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ABSTRACT

Amplitude versus offset (AVO) or amplitude versus angle (AVA) curves are nowadays regularly ex-
tracted from seismic data for various purposes of reservoir studies and characterization. Besides the
information that can be obtained merely from their shape, AVO/AVA curves can also be used to invert
more quantitative attributes, such as the intercept and the gradient of the reflection coefficient or, even
better, the elastic-parameter contrasts. For a common-midpoint gather, the AVA curve is generally de-
rived from its AVO counterpart by means of a well-known expression that relates the reflection angle
to offset. The recently introduced reflection impedance concept provides an attractive approximation
of the elastic PP-reflection coefficient as a function of the ray parameter. In this sense, that approxi-
mation can be of value when amplitude versus ray parameter (AVP) curves are available from seismic
data. In this paper, we propose an algorithm to invert elastic-parameter contrasts from AVP curves
using the reflection impedance approximation of the PP-reflection coefficient. First results shown on
synthetic data indicate that the procedure may offer a promising alternative to existing methods of
inverting reservoir attributes from AVO/AVA curves.

INTRODUCTION

The common midpoint (CMP) method, originally called the common depth point (CDP) method (see,
e.g., Dix (1955)) is a classical procedure to produce both a simulated zero-offset (stacked) section and a
corresponding time-domain velocity model defined throughout that section.

The procedure optimally stacks sorted out in CMP gathers, namely source-receiver pairs that are sym-
metrically located around a fixed point, the CMP. In the 2D situation of a single (horizontal) seismic line
and within a given CMP gather, the stacking is carried out along the traveltime function

T (h) =
√
T 2

0 + C h2 , (1)

calledNormal Moveout (NMO). In the above equation,T (h) is the traveltime from the source to the re-
flector and back to the receiver,h being the source-receiver half offset. At selected zero-offset (ZO) time
samples,T0, the parameterC is determined as the one that maximizes the coherency (semblance) of the
data along the traveltime (1). In this situation,T0 is interpreted as the CMP ZO traveltime at the CMP and

C =
4

V 2
NMO

, (2)

whereVNMO is the NMO-velocity. The procedure, referred to as velocity analysis in the seismic literature,
is carried out for all CMP locations and well-selected ZO time samples. After interpolation, an NMO-
velocity field is determined at all CMP and ZO time samples. Finally, the ZO (stacked) output at each
CMP and ZO time sample,(Xm, T0), is obtained by stacking the CMP gather defined byXm along the
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NMO curve (1) using the given ZO time sampleT0 and theC parameter defined by the NMO velocity
vNMO = vNMO(Xm, T0).

Under the usual assumption of a horizontally stratified (or small-dip) media, the ray parameter for the
reflection ray in the CMP gather can be approximated by (see, e.g., Castagna and Backus (1993)),

p =
1
2
d

dh
T (h) =

C

2
√
C + T 2

0 /h
2
. (3)

From the well-known relationship

p =
sin θ
v

, (4)

whereθ is the incident angle at the reflector andv is the interval velocity, the corresponding expression for
the angle is

sin θ =
Cv

2
√
C + T 2

0 /h
2
. (5)

Note that, in the present situation of P-P reflections, the incident angle,θ, at the reflector coincides with
the corresponding reflection angle.

We recall that interval-velocity field,v, (in depth) has to be inverted from its corresponding NMO
velocity field,vNMO, by the well-known Dix algorithm (see, e.g., Hubral and Krey (1980)). In this way,
ray parameters, as directly extracted from the seismic data, tend to be more reliable that their counterpart
incident angles, that need an additional inversion to be obtained.

The following step is to perform an inversion based on the amplitudes versus ray parameter (AVP) of
the CMP rays. Figure 1 ilustrates the described process for a synthetic model.
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Figure 1: Example of an AVP analysis: (a) Synthetic model with CMP rays; (b) CMP section with fitted
hyperbola; (c) Exact and extracted ray parameter; (d) Amplitude variation with ray parameter.
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VELOCITY ANALYSIS BY THE CRS METHOD

The common reflection surface (CRS) method, introduced by Peter Hubral and co-workers (see, e.g.,
Hubral et al. (1998)) represents a natural extension of the CMP method in two important aspects. Firstly,
for each stacking trace location (now called simply a central point), the CRS considers a supergather of
source-receiver pairs, arbitrarily located with respect to the central point. In other words, the gather is not
restricted to the CMP condition. Secondly, not only the NMO velocity, but also other additional parameters
are extracted from the data. In the present 2D situation, three parameters are determined for each central
point and all ZO traveltime samplea. The procedure is performed automatically, with noa priori selection
of traveltime samples.

To be able to stack source-receiver pairs that do not conform to the CMP condition, the CRS method
utilizes the (generalized) hyperbolic moveout

T (x, h) =
√

(T0 +A x)2 +B x2 + C h2 , (6)

wherex andh denote the midpoint (relative to the central point) and half-offset coordinates of the source
and receiver pair, andT0 is the ZO traveltime at the central point. As shown in Hubral et al. (1998), the
parametersA,B andC are related to physical quantities referred to as the CRS parameters or attributes,

A =
2 sinφ
v0

, B =
2T0 cos2 φ

v0
KN , C =

2T0 cos2 φ
v0

KNIP , (7)

whereφ is the emergence angle of the ZO ray with respect to the surface normal, andKN andKNIP

are the curvatures of the N- and NIP-waves, respectively (see Hubral (1983)). All these quantities are
evaluated at the central point. Finally,v0 denotes the medium velocity, also at the central point. Observe
that formula (6) reduces to the normal-moveout (1) in the case of a CMP gather, i.e.,x = 0. Moreover, the
relation betweenVNMO and the CRS parameters is clear,

V 2
NMO =

4
C

=
2 v0

T0 cos2 φ KNIP
. (8)

As described in Hubral (1983), the NIP-wave is a fictitious wave that starts at the reflection point of the ZO
ray. This point is called normal-incident-point or NIP and progresses upwards with half the velocity of the
medium. The N-wave is also a fictitious wave that starts as a wavefront that coincides with the reflector
in the vicinity of the NIP. It is instructive to emphasize that the NIP-wave concept (with no special name),
as well as the relation (8) between its curvature and the NMO velocity has been previously described in
Chernyak and Gritsenko (1979).

The CRS method can be also used to perform an amplitude versus ray-parameter analysis, in the same
way as it is done in the CMP method. The advantage of the CRS strategy is that the semblance analysis is
applied for a grid of possible values for the central point and ZO traveltimes, using all gathers and not only
the CMP ones. It is expected that the greater redundancy used by the CRS method, together with some
average and smoothing procedures, should provide a more reliable NMO velocity field. A confirmation of
this has been recently reported in Perroud and Tygel (2005).

The CRS method provides, as part of its output, a coherence section, in which the semblance value
is assigned to each point at the stacked section. By examining the coherence section, it is possible to
select regions with high values of the semblance function and then focus the attention at these regions. In
Figure 2, we show the semblance panel obtained from the CRS method applied to the same synthetic model
in Figure 1(a), together with the respectiveC-parameter panel.

REFLECTION IMPEDANCE

As introduced in Connolly (1999) and discussed in Santos and Tygel (2004), it is possible to define an
impedance function (I), for which the P-P reflection coefficient can be approximated in the appealing form

RPP =
I(ρ2, α2, β2, p)− I(ρ1, α1, β1, p)
I(ρ2, α2, β2, p) + I(ρ1, α1, β1, p)

. (9)
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Figure 2: (a) Semblance panel obtained from the CRS method applied to the same synthetic model in
Figure 1(a); (b)C-parameter panel.

In the above expression,ρj , αj , βj denote the density and P- and S-wave velocities at the incident side
(j = 1) and at the opposite side(j = 2) of the reflecting interface, respectively. Moreover,p is the ray
parameter given byp = sin θ/α1 andθ is the incidence angle.

In its general form, equation (9), does not allow for a closed-form impedance functionI that adequately
approximates the P-P reflection coefficient for arbitrary elastic parametersρ, α, and all ray parametersp.
Therefore, some additional constraints are required. Santos and Tygel (2004) consider a Gardner’s type
relationship betweenρ andβ,

ρ = b βγ , (10)

whereb andγ are constants. Such constraint leads to the reflection impedance function

I =
ρ α√

1− α2p2
exp{−2[2 + γ]β2p2} . (11)

Replacing the condition (10) by
K = β2/α2, (12)

whereK is a constant, the elastic impedance function,

I = ρ1− 4K sin2 θ αsec2 θ β−8K sin2 θ . (13)

earlier introduced in Connolly (1999) and formulated using the incident angle,θ, instead of ray parameter
p is obtained.

In practical situations, both the reflection impedance constants,b andγ, as well as the elastic impedance
constant,K are to be estimated using well-log information in the area.

In Figure 3 we compare the approximation formula (9), using (11) and (13), and the linear approxima-
tion of Aki and Richards (1980), for a representative elastic model. Observe the accuracy of the reflection
impedance function, even for angles within the critical range.

AVP INVERSION

The previous two sections have shown that (a) ray parameters can be well recovered from the seismic data
and (b) the P-P reflection coefficient can be reliably approximated in terms of reflection impedances. From
the above considerations, we now address the main topic of this paper, namely the inversion of AVP curves.
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Figure 3: Approximations forRPP : Exact (—), Linear (∆), Elastic Impedance (�), and Reflection
Impedance (◦).

Before starting the description of the inversion procedure, it is convenient to recast the reflection coef-
ficient expression (9) in a form more suitable for the algorithm. From equations (9) and (11) we write

RPP (p) =
J(p)− 1
J(p) + 1

, (14)

where

J(p) =
I(ρ2, α2, β2, p)
I(ρ1, α1, β1, p)

=
ρ2 α2

ρ1 α1

√
1− α2

1 p
2

1− α2
2 p

2
exp{−2[2 + γ](β2

2 − β2
1)} . (15)

For the inversion, we now write

J(p) = Λ3

√
1− Λ2

1 p
2

1− Λ2
2 p

2
exp{Λ4 p

2} , (16)

where

Λ1 = α1, Λ2 = α2, Λ3 =
ρ2 α2

ρ1 α1
, andΛ4 = −2[2 + γ](β2

2 − β2
1) . (17)

Given a set of ray-parameters{pn} and the respectives reflection coefficients,{Rn}, we can apply a least-
squares procedure to invert for the parametersΛi. The optimization problem to be solved is then

min
Λi

N∑
n=1

[
Rn −

J(pn)− 1
J(pn) + 1

]2
. (18)

After the optimal solution is found, we compute the inverted ratios for P-wave velocity and density,

α2

α1
=

Λ2

Λ1
, and

ρ2

ρ1
= Λ3

Λ1

Λ2
. (19)

To extract the ratio for the S-wave velocity, additional information about the data is needed. For example,
from a well-log analysis, if we estimate the value of the constantγ in equation (10), then

β2

β1
=
(
ρ2

ρ1

)1/γ

. (20)
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NUMERICAL EXPERIMENTS

A simple test on the accuracy of the AVP analysis presented above can be provided by the illustrative
two-layer model depicted in Figure 4. For each interface, the values for the S-wave velocities, above and
below the interface, are given by their corresponding P-wave velocity divided by

√
2 and

√
3, respectively.

Densities are taken 1.2 g/cm3 and 1.5 g/cm3, above and below each interface, respectively. The CRS
method, developed in Santos et al. (2005), was applied for central pointsx0 and ZO traveltimesT0 within
the ranges[3, 7] km and[0, 4] s.
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Figure 4: Synthetic model for the numerical experiments.

For each of the three interfaces, we select a box region with large values of the semblance function, and
apply the inversion procedure for eachx0 in the box. We consider the two situations (a) using the correct
values for the P-P reflection coefficient and (b) adding 10% noise. For the constantγ, from equation (20)
we use the averaged value

1
γ

=
1
3

ln
3∑
j=1

[βj+1/βj ]

ln(1.5/1.2)
= −0.4795 . (21)

Figures 5–7 show the results. Please observe that since the layers are homogeneous, each parameter ratio
is constant along thex0-axis for each reflector.

CONCLUSIONS

We have addressed the problem of inversion of amplitude versus ray parameter (AVP) curves, using a
combination of the CRS method and the formulation of the P-P reflection coefficient by means of the
reflection impedance concept. The CRS method provides semblance and attribute panels, which yield
information about the ray-parameter at the reflection point at target interfaces within the elastic model.
The reflection impedance formulation, on the other hand, produces an approximation formula for the P-P
reflection coefficient that is much suitable for inversion.

We have illustrated the inversion algorithm by applying it to a synthetic three-interface example, in
which, for all interfaces, good approximations of all elastic-parameter contrasts were retrieved. The ob-
tained numerical results indicate that the process has a good potential for real-data application.
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Figure 5: Parameter ratios for a window in the first reflector: Modelled (�), inverted without noise (◦),
and inverted with 10% noise (×).
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Figure 6: Parameter ratios for a window in the second reflector: Modelled (�), inverted without noise (◦),
and inverted with 10% noise (×).
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Figure 7: Parameter ratios for a window in the third reflector: Modelled (�), inverted without noise (◦),
and inverted with 10% noise (×).

REFERENCES

Aki, K. and Richards, P. G. (1980).Quantitative Seismology, Theory and Methods: Volume 1. W. H.
Freeman and Company.

Castagna, J. P. and Backus, M. M. (1993).Offset-Dependent Reflectivity – Theory and Practice of AVO
Analysis. SEG.

Chernyak, V. S. and Gritsenko, S. A. (1979). Interpretation of the effective common-depth-point param-
eters for a three-dimensional system of homogeneous layers with curvilinear boundaries.Geologiya i
Geofizika, 20:112–120.

Connolly, P. A. (1999). Elastic impedance.The Leading Edge, 18:438–452.

Dix, C. H. (1955). Seismic velocities from surface measurements.Geophysics, 20:68–86.

Hubral, P. (1983). Computing true amplitude reflections in a laterally inhomogeneous earth.Geophysics,
48:1051–1062.

Hubral, P., Höcht, G., and Jäger, R. (1998). An introduction to the common reflection surface stack.60th
EAGE Conference & Exhibition, Expanded Abstracts, Session:01–19.

Hubral, P. and Krey, T. (1980).Interval Velocities from Seismic Reflection Time Measurements. SEG.

Perroud, H. and Tygel, M. (2005). Velocity estimation by the CRS method: Using GPR data.Accepted by
Geophysics, 70.

Santos, L. T. and Tygel, M. (2004). Impedance-type approximations of the P-P elastic reflection coefficient:
Modeling and AVO inversion.Geophysics, 69:592–598.

Santos, L. T., Yano, F., Salvatierra, M., Andreani, R., Martínez, J. M., and Tygel, M. (2005). A global
optimization algorithm applied to the CRS problem.Submitted to Journal of Seismic Exploration.


