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ABSTRACT

In the classical literature, seismic reflection traveltimes layers were considered for elastic isotropic
layers. For long-offset, multi-component data and converted waves, the effects of anisotropy cannot be
neglected. As a consequence, the consideration of transversely isotropic layered media with a vertical
axis of symmetry, has become a topic of high interest. For both isotropic and anisotropic layers,
the traveltime and offset for a multiply transmitted and reflected wave are expressed as parametric
functions of horizontal slowness, which are analytic within some disc centered at the origin.
An explicit, closed-form expression for traveltime against offset is impossible, but one can determine
a representation of it as a power series. We show that for SH and qP waves, such a power series always
exists for small offsets. For qSV propagation in one or more layers, the power series does not exist
when the NMO-velocity squared is zero. For a qSV reflection in a single layer this corresponds to
an incipient triplication. For reflections in VTI media, no bounds for the radius of convergence has
been established. We review and comment the fact that, for isotropic layered media, lower and upper
bounds for the radius of convergence have been obtained. The power series for traveltime squared is
always convergent within the radius of covergence for traveltime. No improved bound for the radius
of convergence for traveltime squared seems to exist.
When there is a triplication in traveltime for a qP-qSV or qSV wave, the power series for traveltime
is, at the most, valid up to the point where the traveltime starts to backtrack. This is illustrated in a
numerical example for an on-axis triplication for reflected qSV waves. Close to incipient triplication,
the offset range of validity of common traveltime approximations is very limited.

INTRODUCTION

To a large extent, routine seismic processing is based on traveltime expressions that are computed for a
stack of homogeneous plane layers. The standard common-midpoint (CMP) method uses the so-called
normal moveout for P-waves in isotropic horizontally stratified media Dix (1955). The normal moveout is
nothing else than the second-order Taylor expansion of traveltime squared in such media.

Many studies of the P-wave isotropic power series of traveltime (or traveltime squared) against off-
set are reported in the literature Slotnick (1959); Taner and Koehler (1969a); Brown (1969); Al-Chalabi
(1973); Ursin (1977); Hubral and Krey (1980); Castle (1994). All these investigations tacitly assume the
existence of some least radius of convergence. In other words, for sufficiently small offsets, the power
series converges and represents the traveltime. Papers that explicitly address the problem of existence and
also some estimation of the radius of convergence are much more seldom. Goldin (1986) shows that the
power series for traveltime is always convergent for “sufficiently smallt’t’ offsets. However, it cannot have
radius of convergence larger that the sum of total distance traversed along the ray path. Specific classes of
velocity distributions in which the radius of convergence meets that sharp upper bound are also described.
Tygel (1994) considers arbitrary velocity distributions and provides a (non-sharp), model-dependent lower
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bound for the radius of convergence. Both authors restrict their investigations to traveltime. Sharper results
for traveltime squared, as conjectured, have not been obtained sofar.

More recent investigations have shown that in many situations better processing results can be obtained
by considerating anisotropy within the layers. The most popular case is that of transversely isotropy with
vertical symmetry axis, simply referred to as VTI media Thomsen (1986). Traveltimes within VTI horizon-
tally layered media, although certainly more complex, exhibit many similarities with their corresponding
isotropic counterparts (see Thomsen, 1986; , Tsvankin and Thomsen, 1994; , Stovas and Ursin, 2003; ,
Ursin and Stovas, 2005; and other references therein).

The possible triplications of a qSV group velocity function represents a new complication Thomsen and
Dellinger (2003). Dellinger (1991) has shown that triplication cannot occur for qP- and SH-waves. It can
occur for qSV-waves propagating at three different angles with respect to the axis of symmetry: parallel to
the symmetry axis, perpendicular to the symmetry axis, or off-axis, at an angle in between. For a reflected
wave only the on-axis and off-axis triplications can occur. Conditions on the elastic constants, under which
triplications can occur, are given by Thomsen and Dellinger (2003). We shall consider geometric travel-
times only, and not consider the complex wave for offsets associated with triplications at finite frequency
Burridge (1967).

Traveltime and offset for a multiply transmitted and reflected ray within a layered VTI media are given
by analogous expressions as the ones for isotropic media, with the fundamental exception that group quan-
tities (velocity and angle) replace their corresponding phase counterparts. After transformation to phase
velocity and angle, the VTI traveltime and offset become more complicated (although still analogous to
isotropic) parametric expressions of horizontal slowness or ray parameter. Explicit elimination of the ray
parameter is again not possible, so that one must resort to a power-series expansion to represent traveltime
as a function of offset.

In Appendix A it is proven that such a power series exists when the squared NMO-velocity is different
from zero. The NMO-velocity squared can only be zero for a qSV-wave or converted qP-qSV waves. For
a reflected qSV-wave in a homogeneous layer, this corresponds to an incipient triplication, when the ray
angle pauses in its forward motion but does not backtrack as slowness increases. The proof only shows the
existence of a power series, but no estimate of its radius of convergence is given.

In Appendix B, we review and comment the convergence results that exist for the isotropic case. In the
case of a homogeneous single layer, the normal moveout exactly represents, for all offsets, the traveltime
squared of a non-converted reflection of the planar bottom interface. This means that, in this simple sit-
uation, the traveltime squared, as a function of offset, is given by a power-series of infinite radius. This
favorable result does not hold if we consider traveltime instead of traveltime squared. In that case, the
traveltime, as the square-root of the normal moveout, is represented by a power series that is convergent
for offsets less than twice the reflector depth only. The much better convergence of traveltime squared than
traveltime as a function of offset in the case of a single layer, lead geophysicists to conjecture that the same
behavior should also hold for multiply reflected and transmitted waves within a stack of layers.

For two-terms power series, traveltime is approximated by a parabolic function, and traveltime squared
is approximated by a hyperbolic function. Ursin (1977) has shown that, for a stack of isotropic layers, the
standard hyperbolic approximation has less error. For higher-order approximations, no proof exists, but
numerical evidence indicates that traveltime squared gives a better approximation, also for VTI layers.

In the same way as in the isotropic case, the VTI power series traveltime as a function of offset (trun-
cated in its first two or three terms) is used for a variety of seismic processing purposes, including, e.g.,
velocity analysis Alkhalifah (1997a) and geometric-spreading correction Ursin and Hokstad (2003). In
particular, first power-series coefficients are important to design alternative traveltime functions of offset.
This is the case of non-hyperbolic traveltimes, shown to better approximate reflection events, especially for
large offsets (see Alkalifah, 1997b and Ursin and Stovas, 2005 ).

The accuracy of the traveltime approximations obtained with the truncated Taylor series is investigated
for qSV reflected waves in a few models near the incipient triplication point. The traveltime approximations
have a very small useful offset range in this case, confirming the results of Ursin and Stovas (2005), all
traveltime approximations break down at an off-axis triplication of a qSV-wave.
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TRAVELTIME AND OFFSET FUNCTIONS OF SLOWNESS

We consider wave propagation in a stack of horizontal homogeneous VTI layers. For a multiple transmitted
and reflected SH-wave or multiple transmitted, reflected and converted qP-qSV-wave, the traveltime,t, and
offset,x, are governed by the expressions Ursin and Stovas (2005),

t(p) =
∑
k

∆zk
Vk cosαk

=
∑
k

∆zk
vk cos θk

(
1 + p

v′k
vk

)
, (1)

and

x(p) =
∑
k

∆zk tanαk =
∑
k

vk∆zk
cos θk

(
p+

v′k
v3
k

)
. (2)

The indexk represents a summation along the ray, and the quantities in the sums are computed for the
proper wave mode; qP-, qSV- or SH-wave. In the above equations, for each layerk, ∆zk represents
the thickness,Vk andvk the group and phase velocities andαk andθk are the group and phase angles,
respectively. Moreover,v′k denotes thep-derivative ofvk. Finally, we have used the invariance (Snell’s
law) of horizontal slowness or ray parameter

p = sin θk/vk, (3)

for all layersk, which is valid for a horizontally stratified medium.
The above expressions of traveltime and offset can be recast into a more convenient form by introducing

the vertical slowness

qk =
√

1/v2
k − p2 = cos θk/vk . (4)

Substituting into equations (1) and (2) yields

t(p) =
∑
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∆zk(qk − p q′k) and x(p) = −
∑
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∆zk q′k. (5)

whereq′k = dqk/dp, and we have used

v′k
v3
k

= −1
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1
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′
k + p. (6)

It is seen that the vertical slowness functionsqk(p) determines the behavior oft(p) andx(p).
Expandingqk(p) in Taylor series and interchanging the order of summation gives Ursin and Stovas

(2005)

t(p) = t(0) +
1
2
t(0)v2

NMO p
2 +

3
8
t(0)µ4p

4 + · · · , (7)

and

x(p) = t(0)v2
NMO p+

1
2
t(0)µ4 p

3 + · · · , (8)

where

t(0) =
∑
k

∆zk
v0,k

=
∑
k

∆t0,k, and v2
NMO =

1
t(0)

∑
k

v2
0,ka0,k∆t0,k, (9)

are the vertical traveltime and NMO-velocity, repectively. In the above equations,v0,k is the vertical
velocity in layerk. Omitting the indexk, that velocity is given by

α0 =
√
C33/ρ or β0 =

√
C44/ρ, (10)

for a qP-wave or qSV/SH-wave, respectively. We shall use the Thomsen parameters

δ =
(c13 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
, ε =

c11 − c33
2c33

, and γ =
c66 − c44

2c44
. (11)
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It is also convenient to introduce the parameterσ defined by

σ = (α0/β0)2(ε− δ). (12)

Ommitting the indexk, the coefficient,a0, defining the NMO-velocity squared in equation (9) is given by

a0 =

 1 + 2δ, (qP− wave),
1 + 2σ, (qSV − wave),
1 + 2γ, (SH− wave).

(13)

Finally, the coefficient,µ4, is defined in Ursin and Stovas (2005),

µ4 =
1
t0

∑
k

v4
0,k[a

2
0,k + 4a1,k], (14)

where, also ommitting the indexk, the coefficienta1 reads

a1 =


2(ε− δ)

(
1 +

2δα2
0

α2
0 − β2

0

)
, (qP− wave),

−2σ
(

1 +
2δα2

0

α2
0 − β2

0

)
, (qSV − wave),

0, (SH− wave).

(15)

TRAVELTIME AS A FUNCTION OF OFFSET

Equations (5) express traveltime and offset as parametric functions of slowness. Elimination of that pa-
rameter will provide traveltime as a function of offset. That function will be denoted byT (x). As a direct
elimination ofp is not possible, the common practice is to expressT (x) as a Taylor series around zero
offset. In Appendix A it is shown that traveltime,t(p), and offset,x(p), are analytic functions of horizontal
slowness within a disc|p| < pm. Furthermore, when

x′(0) = t(0)v2
NMO 6= 0, (16)

the functionx(p) admits an analytic inverse,p(x), defined within a sufficiently small disc,|x| < rc,
centered at the origin of the complexx-plane. This we can substitute into the traveltime function,t(p), to
obtain the composite functionT (x) = t(p(x)). Due to the analyticity of botht(p) andp(x), as well as to
the fact thatp(x) maps the disc|x| < rc into the domain of analyticity,|p| < pm of t(p), it follows that
T (x) is a well defined, analytic function within|x| < rc. As a consequence,T (x) can then be represented
by a convergent power series around the origin for offsets|x| < rc, as desired. Because of reciprocity, that
series, if it exists, has only even powers ofx. From equations (7) and (8) it can be shown that

T (x) = T (0) +
x2

2T (0)v2
NMO

− µ4 x
4

8T (0)3(v2
NMO)4

+ · · · . (17)

Note thatT (0) = t(0) is the zero-offset traveltime. Higher-order terms can be found in Brown (1969) or
Ursin and Stovas (2005). We see that ifv2

NMO = 0, so that that condition (16) is violated, the power series
T (x) does not exist.

For a reflection from a single layer with no mode conversions, equation (9) givesv2
NMO = v2

0a0. This
is possibly zero or negative for a qSV-wave only Dellinger (1991). Then

v2
NMO = β2

0(1 + 2σ), (18)

which is zero forσ = −0.5. This is the condition for incipient on-axis triplication. Then the power series
does not exist. Forσ < −0.5 there is an on-axis triplication. In this situation the power series exists,
but the range of convergence must be less than the offsets where the group velocity and traveltime start to
backtrack.
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For a stack of layers, the squared NMO-velocity can be zero or negative only if the wave has passed
through one or more layers as a qSV-wave. The radius of convergence must be limited by the offset where
traveltime starts to backtrack, either in an on-axis or an off-axis triplication. In both cases, this occurs when

x′(p) = −
∑
k

∆zkq′′k = 0, (19)

where equation (5) has been used.
The coefficients in the power series forT (x) in equation (17) become large whenv2

NMO is small
(positive or negative), and we expect that the radius of convergence will be small.

TRAVELTIME SQUARED

The power series for traveltime squared can also be obtained from equations (7) and (8) Taner and Koehler
(1969b); Hubral and Krey (1980); Ursin and Stovas (2005). In order to obtain the first terms, it is easier to
square equation (17) which gives

T (x)2 = T (0)2 +
x2

v2
NMO

−
[

µ4

(v2
NMO)2

− 1
]

x4

4T (0)2(v2
NMO)2

+ · · · . (20)

As discussed earlier, the convergence of the power series for traveltime carries over to the correspond-
ing power series for traveltime squared. This means that, at each offset,x, for whichT (x) has a convergent
power series, the same happens with the power series representation ofT 2(x), so that that the convergence
of the power series forT 2(x) is at leastequal to the one forT (x), but it can be larger. A striking ex-
ample of the fact that traveltime squared may have better convergence properties (that is a larger radius
of convergence) as compared to traveltime, is provided by the reflection from a single layer, as discussed
in Appendix B. Then the radius of convergence forT (x) is twice the layer thickness, while the series for
T 2(x) gives the exact expression with two terms. The terms forx4 and higher are all zero. Numerical
evidence suggests that taking the square root of the truncated seriesT (x)2 gives more accurate traveltime
approximation than the seriesT (x) truncated to the same order inx2.

NUMERICAL RESULTS

The behavior and accuracy of the truncated Taylor series for traveltime and the square root of traveltime
squared were studied for simple two-layer models consisting of medium I with negative squared NMO-
velocity and medium II with positive squared NMO-velocity for reflected qSV waves. The elastic parame-
ters of the two media, as given in Table 1, are identical except for the slightly different values ofε.

Parameters α0 [km/s] β0 [km/s] γ [km/s] δ σ
Medium I 2.0 1.0 − 0.1 0.05 − 0.6
Medium II 2.0 1.0 − 0.05 0.05 − 0.4

Table 1: Parameters of the medium I and II used in the modeling.

Five different models, all with total thickness equal to 1000 m, are described in Table 2. Model A is
medium I withv2

NMO = −0.2, model B is 750 m medium over 250 m medium II, model C is 250 m
medium I over 750 m medium II and model D is medium II. Finally, there is a model withv2

NMO = 0,
consisting of 500 m medium I over 500 m medium II.

Model A B C D
I 100% 75% 25% 0

Medium II 0 25% 75% 100%
v2
NMO [km2/s2] − 0.2 − 0.1 0.1 0.2
µ2

4 [km2/s2] 5.48 5.03 4.12 3.67

Table 2: Model composition and traveltime parameters.
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Figure 1: Traveltime as function of offset.
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Figure 2: Derivative of slowness with respect to offset.
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Figure 3: Errors of traveltime as function of slowness for second-order (solid line) and fourth-order
(dashed line) approximations. The labels A-D refer to the models A-D in the text.
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Figure 4: Errors of traveltime as function of offset for second-order (solid line) and fourth-order (dashed
line) approximations. The labels A-D refer to the models A-D in the text.
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Figure 1 shows traveltime computed as function of offset for the five models.
Figure 2 shows the derivativedx/dp for the same models. Triplication and backtracking occurs when

dx/dp < 0. This happens for models A and B, with the former has the largest triplication domain. In
the middle curve is shown the model withv2

NMO = 0. This results in a kink in the traveltime curve. For
models C and D,dx/dp > 0 and there is no triplication.

Figure 3 shows the traveltime series for the Taylor seriest(p) in equation (7) with two and three terms.
For the two models with triplication, the error is of the same sign, while for the two models with positive
v2
NMO, the error changes sign. In all cases, three terms give a more accurate approximation than two terms.

Figure 4 shows the errors of traveltime approximationT (x) in equation (17) truncated after two and
three terms. As expected, these approximations are only valid for offsets less than where the traveltime
curve starts to backtrack (atdx/dp = 0). The approximations obtained by taking the square root of the
truncated series forT (x)2 in equation (20) are extremely similar, and the plots look almost identical to the
ones in Figure 4. It is seen that the range of validity of the approximations forT (x) for a qSV-reflection
is very limited when|v2

NMO| is small. For a reflector at 1000 m depth, the error becomes larger than 4 ms
for offsets larger than 20 - 100 m, depending on the model.

CONCLUSIONS

For a multiply transmitted and reflected wave in VTI media, traveltime and offset are expressed as para-
metric functions of horizontal slowness. Elimination of this parameter to provide traveltime (or traveltime
squared) as a function of offset is in general not possible. We have shown that traveltime can be repre-
sented as a convergent power series around the origin for sufficiently small offsets, except in the case of a
vanishing NMO-velocity. The NMO-velocity can only be zero for qSV propagation in some layer. When
the squared NMO-velocity becomes negative there is an on-axis triplication in the traveltime, and the range
of validity for the power series for traveltime is limited to the first branch of the traveltime function.

In the case of isotropic layered media the power series always exists, moreover, lower and upper bounds
for the radius convergence were given. For both VTI and isotropic layers, the region of convergence of the
power series expansion of traveltime squared always contains the corresponding convergence region of
traveltime.
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APPENDIX A

ANALYTICITY OF FUNCTIONS

To show the analyticity of traveltime,t(p), and offset,x(p), as functions of horizontal slowness,p, it
suffices to restrict the analysis to their single-layer contributions,∆t(p) and∆x(p) given by

∆t(p) = (q − pq′)∆z and ∆x(p) = −q′∆z, (1)

in which, for convenience, we dropped the layer index,k. The vertical slowness squared is, for SH-waves,

q2 = 1/β2
0 − (1 + 2γ)p2. (2)

For qP- and qSV-waves, the corresponding vertical slowness function gets more complicated, being given
by (see, e.g., Ursin and Stovas, 2005 , their equation (B-1))

q2 =
1
2

(
1
α2

0

+
1
β2

0

)
− p2(1 + σ + δ)∓ 1

2

(
1
β2

0

− 1
α2

0

)√
1 + bp2 + cp4, (3)

http://wwwsep.stanford.edu/theses/sep69
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with the∓ sign meaning thatq is associated with the qP- or qSV-velocity, respectively, and

b = − 4α2
0β

2
0

α2
0 − β2

0

(σ − δ) and c =
4α4

0β
4
0

(α2
0 − β2

0)2

[
2(α2

0 − β2
0)

α2
0

σ + (σ + δ)2
]
. (4)

Analyticity of traveltime and offset

From basic results of the theory of complex variables, we see that the functionq = q(p) possesses only
branch-point singularities located at the zeros of the inner square root functiong(p) =

√
1 + bp2 + cp4

and the zeros of the functionq(p) itself. Moreover, sinceg(0) andq(0) are (real) non-zero numbers (in
fact, g(0) = 1 andq(0) = 1/α0 or q(0) = 1/β0, depending on the sign choice∓, respectively) we find
thatq(p) is a well defined and analytic function within the disc|p| < pr, wherepr is the smallest of the
distances of its singularities with respect to the originp = 0. Settingpm to be the least of all single-layer
radii pr = p

(k)
r , we find thatt(p) andx(p) are analytic at least within the disc|p| < pm.

Analytic inverse of offset

We next investigate the existence of an analytic inverse ofx(p), defined within a sufficiently small disc
centered at the origin of the complexx-plane. From the theory of complex variables (see, e.g., Churchill,
1960 ), the existence of such inverse function is guaranteed wheneverx(p) has a non-vanishing derivative
atp = 0.

From equation (8) it is seen directly that

x′(0) = t(0)v2
NMO . (5)

Thus, the analytic inverse ofx(p), in a small disc centered at the origin, exists wheneverv2
NMO 6= 0. This

is always the case for SH- and qP-waves.
For a single layer, the power series exists when

d(∆x)
dp

= v0 ∆z a0 =

 α0∆z(1 + 2δ) (qP− wave),
β0∆z(1 + 2σ) (qVS− wave),
α0∆z(1 + 2γ) (SH− wave).

(6)

is different from zero. The expression becomes zero for a qSV-wave whenσ = −0.5. This is the condition
for “incipient triplication”, as discussed in Dellinger (1991) and Thomsen and Dellinger (2003). Forσ >
−0.5 there is no triplication of the qSV-wave, and forσ < −0.5 it exists.

APPENDIX B

LAYERED ISOTROPIC MEDIUM

When the layers are isotropic, the previous derivations simplify considerably Goldin (1986); Tygel (1994).
In that case the slowness function is again defined by

qk =
√

1/v2
k − p2, (1)

but now the velocityvk is constant. Thenq′k = −p/qk and

t(p) =
∑
k

∆zk
v2
kqk

and x(p) = p
∑
k

∆zk
qk

. (2)

The functionqk(p) is analytic when|p| < 1/vk, so thatt(p) andx(p) are analytic in the disc

|p| < 1/vmax, (3)

wherevmax is the maximum velocity encountered along the ray. As before,x(p) has an analytic inverse in
the vicinity of the origin,x(0) = 0, when

t(0)v2
NMO =

∑
k

vk∆zk 6= 0, (4)
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which is trivially the case. This concludes the proof of existence of a power series,T (x), with a certain
radius of convergence,rc, aroundx = 0. Goldin (1986) has obtained an upper bound, and Tygel (1994)
has obtained a lower bound for this radius. Their results can be combined in the form∑

k

∆zk√
1 + (vmax/vk)2

≤ rc ≤
∑
k

∆zk . (5)

For a reflected ray from a single interface,

T (x) =
2∆z
v

√
1 +

( x

2∆z

)2

, (6)

wherev and∆z are the velocity and thickness of the single layer. The square root can be expanded in a
convergent power series when|x| < 2∆z, which corresponds exactly to the upper bound in equation (5).
The expression forT (x)2 is exact in this case.


