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ABSTRACT

This paper is concerned with numerical considerations of viscous fluid effects on wave propagation
in porous media. We apply a displacement-stress rotated staggered finite-difference (FD) grid tech-
nique to solve the elastodynamic wave equation. An accurate approximation of a Newtonian fluid is
implemented in this technique by using a generalized Maxwell body. With this approach we consider
the velocity predictions of the Biot theory for elastic waves in different digital rock samples. To dis-
tinguish between the low and the high frequency range we estimate the effective permeabilities by a
flow simulation. Our numerical results indicate that the viscous Biot-coupling is visible in the numer-
ical experiments. Moreover, the influences of other solid-fluid interactions (e.g. Squirt flow) are also
discussed.

INTRODUCTION

Although the theory of seismic wave propagation in porous fluid-saturated media has been established 50
years ago (Biot, 1956) there are still many unanswered questions about the origin of attenuation and dis-
persion in such media. In particular, while it is generally accepted that these dissipative effects can be
explained by the presence of wave-induced flow phenomena, there is still no consensus on the mathemat-
ical model of these phenomena. Some of the questions about the physics of wave propagation in porous
materials can be addressed by numerical simulations performed on the micro-scale, that is, on the scale
of individual pores and grains. Having this in mind, Saenger et al. (2004b) already have performed such
wave propagation simulations based on the rotated staggered grid (RSG) finite-difference (FD) technique
(Saenger et al., 2000). However, they have restricted themselves to determine effective elastic properties
of porous media saturated with a non-viscous fluid.

In this paper we extend this approach to a Newtonian (i.e. viscous) fluid. We propose an accurate
approximation of a viscous fluid saturating a porous solid using a generalized Maxwell body. This is a
well-known rheological model, which has been previously used to simulate (nearly) constant frequency-
independent attenuation by a time-domain FD scheme (Emmerich and Korn, 1987; Kristek and Moczo,
2003).

In a second part of this paper, we use the proposed method to test the applicability of the Biot velocity
relations (Biot, 1956) to porous materials. We explicitely simulate elastic waves in porous solid structures
saturated with a viscous fluid. This means that our modeling involves all solid-fluid interactions which are
covered by the elastodynamic wave equation. The goal here is to identify explicitely the seismic effect of
the viscous Biot-coupling in the numerical experiments.

The flow simulations additionally performed in this paper are carried out for the determination of the
reference frequency of the Biot theory. These simulations provide a combined estimate of transport and
mechanical properties of the same digital rock sample.
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DIGITAL ROCK SAMPLES

To generate realistic synthetic microstructures we use an approach described in Roberts and Garboczi
(2002), the so-called open-cell Gaussian random field (GRF) scheme. The porespace is defined by the
intersection of two two-cutted Gaussian random fields (i.e. Gaussian A and Gaussian B; see Table 1 for
details). To ensure a complete connectivity of the pores we eliminate isolated pores. In this paper we use
exact the same GRF’s as in Saenger et al. (2004b). Figure 1 shows one typical realization (GRF3).

Figure 1: An open-cell Gaussian random field (GRF3). The structure shown is the porespace, the trans-
parent part is the grain material.

Permeability values were estimated through the Lattice-Boltzmann (LB) flow simulations on the syn-
thetic digital rocks. The biggest advantages of the LB method are that it is readily applied to any arbitrary
discrete geometry (Keehm et al., 2004) and that it describes fluid flow in porous media very accurately
(Ladd, 1994; Keehm, 2003). We used the time-averaged velocity scheme (Ladd, 1994) to avoid artifacts
in local velocity fields. The numerical flow simulation was performed with an assigned pressure gradient
(∇P ) across opposite faces of cubical digital rocks. We imposed no-flow boundary condition on the other
four side faces of the cube. From the simulated local flux field, we calculated a volume-averaged flux
< q >. Then, the macroscopic permeability (κ) was estimated using the Darcy’s law:

< q >=
κ

η
∇P (1)

whereη is the dynamic viscosity of the fluid. We repeated the LB simulation with 1-D pressure gradient
for all three directions and the permeability was estimated by averaging three permeability values (κx, κy
andκz). We did not observe any significant anisotropy of permeability in the synthetic digital rocks. With
the permeability (Table 1) it is possible to calculate the Biot reference frequency (Table 2).

VISCOELASTIC WAVE SIMULATIONS

Theoretical model of viscoelasticity

We reformulate the approach described by Emmerich and Korn (1987) and Kristek and Moczo (2003).
Incorporation of viscosity based on the generalized Maxwell body (GMB) means that Hooke’s law is
modified:

σij = cijklεkl −
n∑

m=1

ξijm. (2)
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MEDIUM GRF 1 GRF 2 GRF 3 GRF 4 GRF 5
Porosityφ 3.42% 8.77% 13.2% 8.02% 21.6%
Perm.κ [10−4(∆x)2] 9.780 151.5 500.6 33.1 647.6

Gaussian A
corrl. len.[0.0002m] 25 25 25 13 25
cut min. 0.4 0.4 0.4 0.4 0.38
cut max. 0.6 0.6 0.6 0.6 0.62

Gaussian B
corrl. len.[0.0002m] 30 30 30 15 14
cut min. 0.485 0.48 0.4575 0.4904 0.46
cut max. 0.515 0.52 0.5415 0.5296 0.54

Table 1: Details of the open-cell GRF models (size:4003 gridpoints,∆x = 0.0002m). Every single model
(GRF1-5) is build up of the intersection of two two-level cutted Gaussian random fields (Gaussian A and
B).

In this equation,σij , cijkl, εkl denote the stresses, the elastic tensor and the strains, respectively. The
number of relaxation mechanisms is equal ton. The anelastic functionsξijm are determined by:

ξ̇ijm + ωmξ
ij
m = ωmỸ

ijkl
m εkl, (3)

with Ỹ ijklm as the tensors of anelastic coefficients andωm as angular relaxation frequencies. The GMB
frequency-dependent viscoelastic modulusCijkl(ω) can be derived by inserting the Fourier transform of
equation (3) into equation (2):

Cijkl(ω) = cijkl −
n∑

m=1

Ỹ ijklm

ωm
iω + ωm

. (4)

Using this formalism it is possible to implement attenuation in a general anisotropic media.

Implementation of viscoelasticity in a displacement-stress rotated staggered grid scheme

A second-order discretization in time of equation (3) yields (compare with discretization of equation (28)
of Emmerich and Korn (1987)):

ξijm(t+ 1/2∆t) =
2− ωm∆t
2 + ωm∆t

ξijm(t− 1/2∆t) +
2ωm∆t

2 + ωm∆t
Ỹ ijklm εkl(t). (5)

This can be implemented in a displacement-stress finite difference algorithm as shown in Moczo et al.
(2001). They point out that this is the most efficient FD scheme for incorporating attenuation models. One
main feature of the RSG is that all components of one physical property are placed in an elementary cell at
one single location. This is also true for the anelastic functionsξijm and the tensor of anelastic coefficients
Ỹ ijklm . These parameters are located at the same position as the stiffness tensor (see Fig. 1(d) of Saenger
et al. (2000)).

Approximation of a Newtonian fluid using a generalized Maxwell body

A compressible viscous fluid is charcterized by the following frequency-dependent elastic moduli (Auld,
1973):

C44(ω) = µ(ω) = iωηµ, (6)

C12(ω) = λ(ω) = λ(0) + iωηλ, (7)

with λ(ω) andµ(ω) as angular-frequency dependent Lamé parameters. For all examples in this paper
we assume thatηµ = ηλ = η. The key problem is how to approximate the viscous behaviour given by
equation (6) and (7) using a GMB. The following strategy (illustrated in Figure 2) is based on a Taylor-
expansion of equation (4) aroundω = 0:
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• We use one relaxation mechanism (n=1).

• Ỹ 44
1 = c44. Only in this case it is possible thatC44(0) = 0 [compare with equation (6) and (4)].

• In the low frequency range of the GMB, using one relaxation mechanism, the wanted fluid-viscosity
can be determined by the following relations:

ηµ =
1
i

∂C44(ω, Ỹ 44
1 = c44)

∂ω

∣∣∣∣∣
ω=0

=
c44
ω1
, (8)

ηλ =
1
i

∂C12(ω)
∂ω

∣∣∣∣
ω=0

=
Ỹ 12

1

ω1
. (9)

• Fromηµ = ηλ it follows Ỹ 12
1 = c44. Further, with equation (4), (7) and the known relationc11 =

c12 + 2c44 we obtain:

c11 = λ(0) + 3c44. (10)

• For FD approaches it is necessary to take into account the stability criterion. For the rotated staggered
grid with FD operators of second order in time and space the following relation is valid (Saenger
et al., 2000): √

c11
ρfluid

= vp ≤ γ, γ =
∆h
∆t

. (11)

• We choosec44 from the following range [given by the ’stability criterion’-relation (11) and equa-
tion (10)]:

c44 ≤
γ2ρfluid − λ(0)

3
. (12)

Together with the choice of the angular relaxation frequencyω1 one can determine the wanted dy-
namic viscosityη [compare with equation (8)].

• We choose a source signal in the low frequency range of the applied GMB (2πfsource << ω1).

Wave propagation modeling procedure

We apply the 3D RSG-technique with the viscoelastic extension described above to explicitely model
wave propagation in fluid saturated porous media. The synthetic porous rock-models are embedded in
a homogeneous elastic region. The full models are made up of 804x400x400 grid points with an inter-
val of ∆x=0.0002m. In the homogeneous region and for the grain material we set a P-wave velocity of
vp=5100m/s, a S-wave velocity ofvs=2944m/s and a density ofρgrain=2540kg/m3. For dry pores we
setvp=0m/s, vs=0m/s andρv=0.0001kg/m3. For the fluid-filled pores we use the parameters given in
Table 2. We perform our modeling experiments with periodic boundary conditions in the two horizontal
directions. To obtain effective velocities in different models we apply a body force plane source at the top
of the model. The plane P- or S-wave generated in this way propagates through the porous medium. We
measure the time-delay of the peak amplitude of the mean plane wave caused by the inhomogeneous re-
gion. Using the time-delay we estimate the effective velocity and, therefore, also the corresponding elastic
moduli (see Table 2). The source wavelet is the first derivative of a Gaussian with a dominant frequency of
fsource = 8 × 104Hz and with a time increment of∆t = 2.1 ∗ 10−8s. All computations are performed
with second order spatial FD operators and with a second order time update. A similar numerical setup
with a detailed error analysis is discussed in Saenger et al. (2004a).
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NUMERICAL APPROXIMATION

equation (4) with n=1 and Y   = c~ 44 44

Figure 2: Absolute values of the shear modulusC44 in dependence of the angular frequencyω. In the
frequency range of the used source the precision of the numerical approximation of the Newtonian fluid is
very high. Parameters are taken from experiment 13 (Table 2).

INTERPRETATION OF NUMERICAL RESULTS

Permeability versus static dry elastic moduli

Experiments No. 1,2,3,9 and 15 (see Table 2) provide the effective dry rock moduli of the digital rock
samples GRF 1-5. As expected we observe an increasing permeability with an increasing porosity (Table 1).
Also elastic moduli decrease with increasing porosity. We make the following observations: First, the
permeability varies over two orders of magnitude whereas the effective elastic moduli varies about 30%.
Second, the permeability varies with the poresize (i.e.∆x) whereas the static elastic moduli are scale
independent.

Viscous versus non-viscous pore fluid

In experiments No. 4,5,10 and 11 (Table 2) we consider effective elastic moduli of GRF3 and GRF4
saturated with a non-viscous and a Newtonian fluid of normal density (ρfluid = 1000kg/m3). However,
the theoretical differences of the low- and the high-frequency limit of Biot are in these cases not significant
enough to clarify unambiguously if the Biot effect is visible in the synthetics (exact formulae can be found
e.g. in Mavko et al. (1998)). This change significantly if we use a fluid with an artificially high density
(ρfluid = 15000kg/m3):

• Using a non-viscous high-density fluid for pore saturation [experiment 6,12 and 16 of Table (2)] we
consider the high frequency limit of Biot (: viscosityη = 0; hence, the reference frequencyfbiot can
be determined for our rock-models with a non-zero permeabilityκ usingfbiot = φη/(2πρfluidκ) as
zero; see e.g. Mavko et al. (1998)). This enables us to estimate the corresponding tortuosity of the
rock models [see Figure (3) and Saenger et al. (2004b) for details].

• Using a high-density Newtonian fluid with a viscosity ofη = 1000kg/(ms) for pore saturation
[experiment 7,13, and 17 of Table (2)] we consider the low frequency limit of Biot because the
dominant frequency of the propagating wave [fsource = 8×104Hz] is clear below the Biot reference
frequency. We observe a reduction of the effective elastic moduli towards the theoretical predicted
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Figure 3: The normalized effective bulk modulus (< K > /Kgrain) versus porosity for GRF 3,4 and
5 saturated with a non-viscous (thick solid line) and a Newtonian [η = 1000kg/(ms); dash-dotted thick
line] fluid of artificially high density (ρfluid = 15000kg/m3). The dashed lines display the high frequency
limit of the Biot theory calculated from< Kdry > using different values for the tortuosityα.

low-frequency limit of Biot (i.e. Gassmann; derived from the dry case) in comparison to experiment
6,12 and 16. This is shown in Figure 3 for the effective bulk modulus.

The interpretation of this result is as follows: The seismic effect of the Biot theory is clearly visible in our
numerical wave propagation experiments.

However, we have fixed three physical reasons why we still observe some numerical deviations from
Biot’s predictions (i.e. for GRF 3 and 5 the observed low-frequency value is not consistent with Gassmann;
see Figure 3):

• The unknown influence of Squirt. The critical frequency of this flow as well as the amount of soft
porosity is very difficult to estimate for our used models (for details see Mavko et al. (1998)).

• The relatively high velocity of shear waves (most significant for experiment 8 and 14) in the fluid
(vs =

√
|iωηfluid/ρfluid|) is not included in Biot and Squirt theories; this effect can be roughly es-

timated by analysing the upper Hashin-Sthrikmann bound (e.g. Mavko et al. (1998)) usingµfluid =
v2
sρfluid andω = ωsource (see Table 2).

• Local anisotropy in overall isotropic heterogeneous porous media (for details see Berryman (2004))

CONCLUSIONS

In this paper we perform finite-difference simulations on micro-scale to study the effect of viscous Biot-
coupling on wave propagation. We implement a generalized Maxwell body (Emmerich and Korn, 1987;
Kristek and Moczo, 2003) into a displacement-stress rotated staggered grid scheme with the result that all
viscous parameters are located in the centre of an elementary cell. Using this technique it is possible to
saturate synthetic rock models with realistic approximations of Newtonian fluids. This allows us to study
all coupling mechanism of fluid-solid interaction which are covered by the elastodynamic wave equation.
To estimate the reference frequency for the Biot approach we also determine the permeabilities of our
digital rock samples by flow simulations. This gives us the possibility to compare mechanical and transport
properties derived for exact the same digital rock samples. The wave propagation experiments in those
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Table 2: Normalized effective moduli (̂µ =< µ > /µgrain, K̂ =< K > /Kgrain) for the digital rock
models GRF1-5 saturated with different types of fluids. The fluid can be characterized by it elastic moduli
c44, the fluid viscosityηfluid, the densityρfluid and the P-wave velocity at zero frequencyvp(ω = 0).
Additionally we give the Biot reference frequencyfbiot and a viscosity dependent upper Hashin-Sthrikman-
boundµviHS

No. c44offluid vp(ω = 0) ρfluid η fbiot norm. eff. moduli "viscosity-dependent"
[109kg/(ms2)] [m/s] [kg/m3] [kg/(ms)] [104Hz] upper HS-bounds

GRF 1 (φ = 3.42%)
1 0 0 0.0001 0 - (dry) µ̂ = 0.849, K̂ = 0.790 µviHS = 0.935

GRF 2 (φ = 8.77%)
2 0 0 0.0001 0 - (dry) µ̂ = 0.605, K̂ = 0.493 µviHS = 0.841

GRF 3 (φ = 13.2%)
3 0 0 0.0001 0 - (dry) µ̂ = 0.472, K̂ = 0.369 µviHS = 0.770

4 0 1485 1000 0 0 µ̂ = 0.509, K̂ = 0.529

5 29.16 1485 1000 300 314 µ̂ = 0.532, K̂ = 0.544 µviHS = 0.773

6 0 1485 15000 0 0 µ̂ = 0.652, K̂ = 1.097

7 6.694 1485 15000 1000 69.9 µ̂ = 0.602, K̂ = 1.028 µviHS = 0.779
8 6.694 1485 15000 10000 699 µ̂ = 0.735 µviHS = 0.847

GRF 4 (φ = 8.02%)
9 0 0 0.0001 0 - (dry) µ̂ = 0.754, K̂ = 0.695 µviHS = 0.854

10 0 1485 1000 0 0 µ̂ = 0.759, K̂ = 0.757

11 29.16 1485 1000 300 2892 µ̂ = 0.764, K̂ = 0.763 µviHS = 0.856

12 0 1485 15000 0 0 µ̂ = 0.776, K̂ = 1.005

13 6.694 1485 15000 1000 643 µ̂ = 0.770, K̂ = 0.986 µviHS = 0.860
14 6.694 1485 15000 10000 6427 µ̂ = 0.851 µviHS = 0.900

GRF 5 (φ = 21.6%)
15 0 0 0.0001 0 - (dry) µ̂ = 0.344, K̂ = 0.272 µviHS = 0.650

16 0 1485 15000 0 0 µ̂ = 0.410, K̂ = 1.058

17 437.4 1485 15000 1000 88.4 µ̂ = 0.440, K̂ = 0.992 µviHS = 0.662

highly heterogeneous media saturated with viscous fluids indicate that the velocity estimations of the Biot
theory are visible in our numerical results.

ACKNOWLEDGEMENTS

We thank J.E. Saiers, Y. Guéguen and B. Gurevich for very useful comments and suggestions which helped
to improve the paper.

REFERENCES

Auld, B. A. (1973).Acoustic Fields and Waves in Solids, Vol. 1. John Wiley and Sons, New York.

Berryman, J. G. (2004). Poroelastic shear modulus dependence on pore-fluid properties arising in a model
of thin isotropic layers.Geophys. J. Int., 157:415–425.

Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low
frequency range and II. Higher-frequency range.J. Acoust. Soc. Amer., 28:168–191.

Emmerich, H. and Korn, M. (1987). Incorporation of attenuation into time-domain computations of seismic
wave fields.Geophysics, 52:1252–1264.

Keehm, Y. (2003).Computational Rock Physics: Transport Properties in Porous Media and Applications.
PhD thesis, Stanford University.

Keehm, Y., Mukerji, T., and Nur, A. (2004). Permeability prediction from thin sections: 3D reconstruction
and lattice-boltzmann flow simulation.Geophys. Res. Lett., 31:L04606.

Kristek, J. and Moczo, P. (2003). Seismic-wave propagation in viscoelastic media with material disconti-
nuities: A 3D fourth-order staggered-grid finite-difference modeling.Bull., Seis Soc. Am., 93(5):2273–
2280.

Ladd, A. J. C. (1994). Numerical simulations of particulate suspensions via a discretized boltzmann equa-
tion: Part 2. numerical results.J. Fluid Mech., 271:311–339.



Annual WIT report 2005 193

Mavko, G., Mukerji, T., and Dvorkin, J. (1998).The Rock Physics Handbook. Cambridge University Press,
Cambridge.

Moczo, P., Kristek, J., and Bystrický, E. (2001). Efficiency and optimization of the 3-D finite-difference
modeling of seismic ground motion.Journal of Computational Acoustics, 9(2):593–609.

Roberts, A. P. and Garboczi, E. J. (2002). Computation of the linear elastic properties of random porous
materials with a wide variety of microstructure.Proc. R. Soc. Lond. A, 458:1033–1054.

Saenger, E. H., Gold, N., and Shapiro, S. A. (2000). Modeling the propagation of elastic waves using a
modified finite-difference grid.Wave Motion, 31(1):77–92.

Saenger, E. H., Krüger, O. S., and Shapiro, S. A. (2004a). Effective elastic properties of randomly fractured
soils: 3D numerical experiments.Geophys. Prosp., 52(3):183–195.

Saenger, E. H., Krüger, O. S., and Shapiro, S. A. (2004b). Numerical considerations of fluid effects on
wave propagation: Influence of the tortuosity.Geophys. Res. Lett., 31:L21613.


