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ABSTRACT

The image-wave equations for the problems of depth and time remigration in elliptically anisotropic
media are second-order partial differential equations similar to the acoustic wave equation. The prop-
agation variable is the vertical velocity or the medium ellipticity rather than time. In this work, we
derive these differential equations from the kinematic properties of anisotropic remigration. The ob-
jective is to enable the construction of subsurface images that correspond to different vertical velocity
and/or different degrees of medium anisotropy. In this way, “anisotropy panels” can be obtained in a
completely analogous way to velocity panels for a migration velocity analysis.

INTRODUCTION

Depending on the velocity model used, seismic migration positions the images of seismic reflectors at
different locations in time or depth. To transform these migrated reflector images from one into another in
a direct way, i.e., without going back to the original seismic data section, is a seismic imaging task that can
be achieved by a process called remigration, also known as residual or cascaded migration (Rothman et al.,
1985; Larner and Beasley, 1987) or velocity continuation (Fomel, 1994). In this way, improved seismic
reflector images for an improved migration velocity can be obtained by applying a modified migration
operator to the already migrated rather then unmigrated section.

Residual migration is based on the fact that a migrated image obtained from migrating a second time
(with the migration velocityv2) a seismic section that has already been migrated (with the migration ve-
locity v1) is identical to the one that would have been obtained from migrating the original time section
once, with the effective migration velocityveff =

√
v2
1 + v2

2 (Rocca and Salvador, 1982). Given the first
(wrong) migration velocityv1 and the desired effective (true) migration velocityveff , a residual migra-

tion is nothing more than a conventional migration with the residual migration velocityv2 =
√
v2
eff − v2

1

(Rothman et al., 1985). Cascaded migration involves an iterative procedure (Larner and Beasley, 1987).
By performingn times a migration with a small velocity increment∆v, the desired effective migration
velocityveff =

√
n∆v2 is finally reached.

Is is not difficult to accept that by choosing a large numbern of steps and a very small velocity increment
∆v, a cascaded migration simulates a quasi-continuous change of the migration velocity. In this situation,
the sequence of images of a certain reflector as subsequently migrated with varying migration velocities
creates an impression of a propagating wavefront. This “propagating image” was termed an “image wave”
by Hubral et al. (1996). The propagation variable, however, is not time as is the case for conventional
physical waves, but the migration velocity.

Of course, conventional physical waves and image waves show a different kinematic behaviour. For ex-
ample, a slanted plane wave in a homogeneous medium preserves its angle to the vertical axis when propa-
gating. On the contrary, the image of a dipping reflector changes its dip angle when migrated with different
velocities. For this reason, image-wave propagation cannot be described by a conventional (acoustic or
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elastic) wave equation. Nontheless, there are partial differential equations that describe the propagation of
image waves. In the terminology of Hubral et al. (1996), these are called “image-wave equations”.

Inverting the standard ray-theory procedure, such image-wave equations can be derived from the kine-
matic behaviour of image waves. For homogeneous, isotropic media, image-wave propagation as a func-
tion of the (constant) migration velocity has been studied in time (Fomel, 1994; Hubral et al., 1996; Mann,
1998; Fomel, 2003a,b) and in depth (Hubral et al., 1996; Mann, 1998; Schleicher et al., 2004). By treating
them in a similar way as conventional acoustic waves, the above authors derived image-wave equations for
both, time and depth remigration. Both image wave equations for time and depth remigration are equations
similar to the acoustic wave equation (Fomel, 1994; Hubral et al., 1996; Mann, 1998). An independent
earlier derivation of the time remigration image-wave equation by Claerbout (1986) has later also been
made available to the public.

A first extension of the theory to elliptically anisotropic media was presented by (Aleixo and Schle-
icher, 2004), who presented the image-wave equation for depth remigration as a function on the medium
ellipticity. Here we complement their results with the one for a variation of the vertical (i.e., isotropical
background) velocity and the corresponding equations for time remigration. We demonstrate the validity
of the theory with a simple numerical example.

DERIVATION OF THE IMAGE-WAVE EQUATIONS

In this section, we describe the variation of the position of a reflector image when the parameters of the
elliptically anisotropic medium change. This variation will become the kinematics of the image-wave
propagation of the image waves.

Since imaging is a linear operation, we can restrict our study to the behaviour of a single point on the
image of a seismic reflector when the medium parameters vary. This situation can be understood in analogy
to the propagation of a Huygens wave emanating from a secondary source. The kinematics of the Huygens
wave describes the behaviour of a single point on the wave front when time varies. In the same way, the
kinematics of the analogous “Huygens image wave” will describe the behaviour of a single point on the
reflector image when the velocity model changes.

The procedure follows the lines applied by Hubral et al. (1996) to derive the time and depth image-
wave equations in isotropic media. It starts by the construction of the Huygens image wave, that is, the
set of points that describes the possible location of the original point on the reflector after a variation of
the propagation variable. In a second step, the coordinates of the original image point are replace by
derivatives, in this way constructing an image eikonal equation the solution of which is the Huygens image
wave. In a last step, the most simple of all second-order partial differential equations that generate this
image eikonal equation is identified as the searched-for image-wave equation.

Elliptically anisotropic medium

An elliptically anisotropic medium is characterized by possessing a vertical symmetry. Its density-normalized
elastic tensor, i.e.,Aik = Cik/ρ, withCik being the elements of the elastic tensor organized in matrix form,
can be written as a6× 6-matrix of the form (Vanelle, 2002)

A =


A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A44 0
0 0 0 0 0 A66

 , (1)

with the additional restrictions that

A12 = A11 − 2A66,

(A13 +A44)2 = (A11 −A44)(A33 −A44). (2)

In this way, an elliptically anisotropic medium is described by four independent elastic parameters.
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Propagation velocity. For seismic imaging purposes, the most important medium parameter is the ve-
locity of seismic wave propagation. Here, we need expressions for this parameter in elliptically anisotropic
media. For more information on elliptically anisotropic media, the reader is referred to Helbig (1983) or
Vanelle (2002).

In a homogeneous elliptically anisotropic medium, the propagation of a quasi-P wave takes place in
a plane (Helbig, 1983). For simplicity, we assume this plane to be the(x, z)-plane. Therefore, we can
treat the problem as a two-dimensional one. All formulas below can readily be extended to 3D by adding
correspondingy components. The group velocity vector of the quasi-P wave,~v, depends only on two of
the components of the elasticity tensor. Within the(x, z)-plane, it can be written as

~v =
(
A11

V
sinφ, 0,

A33

V
cosφ

)
, (3)

whereA11 andA33 are components of the elastic tensor andφ is the angle between the normal to the
wavefront and the verticalz-axis. Moreover, quantity

V =
√
A11 sin2 φ+A33 cos2 φ (4)

denotes the phase velocity of the quasi-P wave.
From equations (3) and (4), we conclude that the modulus of the group velocity can be represented as

|~v| = v(φ) =

√
A2

11 sin2 φ+A2
33 cos2 φ

V
(5)

However, in anisotropic media, the wavefront normal does not generally point into the propagation
direction of the wave. For our purposes, we need the propagation velocity as a function of the propagation
direction. Therefore, we need to introduce the propagation angleθ, i.e., the angle between the group
velocity vector~v (which points into the propagation direction) and the verticalz-axis. The relationship
betweenφ andθ is given by (Vanelle, 2002)

tan θ =
A11

A33
tanφ. (6)

Introducing this relationship in equation (5), we find that the modulus of the group velocity depends on
the propagation direction according to

v(θ) =
[
sin2 θ

A11
+

cos2 θ
A33

]−1/2

. (7)

As a consequence of the medium anisotropy, the propagation velocities of the quasi-P wave depend on
the propagation direction. In particular, there are different wave velocities in the vertical and horizontal
directions. From equation (7), we recognize that the vertical (θ = 0) and horizontal (θ = π/2) velocities
are given by

v =
√
A33 and u =

√
A11, (8)

respectively.
At this point, it turns out to be convenient to introduce a new parameter called “medium ellipticity”,

defined as

ϕ =
A33

A11
=
v2

u2
. (9)

Upon the introduction of the medium ellipticityϕ as well as the vertical velocityv in equation (7), the
angle-dependent wave velocity in an elliptically anisotropic media can be recast into the form

v(θ) = v
[
ϕ sin2 θ + cos2 θ

]−1/2
. (10)
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Figure 1: Geometry of the zero-offset ray connecting a source atS = (ξ, 0) to a pointP = (x, z) on the
seismic reflector image.

Zero-offset configuration

We assume that the migrated section to be remigrated was obtained from zero-offset (or stacked) data
under application of a zero-offset migration. The coincident source-receiver pairs where localized at a
planar horizontal surface (z = 0) at pointsS = (ξ, 0) (Figure 1).

We denote byx andz the coordinates of a certain pointP within the medium under consideration.
Moreover, we denote bỳ its distance from a sourceS, such that̀ 2 = (x − ξ)2 + z2. The propagation
angle of a wave that propagates fromS = (ξ, 0) to P = (x, z) thus satisfies

cos θ =
z

`
and sin θ =

x− ξ

`
. (11)

For the geometry, see again Figure 1.
Using equations (8) and (11) in expression (10), we find the following alternative representation for the

modulus of the group velocity vector in explicit dependence of the coordinates of pointP rather than the
propagation angleθ,

v(x, z) = `v
[
ϕ(x− ξ)2 + z2

]−1/2
. (12)

Traveltime. With these results on the propagation velocity, we are now ready to describe the traveltime
T of a wave that was emitted and registered atS and reflected atP . From formula (12) for the propagation
velocity as a function of the coordinates ofP , we obtain for the desired traveltime

T (ξ;x, z) =
2`

v(x, z)
=

2
v

[
ϕ(x− ξ)2 + z2

]1/2
. (13)

The factor 2 is due to the fact that in equation (10), we havev(θ) = v(θ+π). Therefore, the traveltime for
the wave to arrive at the depth pointP is the same as the time it takes from there back to the receiver atS.

Remigration

Seismic remigration tries to establish a relationship between to media of wave propagation in such a way
that identical seismic surveys on their respective surfaces would yield the same seismic data. One of
these media is the wrong velocity model used for the original migration. The other medium represents the
updated model within which a new image of the subsurface needs to be constructed.

Variation of vertical velocity
Let us suppose that the original migration has been realized with a modelM0 with same ellipticityϕ as
used in the updated modelM , but a different vertical velocityv0. In this old model, the same diffraction
traveltimeT of equation (13) is consumed by a different wave, reflected at a different pointP0 = (x0, z0).
It is therefore given by the modified equation

T (ξ;x, z) =
2`0

v(x0, z0)
=

2
v0

[
ϕ(x− ξ)2 + z2

]1/2
. (14)
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Huygens image wave. To derive the desired image-wave equation, we follow the lines of Hubral et al.
(1996). Firstly, we need to find the set of all pointsP = (x, z) in mediumM for which the diffraction
traveltime of equation (13) is equal to the corresponding diffraction traveltime of pointP0 = (x0, z0) in
mediumM0. In other words, we are interested in localizing the so-called Huygens wave for this kind of
image-wave propagation. This Huygens image wave then describes the positionz(x) of the image at the
“instant” v that “originated” at the “instant”v0 at pointP0. For this purpose, we equal the timesT of P
andP0, resulting in

F (x, z, ξ, v) =
ϕ

v2
(x− ξ)2 + z2 − ϕ

v2
0

(x0 − ξ)2 − z2
0 = 0. (15)

This equation represents a family of curvesz(x; ξ) that, for a fixedξ, connect all pointsP in modelM that
possess the same diffraction traveltimeT (ξ;x, z) asP0 in modelM0 for the sameξ.

The set of pointsP such thatT (ξ;x, z) is equal toT (ξ;x0, z0) for all values ofx andz is given by
the envelope of this family of curves described byF (x, z, ξ, v). This envelope is the mentioned Huygens
image wave that represents the image in modelM of pointP0 in modelM0. Application of the envelope
condition

∂F

∂ξ
= 0, (16)

to equation (15) yields the condition for the stationary value

2
ϕ

v2
(ξ − x) + 2

ϕ

v2
0

(ξ − x0) = 0, (17)

which can be solved to yield

ξ =
v2x0 − v2

0x

v2 − v2
0

. (18)

It is interesting to observe that the stationary pointξ does not depend on the medium ellipticityϕ. Equation
(18), when substituted back in equation (15), leads to

z =
v

v0

√
z2
0 − ϕv2

0

(x− x0)2

v2 − v2
0

, (19)

where the negative square root has been discarded as unphysical.
Equation (19) describes the position of the Huygens image wave for depth remigration that was excited

with the initial conditions(x0, z0; v0). For an isotropic medium, whereϕ = 1, the above expression
reduces to the one derived by Fomel (1994) or Hubral et al. (1996).

The corresponding position of the Huygens image wave for time remigration can be obtained from
equation (19) by converting depth to vertical time according toz = vτ/2 andz0 = v0τ0/2. The time
domain version of equation (19) reads then

τ =

√
τ2
0 − 4ϕ

(x− x0)2

v2 − v2
0

. (20)

Again, forϕ = 1, the above expression reduces to the known one for an isotropic medium.

Eikonal equation. The Huygens image wave of equation (19) describes the variation of a single pointP0

on a reflector image under variation of the vertical velocityv, starting at an initial velocityv0. To transform
this expression into one that describes the variation of any arbitrarily shaped reflector image for arbitrary
velocity variations, we need to eliminate these initial conditions from equation (19). In other words, we
need to replace the constantsx0, z0, andv0 in equation (19) by derivatives, so as to describe image-wave
propagation for any set of initial conditions.

For this purpose, we introduce the image-wave eikonalv = V(x, z). An explicit expression forV(x, z)
can be found by solving equation (19) forv. The image-wave eikonal equation is then found by replacing
v by V(x, z) in equation (19), taking the derivatives with respect tox andz of the resulting expression,
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and using them to eliminate the constantsx0, z0, andv0 from equation (19). Since this procedure has
beed detailed in Hubral et al. (1996) and Aleixo and Schleicher (2004), here we just state the result for the
present case. The searched-for differential equation forV is

V2
x + ϕV2

z −
ϕV
z
Vz = 0, (21)

whereVx andVz stand for the partial derivatives ofV with respect tox andz, respectively. Its solution
for initial conditions(x0, z0; v0) is equation (19) solved forv. This differential equation (21) is the image-
wave eikonal equation for depth remigration in elliptically anisotropic media under variation of the vertical
velocity. In other words, it describes the kinematics of image-wave propagation for any arbitrary set of
initial conditions as a function of the vertical velocity.

The corresponding procedure applied to equation (20) yields the image-wave eikonal equation for time
remigration,

V2
x −

4ϕ
τV
Vτ = 0, (22)

where nowV = V(x, τ). Both of the above equations (21) and (22) reduce to their isotropic counterparts
when substitutingϕ = 1.

Image-wave equation. Now we want to find a partial differential equation such that equation (21) is
its associated eikonal equation. In other words, upon substitution of the ray-theory ansatzp(x, z, v) =
p0(x, z)f [v−V(x, z)] into our desired differential equation, the leading-order terms need to provide equa-
tion (21). From the leading-order terms of the second derivatives of this expression, we recognize that the
second-order partial differential equation

pxx + ϕpzz +
ϕv

z
pvz = 0 (23)

is the simplest one to fulfill this condition. Any additional terms involving arbitrary combinations ofp and
its first derivatives with respect tox, z, or v, do not alter the associated eikonal equation. Therefore, we
refer to equation (23) as the image-wave equation for depth remigration in elliptically anisotropic media
under variation of the vertical velocity.

Correspondingly, equation (22) leads to an image-wave equation for time remigration,

pxx +
4ϕ
vτ
pvτ = 0. (24)

Again, both of the above equations (23) and (24) reduce to their isotropic counterparts when substituting
ϕ = 1.

It is to be observed that a change of variablesω = v/
√
ϕ transforms equation (24) into

pxx +
4
ωτ

pωτ = 0, (25)

which is the corresponding equation in isotropic media (Fomel, 1994; Hubral et al., 1996). Thus, time
remigration under variation of the vertical velocity in elliptically anisotropic media can be realized by the
same computational program as in isotropic media upon reinterpretation of the velocity variable.

Variation of medium ellipticity
In elliptically anisotropic media, a remigration can be realized upon the variation of a second parameter,
the medium ellipticity. The corresponding image-wave equation for depth remigration has been derived in
Aleixo and Schleicher (2004). We include its derivation here for completeness and add the one for time
remigration.

We now suppose that the original migration has been realized with a modelM0 with same vertical
velocity v as used in the updated modelM , but a different ellipticityϕ0. As before, the same diffraction
traveltimeT of equation (13) corresponds to aP0 = (x0, z0) in the old model and a set of pointsP = (x, z)
in the new model. Therefore, the modified traveltime reads

T (ξ;x0, z0) =
2`0

v(x0, z0)
=

2
v

[
ϕ0(x0 − ξ)2 + z2

0

]1/2
. (26)



82 Annual WIT report 2005

Huygens image wave. Again, to derive the desired image-wave equations, we need to find the Huygens
image wave for this problem, i.e., the set of all pointsP = (x, z) in mediumM for which the diffraction
traveltime of equation (13) is equal to the diffraction traveltime (26) of pointP0 = (x0, z0) in mediumM0.
This Huygens image wave then describes the positionz(x) of the image at the “instant”ϕ that “originated”
at the “instant”ϕ0 at pointP0. Equal the timesT of equations (13) and (26), we find

F (x, z, ξ, ϕ) = ϕ(x− ξ)2 + z2 − ϕ0(x0 − ξ)2 − z2
0 = 0. (27)

This equation represents a family of curvesz(x; ξ) that, for a fixedξ, connect all pointsP in modelM that
possess the same diffraction traveltimeT (ξ;x, z) asP0 in modelM0 for the sameξ.

The set of pointsP such thatT (ξ;x, z) is equal toT (ξ;x0, z0) for all values ofx andz is given by
the envelope of this family of curves described byF (x, z, ξ, ϕ). This envelope is the mentioned Huygens
image wave that represents the image in modelM of pointP0 in modelM0. Application of the envelope
condition (16) to equation (27) yields the stationary point

ξ =
ϕx− ϕ0x0

(ϕ− ϕ0)
, (28)

which, upon substitution in equation (27), leads to

z =

√
z2
0 + ϕϕ0

(x− x0)2

ϕ− ϕ0
. (29)

Equation (29) describes the position of the Huygens image wave that was excited with the initial conditions
(x0, z0;ϕ0).

As for the velocity variation, the substitutionz = vτ/2 andz0 = vτ0/2 transfers the Huygens image
wave to the time-migrated domain, resulting in

τ =

√
τ2
0 +

4ϕϕ0

v2

(x− x0)2

ϕ− ϕ0
. (30)

Eikonal equation. The Huygens image wave of equation (29) describes the variation of a single point
P0 on a reflector image under variation of the medium ellipticityϕ, starting at an initial ellipticityϕ0. To
transform this expression into one that describes the variation of any arbitrarily shaped reflector image for
arbitrary ellipticity variations, we need to eliminate these initial conditions from equation (29). In other
words, need to replace the constantsx0, z0, andϕ0 in equation (29) by derivatives, so as to describe
image-wave propagation for any set of initial conditions.

For this purpose, we introduce the image-wave eikonalϕ = Φ(x, z). An explicit expression forΦ(x, z)
can be found by solving equation (29) forϕ. By replacingϕ by Φ(x, z) in equation (29) and taking the
derivatives with respect tox andz of the resulting expression, we find a differential equation forΦ, the
solution of which for initial conditions(x0, z0;ϕ0) is equation (29) solved forϕ. This differential equation
is the image-wave eikonal equation,

Φ2
x −

2Φ2

z
Φz = 0, (31)

which describes the kinematics of the propagation of a reflector image as a function of the medium ellip-
ticity for any arbitrary set of initial conditions, not only of that of a single initial point(x0, z0).

The same procedure applied to equation (30) yields the corresponding image-wave eikonal equation for
time remigration,

Φ2
x +

8Φ2

τv2
Φτ = 0, (32)

where nowΦ = Φ(x, τ).
Image-wave equation. Again, the last step is to find a partial differential equation such that equa-

tion (31) is its associated eikonal equation. In other words, upon substitution of the ray-theory ansatz
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p(x, z, ϕ) = p0(x, z)f [ϕ − Φ(x, z)] into our desired differential equation, the leading-order terms need
to provide equation (31). From the leading-order terms of the second derivatives of this expression, we
recognize that the second-order partial differential equation

pxx +
2ϕ2

z
pzϕ = 0 (33)

is the simplest one to fulfill this condition. Therefore, we refer to equation (33) as the image-wave equation
for depth remigration in elliptically anisotropic media under variation of the ellipticity.

It is important to observe that the image-wave equation (33) can be transformed into a partial differential
equation with constant coefficients. Upon the introduction of the new variablesγ = 1/ϕ, andζ = z2/4,
the mixed derivative becomes

pzϕ = pζγ ζz γϕ = pζγ
z

2
−1
ϕ2

. = − z

2ϕ2
pζγ . (34)

Under this variable transformation, the image-wave equation (33) thus takes the form

pxx − pγζ = 0 . (35)

The transformation into equation (35) is meaningful from an implementational point of view, since for dif-
ferential equations with constant coefficients, it is generally much easier to find stable FD implementations.

As a final word on the image-wave equation (33) or its constant-coefficient version (35), let us mention
that both equations do not depend on the vertical velocityv but only on the medium ellipticityϕ. Thus,
it can be expected that depth image-wave remigration in elliptically anisotropic media should be relatively
insensitive to the actual value of the vertical velocity. This, in turn, points towards a potentially broad
applicability of the image-wave concept for elliptically anisotropic remigration even in inhomogeneous
media.

Correspondingly, equation (32) leads to an image-wave equation for time remigration,

pxx −
8ϕ2

τv2
pϕτ = 0. (36)

It is to be observed that the same change of variables as before,ω = v/
√
ϕ, now with varyingϕ, also

transforms this equation into the corresponding equation (25) for isotropic media. In other words, also time
remigration under variation of the medium ellipticity can be realized by the same computational program
as in isotropic media.

In fact, a careful analysis of time remigration under a simultaneous variation of both, vertical velocityv
and medium ellipticityϕ shows that even in this situation, the final image-wave equation can be transformed
into equation (25) that depends on the above combined parameterω only. By substitution of the definition
of the medium ellipticityϕ into the above expression for the transformed variableω, we observe that

ω =
v
√
ϕ

=
v√
v2/u2

= u (37)

is nothing else than the horizontal velocity. In other words, time remigration in elliptically anisotropic
media is independent of the vertical velocity and depends only on the variation of the horizontal velocity.

NUMERICAL EXAMPLE

To validate the above theoretical results, we present a numerical example for time remigration in elliptically
anisotropic media using the image-wave equation (25). The model, depicted in Figure 2, is a simple
synclinal structure with a homogeneous, elliptically anisotropic overburden. Synthetic zero-offset data
where modeled using an elliptically anisotropic finite-differences code and an exploding-reflector model.
767 source-receiver pairs were positioned at every 12 m betweenx = 0 km andx = 9.192 km, at a depth
of 250 m. The synthetic data are depicted in Figure 3. The reflector shadow is due to incomplete damping
of the surface reflection by the absorbing boundary conditions.

These data are the input for the implementation of Novais et al. (2005) of an implicit finite-difference
scheme for image-wave remigration. A few snapshots of the resulting image-wave propagation for different
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Figure 2: Model for the numerical example. The overburden of the synclinal reflector is homogeneous,
elliptically anisotropic with a horizontal velocity of 4.5 km/s and vertical velocity of 3.0 km/s. Also shown
is the ray field for the used configuration.
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Figure 3: Synthetic zero-offset for the model of Figure 2.
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Figure 4: Snapshots of image-wave propagation at (a)ω = 4.2 km/s, (b)ω = 4.3 km/s, (c)ω = 4.4 km/s,
(d) ω = 4.5 km/s, (e)ω = 4.6 km/s, (f)ω = 4.7 km/s.



86 Annual WIT report 2005

values of the propagation variableω are shown in Figure 4. As predicted by equation (37), the synclinal
structure assumes its correct shape at where the value ofω is equal to the horizontal velocity of the model.

Moreover, it is interesting to observe that from the unfolding of the bow-tie structure, together with
the distribution of the amplitude along the reflector image and the focussing of energy at the flanks of
the trough, it is even possible to establish bounds for an estimate of the horizontal velocity. Clearly, in
Figure 4a, the bowtie structure of Figure 3 is not fully resolved, while in Figure 4f, the trough is already
overmigrated. So, even if the velocity were unknown, it would be possible to determine that it must be
between 4.2 km/s and 4.7 km/s.

CONCLUSIONS

As discussed by Fomel (1994) and Hubral et al. (1996), the changing position of a seismic reflector image
under variation of the migration velocity model can be understood in an analogous way to the propagation
of a physical wave.

In this work, we have derived a set of second-order partial differential equations that work as image-
wave equations for remigration in elliptically anisotropic media. They describe the propagation of a reflec-
tor image in time and depth remigration as a function of the vertical velocity and the medium ellipticity.
To this end, we have studied the kinematics of the image wave in such media to derive the correspond-
ing eikonal equations. From an inverted ray procedure, we have then inferred the desired image-wave
equations, the solutions of which exhibit this correct kinematic behaviour.

The description of the position of the reflector image as a function of the medium ellipticity can be
very useful for the detection of this parameter. A set of migrated images for different medium ellipticities
can be obtained from a single migrated image without the need for multiple anisotropic migrations. From
additional information on the correct reflector position, focusing analysis, or the like, the best fitting value
of the medium ellipticity can then be determined.

The probably most interesting application of this procedure would start with an initial condition of
an isotropic medium, described by unit ellipticity, i.e.,ϕ0 = 1. Since isotropic migration is a very well
understood field, the image-wave equation could then be used to transform an isotropically migrated image,
which can be obtained with one of the highly sophisticated migration methods that are nowadays available,
into an image that corresponds to an elliptically anisotropic medium.

In the case of time remigration, the image-wave equation shows that the position of the reflector image
in elliptically anisotropic media depends on the horizontal velocity only. This theoretical prediction, which
is in agreement with the findings of Alkhalifah and Tsvankin (1995), was confirmed with a simple numer-
ical example. This implies that a migration velocity analysis based on time migration can only detect this
parameter. In particular, this means that there is no way to distinguish an elliptically anisotropic medium
from an isotropic one on the basis of time migration only.
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