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ABSTRACT

Finite difference modeling of elastic wavefields in 2.5D is described in the velocity-stress formulation
for anisotropic media. The 2.5D modeling computes the 3D elastic wavefield in a medium which is
translation invariant in one coordinate direction. The approach is appealing due reduced storage and
computing time when compared to full 3D finite difference elastic modeling. The scheme handles in-
homogeneities in mass density and elastic moduli, includes free-surface and perfect matched layers as
absorbing boundaries. High order finite difference operator allows the use of a coarse mesh, reducing
the storage even more without producing numerical dispersion and numerical anisotropy. Numerical
experiments show the accuracy of the scheme, its computational efficiency and the importance of 2.5D
modeling in complex elastic media.

INTRODUCTION

The 3D elastic modeling of seismic wavefields is very expensive and requires extensive computational
resources, even for a modest-sized model. If the modeling of 3D wave propagation is carried out in media
with only 2D variations in the material properties, the seismic line being positioned within the symmetry
plane, this is generally referred to as the 2.5D situation. This situation is very interesting to numerical
experiments as the medium symmetry can be used to reduce the complexity of the numerical task.

The modeling of seismic wave propagation in the 2.5D situation is helpful to approximately simulate
seismic surveys along dip and strike directions in situations were full 3D modeling is unaffordable and
where only 2D information about the medium is available. Some of these applications are conventional
2D seismic surveys, i.e., where the sources and receivers follow a single seismic line (Liner, 1991), and
seismic borehole tomography (Williamson and Pratt, 1995).

Based on a Fourier transform of the acoustic wave equation in the out-of-plane direction, Song and
Williamson (1995) presented an approach by repeated 2D finite-difference modeling in the frequency do-
main to find the exact solution of the 3D wave equation in the 2.5D situation for acoustic media with
constant density, and applied their results to tomographic problems. They proved the quality of their re-
sults by a comparison to modeling with the Born approximation. Cao and Greenhalgh (1998) determined
the stability and absorbing boundary conditions for this 2.5D FD approach, again for constant density, and
compared the implementations in the time and frequency domains. In these papers, the inverse Fourier
transform is carried out by a sum up to the Nyquist wavenumber. Recently, Novais and Santos (2005)
revisited this approach for acoustic constant-density media and obtained stability conditions and sampling
limits in the time domain as a function of the maximum wavenumber. Costa et al. (2005) extended these
results to variable density, i.e., to any arbitrary acoustic media.

In this work, we transfer the time domain version of Novais and Santos (2005) to inhomogeneous elas-
tic and anisotropic media with arbitrary symmetry class. The sources and receivers are not constrained to
be within the same vertical plane. The velocity-stress formulation allows the computation of the complete
elastic wavefield. In the general case, a complex valued system of equations needs to be solved. If sources
and receivers are in the same vertical plane, the medium and the source distributions have mirror symmetry
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across the vertical plane. Then, it is possible, with a change of variables, to reduce the system of equations
to be solved to a real valued one. We present the stability conditions for the corresponding higher-order
finite-difference schemes and derive the perfect matched layer (PML) absorbing boundary conditions. We
validate the 2.5D algorithm against 3D finite-difference modeling. The 2.5D FD modeling can be imple-
mented efficiently on parallel platforms. The formulation belongs to the class of embarrassingly parallel
problems and the computation time reduces proportional to the number of processes.

METHOD

We solve the elastic field equations (Mittet, 2002; Minkoffy, 2002)

ρ(x)
∂vi(x, t)

∂t
=

∂σij(x, t)
∂xj

+ fi(x, t) +
∂MA

ij (x, t)
∂xj

, (1)

∂σij(x, t)
∂t

= Cijkl(x)
∂vk(x, t)
∂xl

+
∂MS

ij(x, t)
∂t

, (2)

whereρ is the medium density, andvi andfi are the components of the vectorial velocity field and volume
density force distribution, respectively. Moreover,Cijkl denotes the components of the medium stiffness
tensor, andσij those of the stress tensor. Finally,MS

ij and andMA
ij are the components of the symmetric and

anti-symmetric parts of the moment density tensor. These parts represent source distributions of volume-
injection or double-couple type (MS

ij) and of dipole type (MA
ij ).

In 2.5D modeling, one assumes the medium to be translation invariant along a coordinate direction,
generally represented byx2. In this case it is convenient to represent the elastic field and the sources
distribution in the Fourier domain as

vi(x, t) =
∫ ∞

−∞
vi(X, k2, t) exp (ik2x2) dx2 , (3)

and

σij(x, t) =
∫ ∞

−∞
σij(X, k2, t) exp (ik2x2) dx2 , (4)

wherek2 is the wavenumber associated withx2 andX ≡ (x1, x3). Also, vi(X, k2, t) andσij(X, k2, t)
are the complex valued components of the respective fields in thek2 wavenumber domain. Similarly,
the source distributions can also be represented in the Fourier domain. Avoiding the introduction of new
notational symbols, we denote from now onvi ≡ vi(X, k2, t), σij ≡ σij(X, k2, t), fi ≡ fi(X, k2, t),
MA
ij ≡ MA

ij (X, k2, t), andMS
ij ≡ MS

ij(X, k2, t). The Fourier components of the elastic field and their
source distribution obey, in an arbitrary anisotropic elastic medium, the complex valued system of equations

ρ(X)
∂vi
∂t

=
∂σiJ
∂XJ

+ i k2σi2 + fi +
∂MA

iJ

∂XJ
+ i k2M

A
i2 , (5)

∂σij
∂t

= CijkL(X)
∂vk
∂XL

+ i k2Cijk2(X)vk +
∂MS

ij

∂t
, (6)

where uppercase subscripts assume values 1 and 3 only. The summation convention also holds for these
indices. This system of equations can be discretized inX and time and solved by finite differences.

We have implemented this algorithm for isotropic media. In this case, the stress field equations reduce
to

∂σ11

∂t
= λ

(
∂v1
∂x1

+ ik2v2 +
∂v3
∂x3

)
+ 2µ

∂v1
∂x1

+MS
11 ,

∂σ22

∂t
= λ

(
∂v1
∂x1

+ ik2v2 +
∂v3
∂x3

)
+ 2µik2v2 +MS

22 ,

∂σ33

∂t
= λ

(
∂v1
∂x1

+ ik2v2 +
∂v3
∂x3

)
+ 2µ

∂v3
∂x3

+MS
33 ,
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∂σ23

∂t
= µ

(
∂v2
∂x3

+ ik2v3

)
+MS

23 ,

∂σ13

∂t
= µ

(
∂v1
∂x3

+
∂v3
∂x1

)
+MS

13 ,

∂σ12

∂t
= µ

(
∂v2
∂x1

+ ik2v1

)
+MS

12 , (7)

whereλ = λ(X) andµ = µ(X) are the Lamé parameters.
These equations are solved by finite differences in a staggered grid (Levander, 1988) for each value of

k2. We use a second-order approximation for the time derivatives and high-order approximations for the
space derivatives. After solving the system above by finite differences, the elastic field components at the
receivers position,xR, are computed as[

vi
σij

]
(xR, t) =

∫ +∞

−∞

[
vi
σij

]
(xR1 , k2, x

R
3 , t) exp(ik2x

R
2 )dk2.

For volume injections sources, volume density forces, and dipole density moment tensors polarized in
thex1-x3-plane, this system of equations can be reduced to a real valued system. This reduction is not
possible for general anisotropic media and arbitrarily polarized source distributions, as presented above.
As a consequence of the symmetry of the medium and the sources around the planex2 = 0, the field
componentsv2, σ12 andσ23 are odd functions ofx2, and their Fourier transform are purely imaginary. All
the other field components are even functions ofx2 and have real Fourier transforms.

Defining the real quantities,

u2(x1, k2, x3) ≡ iv2(x1, k2, x3),
τ12(x1, k2, x3) ≡ iσ12(x1, k2, x3),
τ23(x1, k2, x3) ≡ iσ23(x1, k2, x3),

the final equations for 2.5D elastic modeling, in this particular case, are

∂v1
∂t

=
1
ρ

[
∂σ11

∂x1
+ k2τ12 +

∂σ13

∂x3

]
+

1
ρ
f1 +

∂M1J

∂xJ
,

∂u2

∂t
=

1
ρ

[
∂τ12
∂x1

− k2σ22 +
∂τ23
∂x3

]
,

∂v1
∂t

=
1
ρ

[
∂σ13

∂x1
+ k2τ23 +

∂σ33

∂x3

]
+

1
ρ
f3 +

∂MA
3J

∂xJ
,

∂σ11

∂t
= λ

(
∂v1
∂x1

+ k2u2 +
∂v3
∂x3

)
+ 2µ

∂v1
∂x1

+MS
11,

∂σ22

∂t
= λ

(
∂v1
∂x1

+ k2u2 +
∂v3
∂x3

)
+ 2µk2u2 +MS

22,

∂σ33

∂t
= λ

(
∂v1
∂x1

+ k2u2 +
∂v3
∂x3

)
+ 2µ

∂v3
∂x3

+MS
33,

∂τ23
∂t

= µ

(
∂u2

∂x3
− k2v3

)
,

∂σ13

∂t
= µ

(
∂v1
∂x3

+
∂v3
∂x1

)
+MS

13,

∂τ12
∂t

= µ

(
∂u2

∂x1
− k2v1

)
. (8)

The velocity field componentsv1 andv3, for receivers located in the planex2 = 0, reduce to

vI(xR1 , 0, x
R
3 , t) =

∫ +∞

−∞
vI(xR1 , k2, x

R
3 , t)dk2. (9)



Annual WIT report 2005 239

The extension of this simplification to anisotropic media where the planex2 = 0 is a plane of mirror
symmetry is straightforward. In our implementation, the free-surface boundary condition is used at the top
surface (Mittet, 2002) and PML absorbing boundaries (Chew and Liu, 1996) are imposed at the bottom and
lateral boundaries. The PML equations are presented in the Appendix. The stability condition for the 3D
finite difference scheme (Costa et al., 2005) is

∆t ≤
√

2

3d(2)
0

∆x
cP

, (10)

where∆t is the time step,∆x is the grid space, andcP is the P-wave velocity. Moreover,

d
(2)
0 =

N+1∑
j=−N+1

dj ,

wheredj are the coefficients of the finite-difference operator for first derivatives, withN equal to the order
of the finite difference approximation. If we require the 2.5D scheme to obey equation (9) (Novais and
Santos, 2005), we can determine the maximum value for the wavenumber as (Silva Neto, 2004)

k2max ≤

√
2d(2)

0

∆x
. (11)

The wavenumber sampling is∆k2 = 2π/min(N1, N3), whereN1 andN3 are the numbers of grid points
in thex1 andx3 directions. When using FD schemes of order higher than 12, the spatial sampling to avoid
numerical dispersion must satisfy

∆x ≤ 1
3
CSmin

fmax
,

whereCSmin is the minimum S-wave velocity andfmax is the upper limit of the wavelet’s frequency band.

NUMERICAL EXPERIMENTS

The complex and real valued equation systems (7) and (8) for 2.5D elastic modeling were implemented on
a serial platform and on a PC cluster. The parallel implementation is very efficient. Each of the equation
systems (7) and (8) is solved for each wavenumber in a different process. There is no communication
between processes until the FD has finished. As a consequence, the computation time for parallel imple-
mentation is the computation time of the serial implementation divided by the number of processes. In all
the numerical experiments, we have modeled point sources using a Gaussian distribution around the source
point [

fi
Mij

]
=
[

f0(t) ei
M0(t) dij

]
1

(2πh2)3/2
exp

(
−‖x− xs‖2

2h2

)
,

wheref0(t) is the pulse,ei is the unit polarization vector for the volume-force density,M0(t) is the pulse
anddij depends on the source type. For explosive sources,dij = δij , and for double couple sources,dij =
niνj + njνi, where the unit vectorni is normal to the fault plane and the unit vectorνi is perpendicular to
ni (Aki and Richards, 1980; Minkoffy, 2002).

Homogeneous halfspace

We have computed the elastic wavefield in a homogeneous halfspace with a free surface as originating from
a volume injection point source. The model has density 2000 kg/m3, P-wave velocity 2500 m/s and S-wave
velocity 1200 m/s. The source is 10 m below the surface and the wavelet is a Ricker with 10 Hz of peak
frequency. Figures 1 and 2 compare the results of 2.5D and 2D elastic modeling after 0.5 s of propagation.
These figures show the differences in relative amplitudes and wave shape among events. Figure 3 shows
the snapshot of the velocity field after 0.6 s computed using the 2.5D algorithm. We observe the good
performance of the PML absorbing boundary conditions.
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Figure 1: Vertical component of velocity wavefield after 0.5 s of propagation in a homogeneous halfspace with a free
surface, computed by 2.5D elastic FD modeling. The Rayleigh wave (R), P wave, S wave and the S* wave are labeled.

Figure 2: Vertical component of the velocity wavefield after 0.5 s of propagation computed using 2D elastic modeling.
Observe the differences in the pulse width and shape and the relative amplitudes among the events as compared with
the 2.5D result.

Figure 3: Vertical component of velocity wavefield after 0.6 s of propagation in a homogeneous halfspace with a free
surface, computed by 2.5D elastic modeling. The PML absorbing boundary condition performs well attenuating the P
wave at the bottom.
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Figure 4: Density, P-wave, and S-wave velocity at a section of the SEG/EAEGE salt model.

SEG/EAGE salt model

We compare the results of 2D and 2.5D elastic finite difference modeling for the section of the SEG/EAGE
model in Figure 4. The density and shear velocity were estimated using the prescription of House et al.
(2000). Full 3D elastic modeling of a seismic survey in this model is still a challenge for today’s computer
hardware. The section we use for 2.5D modeling is sampled in a regular mesh of 10 m spacing with 365 by
1001 nodes. We simulate 1.5 seconds of propagation for an explosive source at 10 m depth, 300 receivers
are located symmetrically around the source spaced by 20 m with 150 m minimum offset. The source
pulse is a Blackman-Harris wavelet with peak frequency of 10 Hz. PML boundaries on the lateral and at
the bottom have 21 grid nodes. Figure 5 presents the results of 2D and 2.5D modeling. The anomalous
amplitudes, frequency content and phase of the 2D modeling are evident. In this case some events show
a larger mismatch than others indicating the shortcomings of 2D modeling in complex inhomogeneous
models.

Salt dome model

We also compare 2.5D and 3D elastic FD modeling in a simple salt dome model presented in Figure 6. The
section we use is sampled in a regular mesh of 10 m spacing with 250 by 501 nodes. We have simulated
1.3 s of propagation for a explosive source at 10 m depth, 120 receivers are located symmetrically around
the source, spaced by 20 m with 150 m minimum offset. For the 3D elastic simulation, 151 sections were
replicated along the transversal direction and the line along source and receivers were positioned in the
middle of the model. PML layers are applied on the bottom and on the lateral boundaries, each with a
width of 21 grid points. Figure 7 contains the results of 2.5D and 3D elastic modeling. The two results
present a very good agreement.
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Figure 5: Vertical component of the velocity field after finite difference modeling using the section of SEG/EAGE
salt model in Figure 4; (a) using a 2D FD, and (b) using the 2.5D FD. The 2D results present anomalous amplitudes
and frequency content.

CONCLUSIONS

Full 3D elastic FD modeling is challenging even for today’s PC clusters. We presented the formulation of
2.5D numerical modeling in arbitrary elastic media. Our approach to 2.5D modeling computes the com-
plete elastic wavefield and handles arbitrary anisotropy. Stability conditions and PML absorbing boundary
conditions for the FD algorithm were derived. The algorithm was successfully validated in complex inho-
mogeneous models against a full 3D elastic FD modeling. We believe this algorithm for 2.5D modeling
is an accurate, low storage, alternative for seismic modeling whenever translation invariance along a strike
direction can be assumed from geology. In such cases the 2.5D approach can compute the 3D wavefield
for models specified in dense grids in a single PC. The 2.5D elastic modeling is very efficient in parallel
platforms as compared to domain decomposition approaches to 3D FD elastic modeling.
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Figure 6: Density, P-wave, and S-wave velocity for a simple salt model.
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APPENDIX A

PERFECT MATCHED LAYERS (PML)

We use PML layers around the lateral and bottom boundaries of the model to reduce edge effects. Following
Chew and Liu (1996), we assume that each velocity wavefield at the PML layers decomposed as

vi = v1
i + v2

i + v3
i ,

and accordingly the stress field

σij = σ1
ij + σ2

ij + σ3
ij ,

where the superscripts indicate a coordinate direction. Using the complex stretch method of Chew and Liu
(1996), we derive the following equations for the field components in a general anisotropic medium:

∂v1
1

∂t
+ γ1(x1)v1

1 =
1
ρ

(
∂σ11

∂x1

)
,

∂v2
1

∂t
=

1
ρ
ik2σ12,

∂v3
1

∂t
+ γ3(x3)v3

1 =
1
ρ

(
∂σ13

∂x3

)
,

∂v1
2

∂t
+ γ1(x1)u1

2 =
1
ρ

(
∂σ12

∂x1

)
,

∂v2
2

∂t
=

1
ρ
ik2σ22,

∂v3
2

∂t
+ γ3(x3)v3

2 =
1
ρ

(
∂σ23

∂x3

)
,

∂v1
3

∂t
+ γ1(x1)v1

3 =
1
ρ

(
∂σ13

∂x1

)
,

∂v2
3

∂t
=

1
ρ
ik2σ23,

∂v3
3

∂t
+ γ3(x3)v3

3 =
1
ρ

(
∂σ33

∂x3

)
,

∂σ1
11

∂t
+ γ1(x1)σ1

11 = C11
∂v1
∂x1

+ C16
∂v2
∂x1

+ C15
∂v3
∂x1

,

∂σ2
11

∂t
= ik2 (C16v1 + C12v2 + C14v3) ,

∂σ3
11

∂t
+ γ3(x3)σ3

11 = C15
∂v1
∂x3

+ C14
∂v2
∂x3

+ C13
∂v3
∂x3

,

∂σ1
22

∂t
+ γ1(x1)σ1

22 = C12
∂v1
∂x1

+ C16
∂v2
∂x1

+ C25
∂v3
∂x1

,

∂σ2
22

∂t
= ik2 (C26v1 + C22v2 + C24v3)

∂σ3
22

∂t
+ γ3(x3)σ3

22 = C25
∂v1
∂x3

+ C24
∂v2
∂x3

+ C23
∂v3
∂x3

,

∂σ1
33

∂t
+ γ1(x1)σ1

33 = C13
∂v1
∂x1

+ C36
∂v2
∂x1

+ C35
∂v3
∂x1

,

∂σ2
33

∂t
= ik2 (C36v1 + C23v2 + C34v3) ,

∂σ3
33

∂t
+ γ3(x3) = C35

∂v1
∂x3

+ C34
∂v2
∂x3

+ C33
∂v3
∂x3

,
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∂σ1
23

∂t
+ γ1(x1)σ1

33 = C14
∂v1
∂x1

+ C45
∂v2
∂x1

+ C45
∂v3
∂x1

,

∂σ2
23

∂t
= ik2 (C46v1 + C24v2 + C44v3) ,

∂τ3
23

∂t
+ γ3(x3)τ3

23 = C45
∂v1
∂x3

+ C44
∂v2
∂x3

+ C34
∂v3
∂x3

,

∂σ1
13

∂t
+ γ1(x1)σ1

13 = C15
∂v1
∂x1

+ C56
∂v2
∂x1

+ C55
∂v3
∂x1

,

∂σ3
13

∂t
+ γ3(x3)σ3

13 = C55
∂v1
∂x3

+ C45
∂v2
∂x3

+ C35
∂v3
∂x3

,

∂σ2
13

∂t
= ik2 (C56v1 + C25v2 + C45v3) ,

∂σ1
12

∂t
+ γ1(x1)σ1

12 = C16
∂v1
∂x1

+ C66
∂v2
∂x1

+ C56
∂v3
∂x1

,

∂τ2
12

∂t
= ik2 (C66v1 + C26v2 + C46v3) ,

∂σ3
12

∂t
+ γ3(x3)σ3

12 = C56
∂v1
∂x3

+ C46
∂v2
∂x3

+ C36
∂v3
∂x3

,

where we are using the reduced notation for the stiffness tensor. The field attenuation at the absorbing
boundaries are controlled byγ1 andγ3. For example, at the bottomγ1 is zero and

γ3(x3) =

{
(x3−x0

3)
2

L2 , if x3 > x0
3

0, otherwise.

Here,x0
3 is the coordinate where the PML begins andL is its width. Likewise, for the lateral boundaries

only γ1 is not zero.


