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ABSTRACT

We perform wave propagation simulations in porous media on microscale in which a slow compres-
sional wave can be observed. Since the theory of dynamic poroelasticity was developed by Biot
(1956), the existence of the type II or Biot’s slow compressional wave (SCW) remains the most con-
troversial of its predictions. However, this prediction was confirmed experimentally in ultrasonic
experiments. The purpose of this paper is to observe the SCW by applying a recently developed
viscoelastic displacement-stress rotated staggered finite-difference (FD) grid technique to solve the
elastodynamic wave equation. To our knowledge this is the first time that the slow compressional
wave is simulated on first principles.

INTRODUCTION

One of the key predictions of Biot’s theory of poroelasticity (Biot, 1956) is the fact that in a poroelastic
medium, there may propagate elastic waves of three types: a shear wave and two types of compressional
waves. The first compressional wave is the one that is very similar to the compressional wave in an elastic
medium, while the second wave, also called type II or Biot’s slow wave, has a strongly dispersive charac-
ter. At low frequencies, at which the flow of the pore fluid is characterized by the Poiseuille flow, the slow
wave has a diffusion-type character. At higher frequencies, when the viscous skin depth of the fluid in the
pores is smaller than the size of the pores, the slow wave becomes a normal propagating wave with small
attenuation, and can be approximately described as an acoustic wave in the pore fluid.
The slow wave at higher frequencies was confirmed experimentally, when the SCW was observed in ul-
trasonic experiments by Plona (1980). Theoretical analysis, e.g. by Dutta (1980), shows that the observed
travel times of the SCW are consistent with the predictions of Biot’s theory.
Goal of this study is to observe numerically the SCW on first principles (i.e. by solving the elastodynamic
wave equation) and not by solving Biot’s equations of poroelasticity [e.g.; Dai et al. (1995); Gurevich et al.
(1999)]. This is done in 2D with a comparison to an analytical solution as well as in 3D numerical exper-
iments. We apply a recently developed viscoelastic displacement-stress rotated staggered finite-difference
(FD) grid technique (Saenger et al., 2005).

2D NUMERICAL EXPERIMENTS

We consider a system of periodically alternating solid and fluid layers of periodd (Figure 1). The elastic
solid has densityρs, bulk modulusKs and shear modulusµs. The viscous fluid has densityρf , bulk
modulus (inverse compressibility)Kf , and dynamic viscosityη. The solid and fluid layer thicknesses are
hs andhf , respectively, so thaths + hf = d.
Propagation of compressional waves in a periodic system of solid layers denoted bys andf is governed
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by an exact dispersion equation (Rytov, 1956; Brekhovskikh, 1981; Gurevich, 2002):
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are compressional velocities in the materialss and f , respectively,Imµf = Imλf = −ωη, Kf =
λf + 2µf/3 and
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Equation (1) needs to be analysed on the macroscale, that is in the limit|ωd/c| � 1. However such a the-
oretical analysis appears to be too involved, and the analytical solution is only known in the low-frequency
limit (Gurevich, 2002). It has been shown numerically (Bedford, 1986), that for sufficiently small values
of |ωd/c| attenuation and dispersion predicted by equation (1) are the same as given by Biot’s dispersion
equation. Note that both equation (1) and Biot’s theory predict both types of compressional waves (the fast
compressional wave and Biot’s slow wave).
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Figure 1: Left hand side (a): Medium of alternating solid and viscous fluid layers.Right hand side (b):
Numerical (dots) vs. analytical solution (solid line) for the velocity of the SCW in the medium shown on
the left hand side. An excellent agreement is observed.

To obtain the effective velocities of slow waves in layered media we choose the following numerical
setup. The synthetic model contains two horizontal thin layers of viscous fluid and elastic solid of equal size
(30x3000 grid points with an interval of∆x=0.0001 m). The solid has the P-wave velocityvp=5100 m/s, S-
wave velocityvs=2944 m/s, densityρs=2540 kg/m3 and viscosityη=0 kg/m.s. For the viscous fluid we set
c11=3.922*1011, c44=1.3*1011 , andρf=1000 kg/m3. The fluid viscosityη = 10 kg/(ms) is determined
with the choice ofω1 = 1.3 ∗ 1010 [see Saenger et al. (2005) for details]. To generate a slow-wave in
x-direction (fdom=50 kHz orfdom=10 kHz), we apply a line source in z-direction in the fluid and perform
the finite-difference simulations with periodic boundary conditions (in z-direction). The effective velocity
is estimated by measuring the time of the zero-crossing of the plane wave over a distance of 1000 grid
points (distance between receiver position 1 and 2; see Figure 1). All computations are carried out with
the second order spatial FD operators and with the second order time update. The results are shown in
Figure 1.

3D NUMERICAL EXPERIMENTS

To observe a slow wave in a realistic 3D porous solid we perform simulations with a numerical setup sim-
ilar to the experiments described in Saenger et al. (2005). We apply the 3D RSG-technique to explicitely
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model wave propagation in fluid saturated porous media. The synthetic porous rock-models are embedded
in a homogeneous fluid region. The full models are made up of 600x400x400 grid points with an inter-
val of ∆x=0.0002m. For the grain material we set a P-wave velocity ofvp=5100m/s, a S-wave velocity
of vs=2944m/s and a density ofρgrain=2540kg/m3. For the fluid we setvp=1500m/s, vs=0m/s and
ρv=1000kg/m3. We perform our modeling experiments with periodic boundary conditions in the two hor-
izontal directions. We apply a plane source at the top of the model. The plane P-wave generated in this
way propagates from the top of the model to the interface of fluid and fluid-saturated porous media. The
source wavelet is the first derivative of a Gaussian with a dominant frequency offsource = 8× 104Hz and
with a time increment of∆t = 2.1 ∗ 10−8s. All computations are performed with second order spatial FD
operators and with a second order time update.

(a) (b)

Figure 2: Two different 3D synthetic porous models. The pore structure is defined by the synthetic rock
model GRF5 (see Saenger et al. (2005) for details). White regions indicates water; blue regions indicates
grain material.Left hand side (a): Open pores at the interface (x-position≈ 0.4m). Right hand side (b):
Sealed conditions (a very thin solid layer) at the same interface.

For the model shown in Figure 2a the incident P-wave generates from a theoretical point of view (Gure-
vich et al., 2004) one reflected and two transmitted compressional waves (fast and slow). The reflected
P-wave and the transmitted fast P-wave can be detected very clearly from a 2D slice from a snapshot of the
full 3D wavefield (Figure 3a). The transmitted slow P-wave can only be seen by calculating the average
displacement field as shown in Figure 4a.

An analysis based on the boundary conditions at an interface for Biot’s equations of poroelasticity
shows that the slow wave is generated if and only if there exist at least a hydraulic contact between the
free water and the water in the pore space [e.g. (Rasolofosaon, 1980)]. Therefore we repeat the previously
described simulation with a small modification: We create a very thin solid layer at the interface between
fluid and fluid-saturated porous media (Figure 2b). As expected a slow wave can not be observed in such a
simulation as shown in Figure 4b.

CONCLUSIONS

We have performed numerical modeling of seismic wave propagation on a micro-scale. A compressional
slow wave (a Biot type II wave) is observed in 2D and 3D simulations. In both cases we compare our
results with theoretical predictions successfully. This confirms that the viscoelastic rotated staggered grid
FD method of Saenger et al. (2005) is capable of modelling poroelastic (associated with global flow)
effects with high accuracy. To our knowledge this is the first time that the slow wave is simulated on first
principles.
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Figure 3: A z-displacement snapshot of the wavefield after 2100 timesteps. The reflected P-wave (at x≈
0.02m) and the transmitted fast P-wave (at x≈ 0.07m) are clearly visible.Left hand side (a): Snapshot for
the model with open pores at the interface (Figure 2a).Right hand side (b): Same as (a) but with for the
model with a sealed interface (Figure 2b).

(a) (b)
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Figure 4: Average of the z-displacement-field after 2100 timesteps and after the incident P-wave was partly
reflected and transmitted at the interface at x=≈ 0.04m. Left hand side (a): A slow compressional wave
can be observed (marked with a circle) using the model shown in Figure 2a).Right hand side (b): The
slow wave is not generated using the model shown in Figure 2b.
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