 2001). With the central ray, i.e.,
x(τ) and s(τ), supposed to be known, system (6) takes the form

dy
dτ

= A(τ)y + f(τ) , (10)

where

A(τ) =

 ∇s∇T
xH ∇s∇T

s H

−∇x∇T
xH −∇x∇T

s H

 , y =
[

δx
δs

]
, and f =

[
∇s(∇T

pHδp)
−∇x(∇T

pHδp)

]
.

(11)
Equation (10) is a system of linear ordinary differential equations. The propagator methods allow to repre-
sent the solution to this system in an interval (τ0, τ), satisfying the initial condition y(τ0) = y0, as

y(τ) = P(τ, τ0)y0 +
∫ τ

τ0

P(τ, ξ)f(ξ)dξ . (12)

The initial condition for the propagator matrix P(τ, τ0) is then P(τ0, τ0) = I, where I is the identity
matrix. Numerically, P(τ, τ0) can be determined using Runge-Kutta schemes. For stereotomography, this
approach has the advantage that the propagator matrix P(τ, τ0) can be determined independently of y0,
which means that it needs to be calculated only once.

The integration of system (6) is based on the assumption that the elastic parameters vary smoothly.
Actually, they need to be second-order differentiable. Moreover, the model needs to be specified by a
finite number of parameters. To satisfy these conditions, the parameters must be interpolated. In our
implementation, each medium parameter is represented using the tensor product of third-order B-splines
as

pm(x1, x3) =
N1∑

α=1

N2∑
β=1

pαβ
m Bα(x1)Bβ(x3) , (13)

where the functions Bγ(xj) are the base functions of the interpolator along xj and Nj indicates the number
of base functions in that direction. Moreover, the pαβ

m are the interpolation coefficients that constitute the
medium parameters to be estimated by stereotomography.
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Hamiltonians

A possible form for the Hamiltonian in anisotropic elastic media is

H(x, s) = |aijkl(x)sjsl − δik| = 0 , (14)

where aijkl(x) are the density-normalized components of the stiffness tensor (Musgrave, 1970). To re-
duce the number of parameters to invert for, we study only the inversion of qP events in the elliptical
approximation (Dellinger et al., 1993)

H(x, s) =
1
2
[p1(x)s2

1 + p2(x)s2
3 + 2 p3(x)s1 s3 − 1] = 0 , (15)

and the anelliptical approximation for vertically transversely isotropic (VTI) media (Schoenberg and de-
Hoop, 2000)

H(x, s) =
1
2
[p1(x)s2

1 + p2(x)s2
3 − (p1(x)p2(x)− p2

3(x)) s2
1s

2
3 − 1] = 0 . (16)

The elliptic approximation can represent slowness surface segments with arbitrary orientation. The anellip-
tic approximation is very good for qP waves in VTI media with mild anisotropy (Schoenberg and deHoop,
2000). This class includes many shales, which are the sedimentary rocks that exhibit the greatest degree of
anisotropy.

Here, the medium parameters p1 and p2 are the squares of the horizontal and vertical phase velocities,
respectively. In an elliptic medium, i.e., in equation (15), parameter p3 indicates the orientation of the
ellipse. In the anelliptical medium, i.e., in equation (16), p3 is determined by the phase velocity at 45o.

Resolution analysis

The Fréchet derivatives contain all information about the incompleteness of the data for the estimation of
δm. Generally, the linear system in equation (3) is ill-conditioned because of the limited ray coverage
in the model (Nolet, 1987). The resolution matrix R = VrVT

r can be determined from the singular-
value decomposition of DF (Lawson and Hanson, 1974; Menke, 1989). Here, Vr is a submatrix of the
orthogonal matrix V of dimension Nm, the columns of which are the eigenvectors of the space DT FDF.
Vr is associated with the singular values greater than a value λrr, which is chosen by the prescription of
an acceptable condition number for DF.

The lines of the resolution matrix R indicate which model parameters are well resolved. The closer R
is to the identity matrix, the better the parameter resolution and, thus, the quality of the inversion result.
Nonzero off-diagonal elements represent linear dependence of the corresponding parameters that therefore
cannot be well resolved.

Resolution analysis of the Fréchet derivatives using singular value decomposition (SVD) is useful to
determine the limits of stereotomography for anisotropic model reconstruction. We use a homogeneous
isotropic medium as a reference model and computed the Fŕechet derivatives for an elliptic and an anelliptic
media. Two acquisition geometries were considered. First, a CMP array and a single diffraction event, the
scatter is located at 1.5 km in depth, offsets vary form 1 km to 7 km, equally spaced at every 1 km.
Second, we add to the previous data transmission data from a VSP acquisition, the well is located along
the midpoint of the split-spread array, the source is at the surface 1 km from the well head and the two
receivers are located along the well at 500 m and 2 km. The vertical slowness component is taken for each
transmission data.

We compute the resolution matrix for each set of acquisition geometry for the elliptic and anelliptic
models. For the SVD analysis, the stereotomography model parameters in vector m are ordered as: m1 ≡
p1, m2 ≡ p2, m3 ≡ p3, and m6i−2 ≡ Xi

1, m6i−1 ≡ Xi
3, m6i ≡ θs

i , m6i+1 ≡ θr
i , m6i+2 ≡ τ s

i ,
m6i+3 ≡ τ r

i , with i = 1, . . . , N . Therefore, the medium parameters are equal to m1, m2 and m3. The
remaining parameters for each picked event are diffractor position, slowness angles and traveltime for each
ray branch. For transmission data we add to the model parameter vector m the transmission traveltime, τt,
and the ray angle at the source, thetat.
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Figure 1: Non-zero singular values in non-
increasing order for a single diffraction event in el-
liptical media. Sources and receivers are in a CMP
array.
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Figure 2: Resolution matrix computed dropping
the zero singular value in Figure 1. Single diffrac-
tion event in a homogeneous elliptical medium.
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Figure 3: Resolution matrix computed dropping the two smaller singular value in Figure 1.

* Elliptical medium
Figure 1 shows the nonzero singular values for the single diffraction event and CMP acquisition ge-

ometry. The smallest singular value is zero. This indicates that the corresponding parameter cannot be
recovered from data. Figure 2 shows the resolution matrix computed dropping the zero singular value.
From the rows of resolution matrix, we see that the most poorly resolved parameter is p3, which controls
the tilt of the ellipse. This parameter is coupled with the position of the diffraction points, the slowness
phase angles θs and θr, and the traveltimes on each ray branch connecting the diffractors to sources and
receivers, τs and τr. Figure 3 shows the resolution matrix computed dropping the two smallest singular
values. This time, besides the orientation of the ellipse, the vertical slowness, p2, is poorly resolved. These
results indicate that the ellipse orientation is the parameter that is most difficult to recover from the data,
followed by the vertical phase velocity.

Figure 4 shows the singular values after adding the transmission data to the single diffraction event and
CMP acquisition geometry. This time there is no zero singular value, and the conditioning of the matrix
is greatly improved. The condition number of the matrix is 430. Figure 5 shows the resolution matrix
computed dropping the smallest singular value. Again the parameters p2 and p3, i.e., the vertical phase
velocity and the orientation of the ellipse, are strongly coupled. However, their coupling to the diffractor
position is much reduced. The introduction of transmission data improves the conditioning and reduces the
linear dependence among parameters.
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Figure 4: Singular values in non increasing order
with transmission data for a VSP geometry is added
to the previous surface data.
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Figure 5: Resolution matrix computed dropping
the smallest singular value in Figure 4.

* Anelliptical medium
Figure 6 shows the singular values for the single diffraction event and CMP acquisition geometry in an

anelliptic medium. There is no zero singular value this time and the condition number is 430. Figure 7
shows the resolution matrix computed dropping the smallest singular value. The row of the resolution
matrix the parameters with the poorest resolution corresponds to parameter p2, the square of vertical phase
velocity. It is most strongly coupled with parameter p3, the phase velocity in the diagonal direction, and the
depth of the diffractors. These results indicate that stereotomography can recover the medium parameters
and diffractors position in an anelliptical medium. In the presence of noise, the vertical phase velocity is
the most poorly resolved parameter, followed by the diagonal phase velocity and the diffractor depth.

Figure 8 shows the resolution matrix computed dropping the last two singular values. The condition
number is now 210. Still, p2 and p3 are the parameters with the poorest resolution. These parameters are
strongly coupled with the diffractor depth, X3, and the medium parameter p1. The horizontal coordinate of
the reflector, X1, the slowness phase angles, θs and θr, and the traveltimes on each ray branch connecting
the diffractor to sources and receivers, τs and τr also loose resolution. Note that the resolution of the latter
parameters decreases with increasing offset.

Figure 9 shows the singular values when we add the transmission data to the surface CMP data from
the single diffraction event. The condition number improves and is equal to 285, as one can see comparing
these singular values with those in Figure 6. Figure 10 shows the resolution matrix computed dropping the
smallest singular value. The parameter p3 is coupled with p1 and the diffractors depth. As in the elliptic
case, the addition of transmission data improves conditioning and reduces the linear dependence among
parameters.

Summarizing, these initial experiments with single checkshots and single diffractors demonstrated that
(a) estimation of anisotropic models using only reflection and diffraction events and surface acquisition
geometry cannot recover stereotomography parameters in tilted elliptical media; (b) estimation of stereoto-
mography parameters in anelliptical media using only reflection and diffraction events and surface acqui-
sition geometry is possible but can be ill-conditioned; (c) the inclusion of transmission events from VSP
experiments improves the conditioning of stereotomography; (d) the determination of the orientation of the
slowness curve together with the position of the diffraction or reflection point is ill-conditioned.

Regularization

Due to the incompleteness of the data, additional conditions that take desirable properties of the solution
into account, must be incorporated into the objective function. To reduce the ambiguity, three kinds of
regularization are used, two of which minimize the medium heterogeneity and anisotropy, while the third
one maximizes the diffractor focusing. Denoting the average diffractor position of diffractor number i by
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Figure 6: Singular values in non increasing order
for a single diffraction event in an anelliptical med-
ium.
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Figure 7: Resolution matrix computed dropping
the smallest singular value in Figure 6.
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Figure 8: Resolution matrix computed dropping the two smaller singular value in Figure 6.
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Figure 9: Singular values in non increasing order
with transmission data for a VSP geometry is added
to the previous surface data.
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Figure 10: Resolution matrix computed dropping
the smallest singular value in Figure 9.
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〈Xi〉, the focusing is maximized if
Ni∑
j=1

‖Xi
j − 〈Xi〉‖22 (17)

is minimized. Denoting the operators that minimize spatial derivatives by D(n)
1 and D(n)

3 , and the one
minimizing anisotropy by Diso, the regularized objective function for anisotropic stereotomography can
be written as

Φ(m;λi) = ‖d− F(m)‖22 + λ2
0‖m−m0‖22

+λ2
1‖D

(n)
1 p‖22 + λ2

2‖D
(n)
3 p‖22 + λ2

3‖Disop‖22

+λ2
4

Nevents∑
i=1

Ni∑
j=1

‖Xi
j − 〈Xi〉‖22 , (18)

where the λi are Lagrangian multipliers that weight the contributions to the objective function.

SYNTHETIC DATA EXAMPLE

The described stereotomography algorithm was tested on a number of synthetic models, comparing the
isotropic, elliptic, and anelliptic inversion. The data were modeled using the anisotropic ray-tracing code
ANRAY of Gajewski and Pšenčík (1990).

In all tests, the VTI models were parametrized for inversion by 49 coefficients of the B-splines parametriza-
tion (13), specified on a regular 7× 7 grid. The weights for the regularization terms in equation (18) were
chosen as λ0 = 0.01, λ1 = 0.01, λ2 = 0.01, and λ4 = 0.01. In all cases, the inversion started from a
homogeneous, isotropic initial model with velocity 3.0 km/s. In the following, typical results of stereoto-
mographic inversion are presented for one of these models.

This model is a heterogeneous, weakly anisotropic VTI medium with Thomsen parameters (Thomsen,
1986) of ε = δ = 0.189 and γ = 0.175. The model has covers a subsurface region of 6 km x 3 km with
diffraction points at the positions D1 =(0.7 km, 2.9 km), D2 =(1.2, 1.0), D3 =(2.2 km, 1.7 km), D4 =
(3.8 km, 0.5 km), D5 = (4.3 km, 1.5 km), D6 = (4.8 km, 1.0 km), and D7 =(5.3 km, 2.9 km). The
surface data were simulated for a CMP situated at xm = 3.0 km. The vertical and horizontal velocities in
the model are depicted in Figures 11 and 12, respectively. Also shown in Figure 11 are the positions of the
diffractors and the a subset of the rays used for tomography.

Figure 13 shows the result of isotropic stereotomography. The depicted ray families indicate the focus-
ing behavior of the diffractors. We observe that the depth of the diffractors is systematically overestimated.
This is an effect of the influence of the horizontal velocity which is larger than the vertical velocity in this
model. The relative error, depicted in Figure 14, shows a large deviation from the vertical velocity, with
maximum error in the order of 40%. When comparing the reconstructed isotropic model to the exact hor-
izontal velocity model (see Figure 15), we see that above 1.0 km, the error is reduced. We may conclude
that in the shallow part, isotropic stereotomography is more strongly influenced by horizontal than vertical
velocities.

The vertical velocity model reconstructed with elliptic stereotomography is shown in Figure 16. The
result presents very small lateral variations in the regions with high ray coverage. The depth of the diffrac-
tors is better estimated, although the focusing of the deeper ones, where few rays are available, is still poor.
The quality of the velocities can be judged in Figure 17, which shows the relative error. We see that errors
do not exceed 8% in regions with high ray coverage. The horizontal velocities from elliptic stereotomog-
raphy are depicted in Figure 18. We recognize the recovery of the direction of the velocity gradient, but
the failure to recover its strength. The errors, depicted in Figure 19 are smaller than 6% down to a depth
of 1.5 km and become higher only in undersampled regions. From these results, we conclude that elliptic
stereotomography does a better job in estimating the vertical than the horizontal velocity.

Although the model was chosen to be elliptically anisotropic, for completeness also an anelliptic
stereotomography has been carried out. The resulting vertical velocity is depicted in Figure 20. We observe
an even better depth estimation and focusing of the diffractors. As before, the result is worse in regions
with lower ray coverage. However, the velocities are worse than the ones from elliptic stereotomography.
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Figure 11: Model: Vertical velocity with a gradient towards the lower right corner. Also shown are the
diffraction points (asterisks) and some ray families used for the tomographic inversion. The colorbar is the
same for all subsequent velocity figures.
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Figure 12: Model: Horizontal velocity.

The relative error is shown in Figure 21. We see that the variation of the model is strongly underesti-
mated. Finally, Figure 22 and Figure 23 show the recovered horizontal velocity and the respective error.
Although the horizontal velocity shows a similar variation to the original model in the region with highest
ray coverage, the error is still higher than the one for elliptic stereotomography.

In summary, stereotomography works best where ray coverage is high. In such regions, anisotropic
properties of the medium can be recovered to a certain degree. It is interesting to observe that in all our
synthetic tests, even where the original model is anelliptic, elliptic stereotomography gave the smallest
errors. A possible remedy for this might be the use of more transmission data in the inversion.

CONCLUSIONS

We have extended stereotomography to generally anisotropic media and implemented the corresponding
inversion for two types of approximations for qP-wave slowness surfaces. The elliptic and anelliptic ap-
proximations represent the slowness surface as an ellipse of arbitrary orientation and a quartic surface with
fixed orientation, respectively.

An analysis of the resolution matrix for experiments with single checkshots and single diffractors
demonstrated that (a) estimation of anisotropic models using only reflection and diffraction events and
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Figure 13: Velocity as result of isotropic stereotomography.
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Figure 14: Relative error of vertical velocity from isotropic stereotomography. The colorbar is the same
for all subsequent error figures.
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Figure 15: Relative error of horizontal velocity from isotropic stereotomography.
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Figure 16: Vertical velocity as result of elliptic stereotomography.
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Figure 17: Relative error of vertical velocity from elliptic stereotomography.

surface acquisition geometry cannot recover stereotomography parameters in tilted elliptical media; (b) es-
timation of stereotomography parameters in anelliptical media using only reflection and diffraction events
and surface acquisition geometry is possible but can be ill-conditioned; (c) the inclusion of transmission
events from VSP experiments improves the conditioning of stereotomography; (d) the determination of
the orientation of the slowness curve together with the position of the diffraction or reflection point is ill-
conditioned. On this basis, we have provided a possible formulation for the necessary regularization for
the anisotropic problem.

Numerical examples demonstrated that isotropic stereotomography in anisotropic media tends to pro-
duce systematic localization errors. The use of anisotropic stereotomography improves the focusing and
localization of diffractors, but only if additional transmission data are taken into account. Therefore, a
macrovelocity model that is useful for migration can only be constructed by stereotomography if both
types of events are available.
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Figure 18: Horizontal velocity as result of elliptic stereotomography.
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Figure 19: Relative error of horizontal velocity from elliptic stereotomography.

REFERENCES

Billette, F. and Lambaré, G. (1998). Velocity macro-model estimation from seismic reflection data by
stereotomography. Geophys. J. Int., 135(2):671–690.

Billette, F., Le Bégat, S., Podvin, P., and Lambaré, G. (2003). Pratical aspects and applications of 2D
stereotomography. Geophysics, 68(3):1008–1021.

Bishop, T. N., Bube, K. P., Cutler, R. T., Langan, R. T., Love, P. L., Resnick, J. R., Shuey, R. T., Spindler,
D. A., and Wyld, H. W. (1985). Tomographic determination of velocity and depth in laterally varying
media. Geophysics, 50:903–923.
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Figure 20: Vertical velocity as result of anelliptic stereotomography.
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Figure 21: Relative error of vertical velocity from anelliptic stereotomography.
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Figure 22: Horizontal velocity as result of anelliptic stereotomography.
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Figure 23: Relative error of horizontal velocity from anelliptic stereotomography.


