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ABSTRACT

Seismic Migration by downward continuation using the one-way wave equation approximations has
two shortcomings: imaging steep dip reflectors and handling evanescent waves. Complex Padé ap-
proximations allow a better treatment of evanescent modes, stabilizing finite-difference migration
without requiring special treatment for the migration domain boundaries. Imaging steep dip reflectors
can be improved using several terms in the Padé expansion. We discuss the implementation and eval-
uation of wide-angle complex Padé approximations for finite-difference and Fourier finite-difference
migration methods. The dispersion relation and the impulsive response of the migration operator
provide criteria to select the number of terms and coefficients in the Padé expansion. This assures
stability for a prescribed maximum propagation direction. The implementations are validated on the
Marmousi model dataset and SEG/EAGE salt model data.

INTRODUCTION

Wave equation migration algorithms have a better performance than ray-based migration when the velocity
model has strong lateral velocity variations. Among several existing algorithms for wave-equation migra-
tion, finite-difference (FD) and Fourier finite-difference (FFD) migrations (Ristow and Rühl, 1994) can
provide wide-angle approximations for the one-way continuation operators, thus improving the imaging of
steep dip reflectors.

However, standard (real-valued) FD and FFD migrations cannot handle evanescent waves correctly
(Millinazzo et al., 1997). As a consequence, FFD algorithms tend to become numerically unstable in the
presence of high velocity variations (Biondi, 2002). To overcome this limitation, Biondi (2002) proposed
an unconditionally stable extension for the FFD algorithm. Earlier, Millinazzo et al. (1997) proposed a
different approach to treating these evanescent modes in ocean acoustic applications. They introduced an
extension of the Padé approximation which they called complex Padé.

The complex Padé expansion was used previously in applied geophysics. Zhang et al. (2003) used
the method in finite-difference migration. However, their implementation were not suited for wide angles.
Later, Zhang et al. (2004) proposed a split-step migration based on complex Padé.

In this paper, we study the use of the complex Padé expansion for wide-angle FD and FFD pre-stack
depth migration algorithms. The expansion is evaluated numerically, comparing its approximation to the
exact one-way operator. Based on studying the impulse response of the migration operator, we propose
a prescription to choose parameters for wide-angle complex FD and FFD algorithms. The algorithms are
validated on synthetic datasets from the Marmousi and SEG/EAGE salt models.
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METHODOLOGY

Complex Padé approximation

The one-way wave equation for downward continuation of the acoustic wavefield reads (Ristow and Rühl,
1994)

∂P (x, ω)
∂x3

=
(−iω)
c(x)

√
1 +

c2(x)
ω2

∂2

∂x2
1

P (x, ω) . (1)

where P (x, ω) is the pressure wavefield, c(x) is the medium propagation velocity. For vertically inhomo-
geneous media, the operator above has an exact representation in the Fourier domain (Gazdag (1978)). For
laterally inhomogeneous media, a formal representation for this operator is based on the Padé expansion
(Bamberger et al., 1988)
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1

. The coefficients an and bn are (Bamberger et al., 1988)
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nπ
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. (3)

If Z < −1 in equation (2), the left side is a pure imaginary number while the right side remains a real-
valued quantity. In other words, the approximation breaks down. Physically, this means that representation
(2) cannot properly handle evanescent modes. This causes numerical instabilities and is responsible for the
unstable behavior of the FFD algorithm in the presence of high velocity variations (Biondi, 2002).

To overcome these limitation, Millinazzo et al. (1997) proposed a complex representation of the Padé
expansion in equation (2). They achieve this goal by rotating the branch cut of the square root in the
complex plane. Their final expression is
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; ,

with an and bn as defined in equation (3). An and Bn are the complex Padé coefficients and α is the
rotation angle of the branch cut of the square root in the complex plane.

Complex FD and FFD migration

We use the complex Padé approximation (4) to represent the one-way continuation operator. Using this
approximation the downward continuation operator for finite difference migration is
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The FFD approximation for the downward continuation operator is deduced following the derivation
proposed by Ristow and Rühl (1994). The final result is

p
√

1 + X2 ≈
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1 + p2X2 + C0(p− 1) +
N∑

n=1

Anp(1− p)X2

1 + σBnX2
, (6)
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Figure 1: Complex Padé FD approximation for the dispersion relation of the one-way wave equation,
computed with three terms and α = 90o.

where p ≡ cr

c(x) is the ratio between the actual propagation velocity, c(x), and the propagation velocity in

an homogeneous background medium, cr. Moreover, X2 ≡
(

c
ω

)2 ∂2

∂x2
1

and σ = 1 + p + p2.
Based on numerical experiments comparing the exact operator and the FFD approximation, we propose

to use σ = 1 + p3 for wide-angle approximations, instead of σ = 1 + p + p2.

NUMERICAL EVALUATIONS

To better understand the involved approximations, we numerically evaluate the dispersion relations of the
wide-angle FD and FFD approximations and compare them with the exact dispersion relation. We comple-
ment our numerical evaluation computing the impulse response of our approximations in a homogeneous
medium. Finally, we compare the impulse response of the proposed wide-angle complex FD and FFD
algorithms with the unconditionally FFD algorithm proposed by Biondi (2002).

Dispersion relation

ure 1 shows the comparison of the exact dispersion relation with its FD approximation 2. The FD approxi-
mation was calculated using the first three terms of the series with a rotation angle α = 90o. The complex
Padé approximation fits the real and imaginary part of the dispersion relation almost perfectly. In other
words, it correctly represents the evanescent modes.

ure 2 shows the comparison of three FFD approximations for the one-way wave equation dispersion
relation, with the exact dispersion curve: FFD using real coefficients, complex FFD with σ = 1 + p + p2

and complex FFD using σ = 1 + p3. The FFD approximations were determined using p = 0.5 and three
terms in the Padé expansion. For the complex Padé approximation, we used a rotation angle of α = 45o.

The real part of the FFD operator using the real-valued Padé expansion (2) is clearly affected by spuri-
ous oscillations in the evanescent region. The complex FFD attenuates evanescent modes and, moreover,
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Figure 2: FFD approximations for the one-way wave equation dispersion relation. Notice the spurious
oscillations of the real-valued Padé expansion for the propagating modes. The FFD not only attenuates
evanescent modes, but also propagating modes which are not well approximated.

the attenuation starts where the approximation of propagating modes begins to lose its accuracy. When
replacing the definition of σ by σ = 1 + p3, the FFD approximation remains close to the exact dispersion
relation for higher propagation angles. We therefore refer to this choice of σ as the wide-angle approxima-
tion.

Impulse response

ure 3 shows the impulse responses of the wide-angle complex FD and FFD approximations for a homo-
geneous medium. We used a Ricker pulse with peak frequency of 25 Hz. We computed the FD impulse
response using three terms in the Padé expansion and α = 90o. The reference velocity was the true medium
velocity. For the FFD impulse response, we also used three terms in the Padé expansion, with p = 0.5 and
α = 45o. These parameters were selected based on the numerical experiments for the approximations of
the dispersion relation. The reference velocity for FFD was half the true medium velocity. Both impulse
responses have energy up to high propagation angles. Note that the wide-angle FFD approximation recov-
ers the impulse response quite well, in spite of the wrong reference velocity. Note, however, that some
high-frequency content is lost and the wavelet is no longer perfectly symmetric. These effects become
weaker the closer the reference velocity is to the true medium velocity.

To evaluate the performance of the wide-angle complex FD and FFD approximations in an inhomo-
geneous medium, we compare their results in the Marmousi velocity model without smoothing. As a
reference, we also compare the results to those of standard real-valued FFD and of the unconditionally sta-
ble FFD algorithm proposed by Biondi (2002) in the same model. Since the latter algorithm incorporates a
FFD migration plus interpolation, we refer to it as FFDPI migration. As before, the source pulse is a Ricker
with peak frequency 25 Hz. The impulse responses were computed with the same parameters as used in
the homogeneous medium.
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Figure 3: Impulse responses in a homogeneous medium for FD (top) and FFD (center) migration. using
wide-angle complex Padé approximations, compared to the real-valued FFD approximation (bottom).

ures 4, 5, 6, and 7 show the impulse responses of the complex wide-angle FD and FFD approximations,
as well as real-valued FFD and FFDPI, respectively. All responses are similar if we only consider the
most energetic events. The results of wide-angle complex FFD are closer to the FFDPI than those of
the wide-angle complex FD. Note that wide-angle complex FFD covers higher angles than FFDPI. Here,
frequency content and wavelet shape of the wide-angle complex FFD are practically identical to that of
FFDPI, because the reference velocities are chosen based on the true velocity model. The real-valued FFD
approximation clearly provides the worst results. It contains non-negligible non-causal energy and even
some upgoing events.

There are a few events that appear differently in the complex FFD and FFDPI impulse responses. The
most obvious difference is a dipping event to the right of the main wavefront, which appears only in FFDPI.
Since it leaks in front of the main wavefront, it seems to be a spurious, non-causal event. Secondly, the
event on the top left of the impulse response appears with a slightly different dip. Here, the wide-angle
approximation of the complex FFD seems to better preserve the true, nearly vertical dip. Finally, there is a
weak horizontal event inside the main wavefront, slightly to the right, which appears stronger in the FFDPI
than in the complex FFD. Here, FFDPI seems to better preserve the event.

In conclusion, the approximations obtained from complex FFD and FFDPI are of comparable quality,
each one preserving slightly different features of the impulse response. The real-valued FFD and complex
FD approximations are of inferior quality.

MIGRATION RESULTS

We have implemented the wide-angle complex FD and FFD approximations to perform pre-stack depth
migration in 2D. We have also implemented the FFDPI migration of Biondi (2002) for comparison. The
imaging condition is the crosscorrelation of the downward continued upgoing wavefield and downgoing
wavefield from source at zero time lag. Other imaging conditions that correct for the illumination are being
tested (Schleicher et al., 2006). The source wavefield is computed using a Ricker wavelet with 25 Hz peak
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Figure 4: Impulse response of wide-angle complex FD in the Marmousi velocity model.

0

2000D
ep

th
 [m

]

0 2000 4000 6000 8000
Xcmp [m]

Figure 5: Impulse response of wide-angle complex FFD in the Marmousi velocity model.
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Figure 6: Impulse response of FFDPI in the Marmousi velocity model.
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Figure 7: Impulse response of real-valued FFD in the Marmousi velocity model.
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Figure 8: Marmousi velocity model.

frequency. The complex FD and FFD approximations are computed with the same parameters as previously
selected.

As our first test, we migrated the Marmousi dataset using the true Marmousi velocity model (Versteeg,
1994), without any smoothing (see ure 8). ure 9 shows the result of wide angle complex FD migration.
The depth extrapolation step size for both complex FD and FFD is 6 m. ure 10 shows the result of the wide
angle complex FFD migration. ure 11 shows the FFDPI results. The requirement of velocity interpolation
makes FFDPI computationally more expensive. To reduce the cpu time, we used a depth extrapolation step
of 12 m for FFDPI migration. Still the FFDPI migration takes twice as much cpu time as the complex
FFD algorithm. The images are overall very similar. The complex FD image is a little more blurred at
the target reservoir region and fails to resolve the faults as well as complex FFD and FFDPI. Though there
are some slight differences between the images of the latter two methods, its impossible to tell which of
the two images is better. This is in agreement with our findings when studying the impulse responses. For
comparison, ure 12 presents the result of FFD migration using the seismic un*x FFD algorithm Cohen
and Stockwell (2006). The depth interval was also 6 m. Though it seems to preserve higher frequencies,
the image is overall of inferior quality. Moreover, the algorithm suffers from instabilities and numerical
dispersion and strongly distorts the source wavelet.

For another comparison between the complex FFD and the FFDPI algorithms, we also applied the
proposed algorithms to synthetic data from the SEG/EAGE salt model (Aminzadeh et al. (1995)). We used
a 2D dataset computed using the 2D section of the 3D model shown in ure 13. ure 14 and ure 15 show
the complex FD and FFD migration results, respectively. In this model, which has a simpler structure than
the Marmousi model, both techniques based on the complex Padé expansion provide results of comparable
quality. Because of the high quality of the images from complex FD and FFD migration and the high
computational cost of FFDPI, we refrained from carrying out the latter for this larger model.

CONCLUSIONS

We applied the complex Padé approximation (Millinazzo et al., 1997) to derive wide-angle complex finite-
difference (FD) and Fourier finite-difference (FFD) migrations. The complex Padé approximation, which is
based on a rotation of the branch cut for the square root in the one-way wave propagator, attenuates evanes-
cent waves, thus solving the problems with numerical instabilities of real-valued FD and FFD migration
algorithms.

Based on numerical experiments with impulse responses and full migrated images, we have found
that three terms in the Padé expansion are sufficient for wide-angle approximations of acceptable quality.
These numerical experiments have also indicated that the most adequate rotation angle of the branch cut is
α = 90o for FD and α = 45o for FFD migration, though more exhaustive tests are required using different
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Figure 9: Pre-SDM of Marmousi dataset using wide angle complex FD.
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Figure 10: Pre-SDM of Marmousi dataset using wide angle complex FFD. Notice the stability of the
complex FFD approximation.
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Figure 11: Pre-SDM of Marmousi dataset using wide angle FFDPI.
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Figure 12: Pre-SDM of Marmousi data set using the SU algorithm based on the real-valued Padé expan-
sion. The image suffers from numerical dispersion and instabilities.

velocity models to validate this prescription. Moreover, our numerical experiments have demonstrated that
choosing σ = 1 + p3 instead of σ = 1 + p + p2 in the complex Padé expansion [equation (6)] improves
the wide-angle approximations.

Results of the application of the proposed algorithms to synthetic data from the Marmousi and the
SEG/EAGE salt models indicate that the wide-angle complex FD and FFD migrations are stable algorithms
even in complicated velocity models, where real-valued FFD algorithms fail to provide stable results. For
the Marmousi model, the migrated images from complex FD and FFD migrations were very similar to the
images obtained with the results of the unconditionally stable Fourier finite-difference plus interpolation
(FFDPI) migration of Biondi (2002). The proposed algorithms are computationally less expensive. The
complex FFD algorithm with half the step size used in the FFDPI algorithm was twice as fast. The complex
FD migration is about another 30% faster.
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Figure 13: 2D slice of the SEG/EAGE salt model.
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Figure 14: Pre-SDM from SEG/EAGE 2D data set using complex FD.
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Figure 15: Pre-SDM from SEG/EAGE 2D data set using complex FFD.
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